
Global Optimization and Singular Nonlinear

Programs: New Techniques

Julie Roy and R. Baker Kearfott

January 23, 2010

General Context and Notation

The general problem we are considering is

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,

where the objective function ϕ(x) : x → R and the constraints ci, gi : x → R

are possibly nonlinear, and x ∈ R
n is the box where xi ∈ [xi, xi] for i = 1, . . . , n

defines the search region in a branch and bound algorithm. The constraints
in the problem are active constraints at a point if they hold with equality; for
example, an inequality constraint gi (i = 1, . . . , m2) is active at a feasible point
x if gi(x) = 0. An inequality constraint gi is considered to be approximately
active if |gi(x)| ≤ ǫg for some tolerance ǫg > 0, and it is considered to be
approximately inactive if gi(x) < −ǫg.

In problems posed in operations research and other fields, lines, planes, hy-
perplanes, or hypersurfaces that are feasible (or approximately feasible) and that
have approximately optimal objective function values often occur. For these
problems, traditional software usually finds one approximately optimal point
without any indication more solutions exist. Software with rigorous search or
automatic result verification fails to complete by taking excessive amounts of
time in the branch and bound process, and by returning considerable numbers
of small boxes that possibly contain the solution.

Our interest is in computing rigorous enclosures of all of the approximately
feasible, approximately optimal points. To do this we first need to define “ap-
proximate singular solution set” in a way that it is practical to rigorously enclose.

Approximate Singular Solution Sets

Main Idea

Let x̌ be a feasible point such that ϕ(x̌) is approximately optimal. If there are
directions from x̌ in which the objective function ϕ and the active constraints

1

do not change much, we can construct a region α based on these directions,
within which ϕ is guaranteed to be within some tolerance ǫϕ of ϕ(x̌) and within
which the constraints are guaranteed to be within some tolerance of feasible.
These skewed approximate solution boxes do not necessarily contain all points
that are within ǫϕ of optimal, but by construction, all points in the boxes are
within ǫϕ of optimal.

Rejection of Adjacent Regions

To incorporate the skewed ǫ-approximate solution boxes in a branch and bound
process, we also can construct boxes adjacent to these solution boxes within
which either the constraints are guaranteed to be infeasible or ϕ is guaranteed
to be greater ϕ(x̌) + ǫ, where ǫ can be chosen to be sufficiently less than ǫϕ for
the rejection process to work smoothly.

An illustration of an enclosed ǫ-approximate skewed solution box α and ad-
jacent rejection regions is given in Figure 1. In this illustration, X(C) represents
the box in the original coordinate system that contains the skewed box α. The
direction V represents the direction in which the objective function and active
constraints are not changing much, and the direction W represents the direction
in which either the objective function value increases or one of the constraints
becomes infeasible.

Figure 1: Illustration of enclosed ǫ-approximate solution box and adjacent re-
jection regions

Finding the Directions Parallel to the Solution Set

Let x̌ be an approximately feasible point where the objective function ϕ is ap-
proximately optimal. Let na be the number of approximately active inequality
constraints at x̌. Reorder the inequality constraints so that {gi}

na

i=1 are the
approximately active inequality constraints at x̌ and {gi}

m2

i=na+1 are the approx-
imately inactive inequality constraints at x̌. We choose directions in the null

2

space of

G =





























∇T ϕ(x̌)
∇T c1(x̌)

...
∇T cm1

(x̌)
∇T g1(x̌)

...
∇T gna

(x̌)
∇2ϕ(x̌)





























.

This matrix G is a matrix whose first m1 + na + 1 rows are the transposes of
the gradients of the objective function and the active constraints evaluated at
x̌ and remaining n rows consist of the Hessian matrix ∇2ϕ evaluated at x̌. To
obtain an orthonormal basis for the null space of G, we can use a singular value
decomposition of the matrix (such as with Matlab’s svd function).

We initially include all of the active gi (i = 1, . . . , na), but if many of the
inequality constraints are active, the singular value decomposition of the matrix
G may not reveal any directions in which the points remain optimal. In other
words, there may not be any lines passing through x̌ in which the points remain
optimal in both directions along the lines. For example, traveling in one direc-
tion along the line may correspond to traveling out of the feasible region. This
does not mean there are not any other optimal points near x̌. There may be
lines passing through x̌ along which points remain optimal in only one direction
(or along a ray pointing into the feasible region from x̌). To find these direc-
tions, we can look at the singular value decomposition of each reduced matrix
Gi (i = 1, . . . , na) constructed so that Gi is the matrix G with the ith active
inequality constraint gradient removed. For each of these matrices Gi, let Vi

denote the matrix of vectors pointing into the feasible region that correspond to
the smallest singular values in the singular value decomposition of Gi. The Vi

vectors that we need to consider are those which correspond to approximately
zero singular values in the singular value decompositions of the respective Gi

matrices. The direction in which we can travel the farthest into the feasible
region is the direction associated with the active inequality constraint gi whose
gradient we can remove from the G matrix. Therefore, we possibly can use the
matrix Gi instead of G to find an approximately singular direction. This process
can be continued by computing further reduced matrices corresponding to the
deletion of additional active inequality constraint gradients from the matrix G.

In practice, there are some “tuning” considerations. The “approximate null
space” is determined by a tolerance that determines when a singular value of
G can be ignored as zero. Also ǫϕ and ǫ in the definition of the approximate
solution set affect the method. If they are set too small with inaccuracies in the
coefficients of the problem, approximate null sets will not be detected. If they
are set too large, the entire search region will be marked, and the result will be
meaningless. The appropriateness of the settings depends on the problem.

3

Examples

A Simple Linear Example

An investment company needs to find out how to invest $200,000 in four stocks
with the expected rates of return and measures of risk given Table 1. The

Table 1: Expected rates of return and risk for the four stocks

stock A B C D
price per share $100 $50 $80 $40
return per share 0.12 0.08 0.06 0.10
risk measure per dollar 0.10 0.07 0.05 0.08

company wants to minimize the risk subject to the following conditions: the
annual rate of return must be at least 9%, and no one stock can account for
more than 50% of the total investment. This gives the linear program:

Minimize 10A + 3.5B + 4C + 3.2D
Subject to:

100A + 50B + 80C + 40D≤ 200, 000,
12A + 4B + 4.8C + 4D ≥ 18, 000,
0 ≤ 100A ≤ 100, 000,
0 ≤ 50B ≤ 100, 000,
0 ≤ 80C ≤ 100, 000,
0 ≤ 40D ≤ 100, 000.

Any point along the portion of the line given parametrically by









A
B
C
D









≈









666.667
0
0

2500









+ t









-0.3714
0

0.9285
0









,

with 0 ≤ t ≤ 897.46, is a solution to this problem. A graph of this solution set
is given in Figure 2. The computations for this solution set were done almost
instantaneously using Matlab and INTLAB (for information about INTLAB,
see [3] and [2]).

An Approximately Singular Linear Example

The techniques described above also can be applied to problems that are only
approximately singular. For example, if the coefficients of the previous problem
are perturbed slightly, we can still compute an approximate solution set that
is similar to the approximate solution set for the exactly singular problem. To
illustrate this, consider the linear program:

4

350 400 450 500 550 600 650 700
−100

0

100

200

300

400

500

600

700

800

A

C

Figure 2: ǫ-approximate solution set for the simple linear example

Minimize 9.98205404139819A+ 3.5B + 4.08C + 3.2D
Subject to:

100A + 50B + 80C + 40D ≤ 200, 000,
12.0833808879827A+ 4B + 4.88C + 4D ≥ 18, 000,
0 ≤ 100A ≤ 100000,
0 ≤ 50B ≤ 100000,
0 ≤ 80C ≤ 100000,
0 ≤ 40D ≤ 100000.

This problem was created by taking a very small random perturbation of both
the return per share and the risk measure per dollar for stock A. An approx-
imately optimal solution to this problem occurs when A ≈ 662.066, B ≈ 0,
C ≈ 0, and D ≈ 2500 which is close to one of the solutions to the original
problem.

This approximately singular problem has a set of approximate solutions
along a portion of the line given parametrically by









A
B
C
D









≈









662.066
0
0

2500









+ t









-0.3703
0

0.9289
0









,

for 0 ≤ t ≤ 52.17 (where ǫϕ = 0.1). This is a somewhat smaller solution set
that is close to the solution set of the exactly singular problem,









A
B
C
D









≈









666.667
0
0

2500









+ t









-0.3714
0

0.9285
0









,

5

for 0 ≤ t ≤ 897.46.

An Example from the Standard Netlib Test Problems

The techniques described above for determining an ǫ-approximate solution set
were applied to the AFIRO Netlib test problem [1]. This problem has 32 vari-
ables and 59 constraints (19 inequality constraints, 8 equality constraints, 32
boundary constraints). One feature of this problem is that many of the con-
straints are linearly dependent. An approximately feasible, approximately op-
timal solution set computed using Matlab and INTLAB with ǫϕ = 1.0 is

























































































































80
25.5
54.5
84.8

63.597
0
0
0
0
0
0
0

18.2143
45.3827
67.4128

500
475.92
24.08

0
215

125.3111
0
0
0
0
0
0
0

339.9429
258.6318
53.8838

0

























































































































+ t

























































































































0
0
0
0

-0.0494
0
0
0
0
0
0
0
0

-0.0494
-0.0523

0
0
0
0
0

0.6739
0
0
0
0
0
0
0
0

-0.6739
0.2898

0

























































































































+ s

























































































































0
0
0
0

-0.5637
0
0
0
0
0
0
0
0

-0.5637
-0.5975

0
0
0
0
0

-0.0590
0
0
0
0
0
0
0
0

0.0590
-0.0254

0

























































































































for −128.1484 ≤ t ≤ 256.1484 and −8.1674 ≤ s ≤ 8.1674.

6

Enclosing Nonlinear Solutions

For solution sets that are nonlinear, we can find a “tube of solutions,” that
is, a chain of skewed boxes in different coordinate systems that contain ǫ-
approximate optimal points. To do this, we first construct an ǫ-approximate
solution box around an initial approximately optimal point by the previously
mentioned methods. If the approximate null space has dimension 1, we can use
a predictor-corrector type method to construct an approximate solution curve
and a set of enclosing boxes. More specifically, we can consider points along the
faces of the initial approximate solution box in the directions in which this box
is wide, and then use a floating point minimization process to minimize ϕ along
each of these faces of the box. We then can construct new ǫ-optimal solution
boxes about these points. This process is continued until either no more new
boxes can be constructed or a maximum number of iterations is obtained.

Some Illustrative Nonlinear Examples

The following two examples are simple unconstrained nonlinear examples. These
examples are provided to illustrate the method described for finding the enclo-
sures to nonlinear solution sets. Computations for the approximately optimal
solution sets only took minutes using Matlab and INTLAB, and would probably
be one or two orders of magnitude faster using a compiled language, where there
is less overhead in nested loops. The computations would probably take much
longer with a general branch and bound algorithm without these techniques.

1. Minimize ϕ(x) = (sin(x1) − x2)
2

The global minimum is ϕ = 0. All points on the curve x2 = sin(x1)
are exact optimal solutions to this problem. A “tube” of approximately
feasible, approximately optimal solutions was computed using an initial
optimal, feasible point x̌ = [2π, 0]T ≈ [6.28318530717959, 0]T. A graph of
the results is given in Figure 3. The central curve represents the exact
solution set for this problem (the curve x2 = sin(x1)). The two curves on
each side of the exact solution set represent upper and lower bounds for all
points within ǫϕ of the exact solution set. The inner boxes containing the
central curve represent sets of points that are within ǫϕ ≈ 0.1 of optimal
(i.e., for all x in the skewed box, ϕ(x) ≤ ϕ + ǫϕ where ϕ = 0 is an upper
bound for the global minimum). These skewed boxes do not contain all
points that are within ǫϕ of optimal, but by construction, all points in the
boxes are within ǫϕ of optimal. The outer boxes are guaranteed to have
no other solutions other than the central one in them. These outer boxes
are boxes that could be rejected in the branch and bound process.

2. Minimize ϕ(x) = (x2
1 − 3x2)

2

7

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

x1

x2

Figure 3: ϕ(x) = (sin(x1) − x2)
2

The global minimum is ϕ = 0. All points on the parabola x2 = x2
1/3 are

exact optimal solutions for this problem. Using an initial optimal, feasible
point x̌ = [3, 3]T , the “tube” of approximately feasible, approximately
optimal solutions is shown in Figure 4 and in Figure 5. As in the previous
example, the curves represent the exact solution set and the upper and
lower bounds for the ǫ-approximate set where ǫ ≈ 0.1. The inner boxes
are boxes constructed to be guaranteed to lie within the ǫ-approximate set
where ǫ ≈ 0.1. The outer boxes are guaranteed to have no other solutions
other than the central one in them.

Future Work

Presently, we are investigating heuristics to best determine the dimension of the
approximate optimizing set, and also to reject regions adjacent to the approxi-
mate optimizing set. The goal is to incorporate these techniques into a branch
and bound method for global optimization.

References

[1] Netlib Repository, http://www.netlib.org/lp/data/afiro.

8

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

x1

x2

Figure 4: ϕ(x) = (x2
1 − 3x2)

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x1

x2

Figure 5: ϕ(x) = (x2
1 − 3x2)

2 – a closer look

9

[2] S.M. Rump, INTLAB - INTerval LABoratory website, http://www.ti3.

tu-harburg.de/rump/intlab/.

[3] S.M. Rump, INTLAB - INTerval LABoratory, Developments in Reliable
Computing (Tibor Csendes, ed.), Kluwer Academic Publishers, Dordrecht,
1999, http://www.ti3.tu-harburg.de/rump/, pp. 77–104.

10

