

Linear Interval Estin	nations	
"A Linear Interval Estir approximation of the p representation of an ol interval estimation of t	mation (LIE) is a linear parametric or implicit bject combined with an he approximation error.	
A LIE encloses the obj	ect.	
Two objects are disjoir	nt, if their LIEs are."	
	(Bühler 2001)	
Katja Bühler	3	v r vis

Motivation			
Parametric LIE	S		
Parametric	: Problems,		
Definition, Com	putation, Application		
Implicit LIEs			
Implicit Problem	IS,		
Definition,	Computation, Applica	tion	
Possible Exter	sions and Concl	usions	

Katja Bühler

So.....

- Introduction of ILIEs allows a redefinition of classical enumeration algorithms.
- ILIEs provide in many cases better enclosures, than axes-aligned cells.
- Results are much better adapted to the topology of the object.
- The number of necessary subdivisions decreased dramatically.
- The number of necessary ILIEs to represent a result with a certain precision is dramatically less using ILIEs than axes-aligned cells
 - As a basis for polygonization: much less polygons are necessary.
 - As a basis for collision detection: much less interference tests are necessary.
 - As a basis for ray tracing: Ray/plane test very fast with unique result.

v r vis

Katja Bühler

42

