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Bounding Volumes

„ A geometric bound (also called bounding volume) is 
a simple solid (box, sphere), that contains a given 
shape S. 

Such bounds have been considered to speed up 
interference detection, rendering and swept volume 
generation.

Two objects are disjoint if their bounds are.“ 
(Crosnier, Rossignac, 1999)



2

3Katja Bühler

„A Linear Interval Estimation (LIE) is a linear 
approximation of the parametric or implicit 
representation of an object combined with an 
interval estimation of the approximation error.

A LIE encloses the object.

Two objects are disjoint, if their LIEs are.“
(Bühler 2001)

Linear Interval Estimations
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Overview 

Motivation

Implicit LIEs
Implicit Problems, 

Definition, Computation, Application

Parametric LIEs
Parametric Problems, 

Definition, Computation, Application

Possible Extensions and Conclusions
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Linear Interval Estimations for 
Parametric Objects
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Intersection of two parametric surface patches
Analytical description

tsvu

ts

vu

JJII
CC

JJts
tsg
tsg
tsg

ts

IIvu
vuf
vuf
vuf

vu

×=×=
∈∈

⊂×∈















=

⊂×∈















=

:,:   and
)(),(   where

),(,
),(
),(
),(

),(

    and),(,
),(
),(
),(

),(

22

2

3

2

1

2

3

2

1

JI
JgIf

Rg

Rf

3,...,1; == i(s,t)g(u,v)f ii

Analytical Solution
Solve the underdetermined 
constrained equation 
system
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One Application Area for Bounding Volumes
of Parametric Objects:

• Simplification of any kind of intersection detection 
/computation
(surface/surface, ray/surface intersection, collision detection,...)

• Computation of bounding volumes
• Interference test and intersection of bounding volumes
• Subdivision if possible intersection detected
• Stop subdivision if a certain termination criterion is 

fulfilled

Most simple solution: Subdivision
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Common Bounding Volumes 
for Parametric Objects

• Axes-Aligned Bounding Boxes
• Oriented Bounding Boxes / Parallelepipeds 

or Slabs
• Polyhedra
• Spheres

Solids!

Computation: Range analysis methods based on 
• sampling
• convex hull properties of the control points of special object 

representations.
• evaluation of derivatives or 
• interval or affine arithmetic, 
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A critical view on existing types of 
bounding volumes

1. They are either overestimating or difficult to compute 
and/or to intersect. 

2. Techniques using interval or affine arithmetics to 
compute bounding volumes do not take functional 
dependencies into account or the additional 
information gets partly lost by conversion. 

3. They are solid, i.e. they provide only information on the 
location of the whole object.

4. The intersection of two bounding volumes gives only 
information about the location of the intersection of the 
enclosed objects in object space but not about 
corresponding values in parameter space!
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Ideal Bounding Volumes for Parametric 
Objects

• Tight
• Reliable

• Easy to compute
• Easy to intersect

Combination of intersection test and parameter domain 
reduction

AND: The intersection of bounding volumes should give 
information about the location of a possible intersection
– in object space AND
– in parameter space

• Acceleration of subdivision processes
• Finding fast good starting points for iterative numerical 

solutions for the computation of intersection points

WHY?
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Creating a new type of bounding volume
• Get tight bounding volumes:

Take advantage from additional information e.g. 
provided by Taylor Models or the intrinsic structure 
of Affine Forms.

• Make intersections easy:
Choose a linear structure

• Resolve compactness: Parameterize the 
bounding volume

– Provide information about the location of each 
surface point.

– Directly connect the parametric representations 
of the object and its bounding volume.
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Linear Interval Estimations (LIEs) 
for Parametric Objects
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Computations of LIEs:
Taylor Models
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A linear Taylor Model of a parametric representation 
of an objects is a LIE of this object.
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Operations
• affine
• non-affine

Conversion
Interval /Affine Form

Affine Forms

Affine Arithmetic
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Computation of LIEs: Modified Affine Forms
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General Concept for Constructing LIEs

• Linearization 
+ Interval estimation of approximation error

• Parameterization of the LIE has to correspond to 
parameterization of object.

R
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Intersection of general LIEs in Rn

LIEs are linear objects
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Characterization of LIEs
• Intuitive and natural bounding volumes: Linearization of 

the parametric representation of the patch.

• Each point of the patch is enclosed by an „interval point“ of 
the LIE with the same parameters.

• Tight and reliable enclosure of the patch.

• Easy to compute.

• The diameter of the interval part of the LIE gives information 
about the flatness of the patch: Good termination criterion

• Allow a simple intersection test, that gives in addition an 
enclosure of the solution in the parameter space of the 
patches.

Furthermore:
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Example: 
Ray/Surface intersection
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Example: Subdivision Algorithm for Surface 
Patch Intersection

The use of LIEs

• allows to optimize the subdivision algorithm in almost 
all steps

• reduces the number of subdivisions and intersection 
tests compared to an subdivision that uses axes-
aligned bounding boxes dramatically 
(in a simple example about 1:100)

• reduces the computation time 

• reduces the amount of data
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Experimental Results
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Experimental Results 2
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Experimental Results 3
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Extension of the 
Idea  to the Implicit 
Case:  Implicit LIEs
for Implicit Objects
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Implicit Objects - Curves, Surfaces

Definition of an implicit object:
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Problem:

Why?
• Resolving the implicit equation f(x1,...,xn) = 0 is in 

most  cases not possible.
• Thus, determining those points in space belonging to 

the object is non- trivial.

Localization of the object for visualization and collision 
detection

Cell- or ray- object incidence test is an important 
operation in algorithms related with implicit objects.
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• Uniform/Adapted space subdivision

– Pixel / Voxel size

– Basis for polygonization,....

• Polygonization

– Marching squares/cubes,....

• Ray tracing

• Particle systems

• Stochastic differential equations

Existing Solutions
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• Uniform/Adapted space subdivision (enumeration)

– Pixel / Voxel size

– Basis for polygonization,....

• Polygonization

– Marching squares/cubes,....

• Ray tracing

• Particle systems

• Stochastic differential systems

Possible Application Areas for ILIEs
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• Uniform/Adapted space subdivision (enumeration)

– Pixel / Voxel size

– Basis for polygonization,....

• Polygonization

– Marching squares/cubes,....

• Ray tracing

• Particle systems

• Stochastic differential systems

Possible Application Areas for ILIEs

Example
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Linear Interval Estimations (ILIEs) for 
Implicit Objects
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The picture shows an implicit curve piecewise enclosed by 
ILIEs ( 0 ∈ 2x + 6y + [-0.1,0.2] ) defined on the blue boxes.
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Computation of ILIEs

General Recipe:
1. Compute any linear approximation  lf(x) of  f(x) on 

a cell I.
2. Estimate the approximation error with an interval J. 

3. Combine both to get an ILIE of F:
LF :  0   in   lf(x) + J

Here:
Computation of ILIEs using modified affine 
arithmetics

Other possibilities: Taylor Models,....
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Characteristics

• Fat linearization

• Diameter can be used as criterion for flatness.

• Low additional computational costs compared to a 
cell/surface evaluation if affine arithmetic is used.

• No Problems with singularities if computed
with affine arithmetic.

• Tight enclosure due to Tchebycheff
approximation
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Cell pruning

• The ILIE encloses the object in many cases 
much tighter than the corresponding cell.

• The axes- aligned cell can be reduced easily 
to those parts containing the ILIE / object 
using interval arithmetics.

Iterative pruning:

• A new ILIE can be computed with respect to 
the pruned cell that can be pruned again 
with respect to the new cell,....
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The Classical Enumeration Algorithm Based 
on Interval Arithmetic

Input: Implicit object obj defined by obj.f(x) = 0, an initial cell I.
Output: Set of cells that may contain the object.

Algorithm Enumerate(ImplObj c, Cell I)
if (0 not in obj.f(I))

return; // Test, if box may hit the curve.
if (termination criterion fulfilled) 

return;                       // Termination criterion fulfilled?
subdivide I into subboxes bi, i=1,..,2n;
for i=1,..., 2n

I := Ii ;
Enumerate(c, Ii );           // Perform algorithm for new parts

Start algorithm with   Enumerate(obj, I);
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Analysis

• Incidence test 
0 in obj.f(I) ?

is expensive.

• No cell pruning.

• Axes aligned enclosures.

• High number of subdivisions for high 
precision.

• High number of cells representing the result.
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Possible Improvements Using ILIEs
1. Perform cell- object incidence 

test and computation ILIE in 
(almost) one step.

2. Use diameter of ILIE as 
termination criterion. 

3. Perform (iterated) cell pruning 
for each computed sub- cell.

4. Reduce unnecessary cell- object 
tests doing  a pre- test with the 
ILIE of the mother cell.

5. Apply adapted subdivision 
strategies. 
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Evaluation of Experiments
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Evaluation of Experiments
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Comparing ILIE-Based Algorithm With  
Axes-Aligned Cell-Based Algorithm

Much less subdivisions and ILIEs
are necessary to represent an 
enclosure of certain precision 
than using axes-aligned cells.

Example: Cross Cap, Precision 0.01:

140 times less subdivisions
160 times less ILIEs than cells
(70 times faster)
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So……

• Introduction of ILIEs allows a redefinition of  classical enumeration 
algorithms.

• ILIEs provide in many cases better  enclosures, than axes-aligned 
cells.

• Results are much better adapted to the  topology of the object.
• The number of necessary subdivisions decreased dramatically.
• The number of necessary ILIEs to represent a result with a certain 

precision is dramatically less using ILIEs than axes-aligned  cells
– As a basis for polygonization: much less  polygons are 

necessary.
– As a basis for collision detection: much less  interference tests 

are necessary.
– As a basis for ray tracing: Ray/plane test  very fast with unique 

result.



22

43Katja Bühler

Conclusions and Future Work
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Conclusions

• LIEs implement a new philosophy of bounding volumes for 
geometric objects
– natural and intuitive
– directly connected to the representation of the enclosed 

object
– tight and reliable
– easy to compute and to intersect
– allow development of adaptive algorithms, reduction of 

the number of necessary steps, and the size of output
– accelerate basic algorithms 
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Future Work
• What basics are needed ?

– Implementation of a better Affine Arithmetic  Alternatives?

• Possible applications to implement:
– Direct ray tracing of parametric / implicit surfaces  

Nate Hayes, Sunfish Studios
– Natural Bounding Volumes for Parametric Volumes
– Collision Detection

• Extensions:
– LIEs for triangular parametric surface patches 
– Application of higher order Taylor Models?
– Exploration of other linearization techniques?
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