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Bounding Volumes

» A geometric bound (also called bounding volume) is
a simple solid (box, sphere), that contains a given
shape S.

Such bounds have been considered to speed up
interference detection, rendering and swept volume
generation.

Two objects are disjoint if their bounds are.”
(Crosnier, Rossignac, 1999)
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Linear Interval Estimations

,»A Linear Interval Estimation (LIE) is a linear
approximation of the parametric or implicit
representation of an object combined with an
interval estimation of the approximation error.

A LIE encloses the object.

Two objects are disjoint, if their LIEs are.*
(Biihler 2001)
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Overview

Motivation

Parametric LIEs
Parametric Problems,
Definition, Computation, Application

Implicit LIEs
Implicit Problems,
Definition, Computation, Application

Possible Extensions and Conclusions
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Linear Interval Estimations for
Parametric Objects
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Intersection of two parametric surface patches
Analytical description
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and I'=1, %1, J=J xJ, .
“ ‘ fuyv)=g(st)y i=1..3
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One Application Area for Bounding Volumes
of Parametric Objects:

+ Simplification of any kind of intersection detection
/computation
(surface/surface, ray/surface intersection, collision detection,...)

Most simple solution: Subdivision

» Computation of bounding volumes
* Interference test and intersection of bounding volumes
» Subdivision if possible intersection detected

» Stop subdivision if a certain termination criterion is
fulfilled
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Common Bounding Volumes
for Parametric Objects

* Axes-Aligned Bounding Boxes

7\ | * Oriented Bounding Boxes / Parallelepipeds
| or Slabs

» Spheres

Computation: Range analysis methods based on
+ sampling

» convex hull properties of the control points of special object
representations.

« evaluation of derivatives or
» interval or affine arithmetic,
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A critical view on existing types of
bounding volumes

1. They are either overestimating or difficult to compute
and/or to intersect.

2. Techniques using interval or affine arithmetics to
compute bounding volumes do not take functional
dependencies into account or the additional
information gets partly lost by conversion.

3. They are solid, i.e. they provide only information on the
location of the whole object.

4. The intersection of two bounding volumes gives only
information about the location of the intersection of the
enclosed objects in object space but not about

corresponding values in parameter space!

Katja Bihler 9

vVrovis

Ideal Bounding Volumes for Parametric
Objects

+ Tight + Easy to compute
+ Reliable » Easy to intersect

AND: The intersection of bounding volumes should give
information about the location of a possible intersection

— in object space AND
— in parameter space

WHY?

Combination of intersection test and parameter domain

reduction
J L

* Acceleration of subdivision processes

+ Finding fast good starting points for iterative numerical
solutions for the computation of intersection points

is
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Creating a new type of bounding volume
|

* Get tight bounding volumes:
Take advantage from additional information e.g. !
provided by Taylor Models or the intrinsic structure |
of Affine Forms.

* Make intersections easy:
Choose a linear structure ‘

* Resolve compactness: Parameterize the
bounding volume

— Provide information about the location of each
surface point.

\

— Directly connect the parametric representations
of the object and its bounding volume.
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Linear Interval Estimations (LIEs)
for Parametric Objects

Definition :
A linear map L: 1€ IR”" —» IR"
L(x)=P +Zx:v,. 5 X =(x,.,x,)el, xeR
i=1
with interval vector PeIR" and v, e R",i=1,...,m
is called a linear interval estimation of the parametric object
f(x), xeJelIR”

iff there exists a valid reparametrization

BEEEEAR |
1x b O(x)=x
so that for all x € J holds  f(x) € L(®(x)) = L(x"). !
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Computations of LIEs: -~ =
Taylor Models .

Taylor models (Berz1998):

Letf:R—>RbeC"™'(I), uyel and Ic Raninterval
Let T, be the Taylor Polynom of f of order » around u, €.

The interval J — R is called an n - th order remainder bound of f on 1, iff
f(w-T, (Wed foralluel

The pair (T, ,J)is called an n - th order Taylor model of f.

A linear Taylor Model of a parametric representation

of an objects is a LIE of this object.
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Affine Arithmetic

Arithmetic that operates on ranges defined as affine forms

Affine Forms 5 !

X=x, +legl; Error symbols ¢, € [71,1] , 1=0,.,n

i=0
Conversion ~ a+b _ |p-d
i xela,b] » F=x,+xg with x,=—— x= .8 €[-11]
Interval /Affine Form 2 2
Operations maxon)
. Addition:  X+F=xq4y,+ X (X% +)5

» affine 5
* non-affine o max(on)

Multiplication: Xy =x,-y,+ Z(xoyl +YoX,)E; + 2,

i=0
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Computation of LIEs: Modified Affine Forms

Letbef(x), xe H I, € IR™ a parametric object,

k=1
X =xh+xle,
the affine forms corresponding to I, , k =1,...,mand X = (%,...., X,, ).
Then

£(X) =1(&0n&ys Vs ?,)
=4+ '+ > gy g0, €[-1]
k=1 i=1
and

L(g,...,e,) =P+ if"gk; g, €[-1]]
k=1

is a linear interval estimation of f(x) where P :=f° + {— DlgDlg

i=1 i=1

|

is

General Concept for Constructing LIEs

* Linearization
+ Interval estimation of approximation error

» Parameterization of the LIE has to correspond to
parameterization of object.

B .
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Intersection of general LIEs in R"

‘ LIEs are linear objects ‘

TwoLIEs....

Fx)=F, + 1, IeIR”
Thus, (X) 0 ;xll Xele

k
G(y)=Go+) yg, yeJelR'
Intersecting two LIEs or LIEs with =

lines or (hyper-) planes

...and the corresponding
intersection equation
Fx)=G(), xel,yelJ

Solving a constraint system of
linear equations
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Characterization of LIEs

* Intuitive and natural bounding volumes: Linearization of
the parametric representation of the patch.

« Each point of the patch is enclosed by an ,interval point* of
the LIE with the same parameters.

+ Tight and reliable enclosure of the patch. L\

s
- Easy to compute. \)/ A
Furthermore:

+ The diameter of the interval part of the LIE gives information
about the flatness of the patch: Good termination criterion

+ Allow a simple intersection test, that gives in addition an
enclosure of the solution in the parameter space of the
patches.
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Example:
Ray/Surface intersection

SurfacePatchLIE:

L(u,v)=P+uy, +vy,; (u,v)el, xI,
Ray:

r(s)=q+sw, sel,

Systemof Equations:

u

v ¥, -w)v|=q-P
N

where uel ,vel sel, fok

Q
-0.&% -0D.6 -0.¢ -0.2 o o2 0.4
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Example: Subdivision Algorithm for Surface
Patch Intersection

The use of LIEs

» allows to optimize the subdivision algorithm in almost
all steps

» reduces the number of subdivisions and intersection
tests compared to an subdivision that uses axes
aligned bounding boxes dramatically
(in a simple example about 1:100)

* reduces the computation time

* reduces the amount of data
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Experimental Results
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Experimental Results 2

-1.5

-0.5

0.5 1 1.5

Katja Buhler

24

v r vis




Experimental Results 3
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Extension of the !ﬂ
Idea to the Implicit | |
Case: ImplicitLIEs | |
. . . )
for Implicit Objects . |
v r vis

Katja Bihler 26




Implicit Objects - Curves, Surfaces

Definition of an implicit object:

‘F: f(x)=0, xeR”

Advantage: Simple location of a
point relative to the object:

Letbe peR":
f(p)>0, poutsideF

f(p)=0, ppartof F
f(p)<0, pinsideF
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Problem:

Localization of the object for visualization and collision
detection

Why?
* Resolving the implicit equation f(xy,...,x,) = 0 is in
most cases not possible.

« Thus, determining those points in space belonging to
the object is non tivial.

Celt orray- dject incidence test is an important
operation in algorithms related with implicit objects.
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Existing Solutions

» Uniform/Adapted space subdivision
— Pixel / Voxel size
— Basis for polygonization,....

* Polygonization
— Marching squares/cubes,....

* Ray tracing

Particle systems

Stochastic differential equations
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Possible Application Areas for ILIEs

Uniform/Adapted space subdivision (enumeration)
— Pixel / Voxel size

— Basis for polygonization,....

* Polygonization

— Marching squares/cubes,....

* Ray tracing

Particle systems

Stochastic differential systems
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Possible Application Areas for ILIEs

Uniform/Adapted space subdivision (enumeration)

— Pixel / Voxe
— Basis for polygonization,....
* Polygonization Example
— Marching squares/cubes,....
* Ray tracing
» Particle systems
» Stochastic differential systems
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Linear Interval Estimations (ILIEs) for
Implicit Objects

Definition : T

The interval (hyper-)plane o r'
0OeL(x)=J+Y ax, ,x:=(x,.,x,)eR" “ ‘l,’.

i=1 [

with Je€lIR, g, eR,i=1.,n iscalled an i

implicit linear interval estimation of *,\
F:f(x)=0 on IelIR" \

iff for all x € F holds o .'X .
0e L(x). NS W

The picture shows an implicit curve piecewise enclosed by
ILIEs (0 € 2x + 6y + [-0.1,0.2] ) defined on the blue boxes.
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Computation of ILIEs

General Recipe:

1. Compute any linear approximation /{x) of f(x) on
acell I

2. Estimate the approximation error with an interval J.

3. Combine both to get an ILIE of F:
Le: 0 in I(x) +J

Here:
Computation of ILIEs using modified affine
arithmetics

Other possibilities: Taylor Models,....
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Characteristics

» Fat linearization
+ Diameter can be used as criterion for flatness.

* Low additional computational costs compared to a
cell/surface evaluation if affine arithmetic is used.

* No Problems with singularities if computed
with affine arithmetic.

» Tight enclosure due to Tchebycheff
approximation
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Cell pruning

» The ILIE encloses the object in many cases
much tighter than the corresponding cell.

+ The axes kgned cell can be reduced easily
to those parts containing the ILIE / object
using interval arithmetics.

W

Iterative pruning:

* A new ILIE can be computed with respect to —
the pruned cell that can be pruned again —
with respect to the new cell,....
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The Classical Enumeration Algorithm Based
on Interval Arithmetic

Input: Implicit object obj defined by obj.f(x) = 0, an initial cell I.
Output: Set of cells that may contain the object.

Algorithm Enumerate (ImplObj c, Cell I)
if (0 not in obj.f(I))
return; // Test, if box may hit the curve.

if (termination criterion fulfilled)

return; // Termination criterion fulfilled?
subdivide I into subboxes b,, i=1,..,2"%;
for i=1,..., 2"
I =17
Enumerate(c, I,); // Perform algorithm for new parts

Start algorithm with Enumerate(obj, |);
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Analysis

* Incidence test

is expensive.
* No cell pruning.
» Axes aligned enclosures.

* High number of subdivisions for high

0 in obj.f(l) ?

precision.

» High number of cells representing the result.

Katja Buhler
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Possible Improvements Using ILIEs

1.

Katja Buhler

Perform celt dject incidence
test and computation ILIE in
(almost) one step.

Use diameter of ILIE as
termination criterion.

Perform (iterated) cell pruning
for each computed sub all.

Reduce unnecessary celt dject
tests doing a pre ftest with the
ILIE of the mother cell.

Apply adapted subdivision
strategies.
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Evaluation of Experiments
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Evaluation of Experiments
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Comparing ILIE-Based Algorithm With
Axes-Aligned Cell-Based Algorithm

Much less subdivisions and ILIEs
are necessary to represent an
enclosure of certain precision ——
than using axes-aligned cells.

Example: Cross Cap, Precision 0.01:

140 times less subdivisions
160 times less ILIEs than cells —
(70 times faster)
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So......
* Introduction of ILIEs allows a redefinition of classical enumeration
algorithms.
» ILIEs provide in many cases better enclosures, than axes-aligned
cells.

* Results are much better adapted to the topology of the object.
* The number of necessary subdivisions decreased dramatically.

* The number of necessary ILIEs to represent a result with a certain
precision is dramatically less using ILIEs than axes-aligned cells
— As a basis for polygonization: much less polygons are
necessary.

— As a basis for collision detection: much less interference tests
are necessary.

— As a basis for ray tracing: Ray/plane test very fast with unique
result.
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Conclusions and Future Work

Katja Buhler
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Conclusions

» LIEs implement a new philosophy of bounding volumes for
geometric objects

Katja Buhler

natural and intuitive

directly connected to the representation of the enclosed
object

tight and reliable

easy to compute and to intersect

allow development of adaptive algorithms, reduction of
the number of necessary steps, and the size of output

accelerate basic algorithms
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Future Work

* What basics are needed ?
— Implementation of a better Affine Arithmetic Alternatives?

» Possible applications to implement:

— Direct ray tracing of parametric / implicit surfaces
=» Nate Hayes, Sunfish Studios

— Natural Bounding Volumes for Parametric Volumes
— Collision Detection

+ Extensions:
— LIEs for triangular parametric surface patches
— Application of higher order Taylor Models?
— Exploration of other linearization techniques?
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