A New Interval Selection Technique for Global Optimization

Tibor Csendes

University of Szeged, Institute of Informatics http://www.inf.u-szeged.hu/~csendes

Dagstuhl, January 20-24, 2003.

Problem

Consider the bound constrained global optimization problem

$$
\min _{x \in X} f(x)
$$

where the n-dimensional interval X is the search region, and $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function. We assume that there exists at least one global minimizer point in X, that is also a stationary point.

The considered algorithm is based on an inclusion function calculated by interval arithmetic or by other techniques.

Properties of inclusion functions

A function $F: \mathbb{I}^{n} \rightarrow \mathbb{I}$ is an inclusion function of the objective function f if for $\forall Y \in \mathbb{I}^{n}$ and $\forall y \in Y f(y) \in F(Y)$, where \mathbb{I} stands for the set of all closed real intervals.
F is said to be an isotone inclusion function over X if for $\forall Y, Z \in \mathbb{I}(X), \quad Y \subseteq Z$ implies $F(Y) \subseteq F(Z)$.

We call the inclusion function F an α-convergent inclusion function over X if for $\forall Y \in \mathbb{I}(X) w(F(Y))-w(f(Y)) \leq C w^{\alpha}(Y)$ holds, where α and C are positive constants.

We say that the inclusion function F has the zero convergence property, if $w\left(F\left(Z_{i}\right)\right) \rightarrow 0$ holds for all the $\left\{Z_{i}\right\}$ interval sequences for which $Z_{i} \subseteq X$ for all $i=1,2, \ldots$ and $w\left(Z_{i}\right) \rightarrow 0$.

Step 1 Let L be an empty list, the leading box $A:=X$, and the iteration counter $k:=1$. Set $\tilde{f}=\bar{F}(X)$.
Step 2 Subdivide A into s subsets $A_{i},(i=1, \ldots, s)$ satisfying $A=\cup A_{i}$ so that $\operatorname{int}\left(A_{i}\right) \cap \operatorname{int}\left(A_{j}\right)=\emptyset$ for all $i \neq j$ where int denotes the interior of a set. Evaluate the inclusion function $F(X)$ for all the new subintervals, and update the upper bound \tilde{f} of the global minimum.

Step 3 Let $L:=L \cup\left\{\left(A_{i}, \underline{F}\left(A_{i}\right)\right)\right\}$.
Step 4 Discard certain elements from L that cannot contain a global minimum point.
Step 5 Choose a new $A \in L$ and remove the related pair from the list.
Step 6 While termination criteria do not hold let $k:=k+1$ and go to Step 2.

Algorithm parameters

The generalized RejectIndex:

$$
p f\left(f_{k}, X\right)=\frac{f_{k}-\underline{F}(X)}{\overline{\bar{F}}(X)-\underline{F}(X)}
$$

is an algorithm parameter, the large value of which indicates that an interval X is close to a minimizer point $\left(f_{k} \rightarrow f^{*}\right.$, where f^{*} is the global minimum).

The natural validated bounds on the f_{k} values are:

$$
\underline{f}_{k}=\min \left\{\underline{F}\left(Y^{l}\right), l=1, \ldots,|L|\right\} \leq f_{k} \leq \tilde{f}=\bar{f}_{k} .
$$

Convergence properties 1

THEOREM 1 [1]: Assume that the inclusion function of the objective function is isotone and it has the zero convergence property. Consider the interval branch-and-bound optimization algorithm that uses the cut-off test, the monotonicity test, the interval Newton step and the concavity test as accelerating devices, and that selects as next leading interval that interval Y from the working list which has the maximal $p\left(f_{k}, Z\right)$ value.

A necessary and sufficient condition for the convergence of this algorithm to a set of global minimizer points is that the sequence $\left\{f_{k}\right\}$ converges to the global minimum value f^{*} and there exist at most a finite number of f_{k} values below f^{*}.

Convergence properties 2

Theorem 2 [2]: Assume that the inclusion function of the objective function is isotone and it has the zero convergence property.
Consider the interval branch-and-bound optimization algorithm that uses the cut-off test, the monotonicity test, the interval Newton step and the concavity test as accelerating devices, and that selects as next leading interval that interval Y from the working list which has the maximal $p\left(f_{i}, Z\right)$ value.

The algorithm converges exclusively to global minimizer points if

$$
\underline{f}_{k} \leq f_{k}<\delta\left(\bar{f}_{k}-\underline{f}_{k}\right)+\underline{f}_{k}
$$

holds for each iteration number k, where $0<\delta<1$.

Proof

Notice first that the maximal $p f\left(f_{k}, Y\right)$ values are always nonnegative, since f_{k} is not less than the minimal lower bound of F. Due to $f_{k}<\tilde{f}$, the numerator of $p f$ is less than $\tilde{f}-\min \left\{\underline{F}\left(Y^{l}\right), l=1, \ldots,|L|\right\} . \underline{f}_{k}$ is conservative, i.e. it is monotonously nondecreasing (based on the isotone inclusion functions). The same property is ensured for \bar{f}_{k} by the isotonicity of $F(X)$, and by the updating of \tilde{f}. Thus \underline{f}_{k} is monotonously nondecreasing, and \bar{f}_{k} is monotonously nonincreasing.

Consider now an arbitrary point $x^{\prime} \in X$ in such a way that $f\left(x^{\prime}\right)>f^{*}$, and that there is a subsequence $\left\{Y_{k_{l}}\right\}$ of the leading boxes that converges to x^{\prime}. For this point x^{\prime} the sequence of lower bounds $\underline{F}\left(Y_{k_{l}}\right)$ converges to $f\left(x^{\prime}\right)$ due to the zero convergence property, and obviously the sequence of upper bounds $\tilde{f}_{k}=\bar{f}_{k}$ on the minimum value converges to a value not greater than $f\left(x^{\prime}\right)$.

Proof (continued / 2)

In the same time the f_{k} values must be below $f\left(x^{\prime}\right)$ from a certain iteration index K, since they fulfill the condition

$$
\underline{f}_{k} \leq f_{k}<\delta\left(\bar{f}_{k}-\underline{f}_{k}\right)+\underline{f}_{k}
$$

with a $0<\delta<1$. Then the respective $p f$ values are negative from an index $K^{\prime} \geq K$.

If there are more such points as x^{\prime}, then the above reasoning holds for each of them. In other words, also in this case from a certain index all $p f$ is negative.

Proof (continued / 3)

On the other hand, there is always at least one global minimizer point, a stationary point in one of the subintervals in the list L. The respective subinterval cannot be deleted by an accelerating step, and thus its $p f\left(f_{k}, Y\right)$ value is nonnegative. But this contradicts that a subinterval with a negative $p f$ value is selected, i.e. no subsequence of the generated intervals can converge to a nonoptimal point of the search region.

Numerical testing environment

- The numerical tests were made on a Pentium-IV computer (1,4 Ghz, 1 Gbyte) under Linux.
- The inclusion functions were implemented via the PROFIL BIAS routines. The programs were coded in C++.
- The basis algorithm was that of the C++ Toolbox for Verified Computing.
- The standard time unit was 0.00076 seconds.
- The new method assumed an approximate optimum value of 4 digits precision obtained by a previous traditional optimization algorithm.

Numerical results, basic algorithm $(\epsilon=0.01)$

Problem		CPU time in seconds (Pentium IV, 1.4 Ghz)						
name	n	\underline{F}	$\left(\bar{f}_{k}+\underline{f}_{k}\right)$	\%	new	\%	$p f^{*}$	\%
H3	3	347.64*	431.98*	124	8.46	2	5.59	2
H6	6	444.75*	439.99*		375.53*	84	368.55*	83
GP	2	474.79*	1,760.60*	371	3.09	1	3.48	1
SHCB	2	362.53*	298.12	82	0.45	0	0.54	0
L3	2	387.02*	443.24*	115	0.07	0	0.09	0
L5	2	381.78*	319.82*	84	0.03	0	0.05	0
Sch27	3	114.40	0.06	0	0.04	0	115.27	101
EX2	5	358.43*	354.16*	99	311.11*	87	328.91*	92

* Unsolved due to the memory limitation (at most 20.000 intervals).

References

1. Csendes, T.: Convergence properties of interval global optimization algorithms with a new class of interval selection criteria. J. Global Optimization 19(2001) 307-327
2. Csendes, T.: Numerical experiences with a new generalized subinterval selection criterion for interval global optimization. Reliable Computing, 9(2003) 109-125.
3. Csendes, T.: Generalized subinterval selection criteria for interval global optimization. Submitted for publication, available at http://www.inf.u-szeged.hu/~csendes/publ.html

Acknowledgements: The present work was supported by the grants MÖB D-11/2001, OMFB D-30/2000, OMFB E-24/2001, OTKA T 032118, and T 034350.

