A New Interval Selection Technique for Global Optimization

Tibor Csendes

University of Szeged, Institute of Informatics http://www.inf.u-szeged.hu/~csendes

Dagstuhl, January 20-24, 2003.

Problem

Consider the bound constrained global optimization problem

 $\min_{x\in X}f(x)$

where the *n*-dimensional interval *X* is the search region, and $f(x) : \mathbb{R}^n \to \mathbb{R}$ is the objective function. We assume that there exists at least one global minimizer point in *X*, that is also a stationary point.

The considered algorithm is based on an inclusion function calculated by interval arithmetic or by other techniques.

Properties of inclusion functions

A function $F : \mathbb{I}^n \to \mathbb{I}$ is an *inclusion function* of the objective function f if for $\forall Y \in \mathbb{I}^n$ and $\forall y \in Y$ $f(y) \in F(Y)$, where \mathbb{I} stands for the set of all closed real intervals.

F is said to be an *isotone inclusion function* over *X* if for $\forall Y, Z \in \mathbb{I}(X), Y \subseteq Z$ implies $F(Y) \subseteq F(Z)$.

We call the inclusion function *F* an α -convergent inclusion function over *X* if for $\forall Y \in \mathbb{I}(X) \ w(F(Y)) - w(f(Y)) \le Cw^{\alpha}(Y)$ holds, where α and *C* are positive constants.

We say that the inclusion function *F* has the *zero convergence property*, if $w(F(Z_i)) \rightarrow 0$ holds for all the $\{Z_i\}$ interval sequences for which $Z_i \subseteq X$ for all i = 1, 2, ... and $w(Z_i) \rightarrow 0$.

Step 1 Let *L* be an empty list, the leading box A := X, and the iteration counter k := 1. Set $\tilde{f} = \overline{F}(X)$.

Step 2 Subdivide *A* into *s* subsets A_i , (i = 1, ..., s) satisfying $A = \bigcup A_i$ so that $int(A_i) \cap int(A_j) = \emptyset$ for all $i \neq j$ where int denotes the interior of a set. Evaluate the inclusion function F(X) for all the new subintervals, and update the upper bound \tilde{f} of the global minimum.

Step 3 Let $L := L \cup \{(A_i, \underline{F}(A_i))\}.$

Step 4 Discard certain elements from *L* that cannot contain a global minimum point.

Step 5 Choose a new $A \in L$ and remove the related pair from the list.

Step 6 While termination criteria do not hold let k := k + 1 and go to Step 2.

Algorithm parameters

The generalized RejectIndex:

$$pf(f_k, X) = \frac{f_k - \underline{F}(X)}{\overline{F}(X) - \underline{F}(X)}$$

is an algorithm parameter, the large value of which indicates that an interval *X* is close to a minimizer point ($f_k \rightarrow f^*$, where f^* is the global minimum).

The natural validated bounds on the f_k values are:

$$\underline{f}_k = \min\{\underline{F}(\Upsilon^l), l = 1, ..., |L|\} \le f_k \le \tilde{f} = \overline{f}_k.$$

Convergence properties 1

THEOREM 1 [1]: Assume that the inclusion function of the objective function is isotone and it has the zero convergence property. Consider the interval branch-and-bound optimization algorithm that uses the cut-off test, the monotonicity test, the interval Newton step and the concavity test as accelerating devices, and that selects as next leading interval that interval *Y* from the working list which has the maximal $p(f_k, Z)$ value.

A necessary and sufficient condition for the convergence of this algorithm to a set of global minimizer points is that the sequence $\{f_k\}$ converges to the global minimum value f^* and there exist at most a finite number of f_k values below f^* .

Convergence properties 2

THEOREM 2 [2]: Assume that the inclusion function of the objective function is isotone and it has the zero convergence property. Consider the interval branch-and-bound optimization algorithm that uses the cut-off test, the monotonicity test, the interval Newton step and the concavity test as accelerating devices, and that selects as next leading interval that interval *Y* from the working list which has the maximal $p(f_i, Z)$ value.

The algorithm converges exclusively to global minimizer points if

$$\underline{f}_k \le f_k < \delta(\overline{f}_k - \underline{f}_k) + \underline{f}_k$$

holds for each iteration number *k*, where $0 < \delta < 1$.

Proof

Notice first that the maximal $pf(f_k, Y)$ values are always nonnegative, since f_k is not less than the minimal lower bound of F. Due to $f_k < \tilde{f}$, the numerator of pf is less than $\tilde{f} - \min\{\underline{F}(Y^l), l = 1, ..., |L|\}$. \underline{f}_k is conservative, i.e. it is monotonously nondecreasing (based on the isotone inclusion functions). The same property is ensured for \overline{f}_k by the isotonicity of F(X), and by the updating of \tilde{f} . Thus \underline{f}_k is monotonously nondecreasing, and \overline{f}_k is monotonously nonincreasing. Consider now an arbitrary point $x' \in X$ in such a way that $f(x') > f^*$, and that there is a subsequence $\{Y_{k_l}\}$ of the leading boxes that converges to x'. For this point x' the sequence of lower bounds $\underline{F}(Y_{k_l})$ converges to f(x') due to the zero convergence property, and obviously the sequence of upper bounds $\tilde{f}_k = \overline{f}_k$ on the minimum value converges to a value not greater than f(x').

Proof (continued / 2)

In the same time the f_k values must be below f(x') from a certain iteration index *K*, since they fulfill the condition

 $\underline{f}_k \leq f_k < \delta(\overline{f}_k - \underline{f}_k) + \underline{f}_k$

with a $0 < \delta < 1$. Then the respective *pf* values are negative from an index $K' \ge K$.

If there are more such points as x', then the above reasoning holds for each of them. In other words, also in this case from a certain index all pf is negative.

Proof (continued / 3)

On the other hand, there is always at least one global minimizer point, a stationary point in one of the subintervals in the list *L*. The respective subinterval cannot be deleted by an accelerating step, and thus its $pf(f_k, Y)$ value is nonnegative. But this contradicts that a subinterval with a negative pf value is selected, i.e. no subsequence of the generated intervals can converge to a nonoptimal point of the search region.

Numerical testing environment

- The numerical tests were made on a Pentium-IV computer (1,4 Ghz, 1 Gbyte) under Linux.
- The inclusion functions were implemented via the PROFIL BIAS routines. The programs were coded in C++.
- The basis algorithm was that of the C++ Toolbox for Verified Computing.
- The standard time unit was 0.00076 seconds.
- The new method assumed an approximate optimum value of 4 digits precision obtained by a previous traditional optimization algorithm.

Problem		CPU time in seconds (Pentium IV, 1.4 Ghz)						
name	п	<u></u>	$(\overline{f}_k + \underline{f}_k)/2$		new		pf*	
				%		%		%
H3	3	347.64*	431.98*	124	8.46	2	5.59	2
H6	6	444.75*	439.99*	99	375.53*	84	368.55*	83
GP	2	474.79*	1,760.60*	371	3.09	1	3.48	1
SHCB	2	362.53*	298.12	82	0.45	0	0.54	0
L3	2	387.02*	443.24*	115	0.07	0	0.09	0
L5	2	381.78*	319.82*	84	0.03	0	0.05	0
Sch27	3	114.40	0.06	0	0.04	0	115.27	101
EX2	5	358.43*	354.16*	99	311.11*	87	328.91*	92

References

1. Csendes, T.: Convergence properties of interval global optimization algorithms with a new class of interval selection criteria. J. Global Optimization 19(2001) 307-327

2. Csendes, T.: Numerical experiences with a new generalized subinterval selection criterion for interval global optimization. Reliable Computing, 9(2003) 109-125.

3. Csendes, T.: Generalized subinterval selection criteria for interval global optimization. Submitted for publication, available at http://www.inf.u-szeged.hu/~csendes/publ.html

Acknowledgements: The present work was supported by the grants MÖB D-11/2001, OMFB D-30/2000, OMFB E-24/2001, OTKA T 032118, and T 034350.