Consistency Techniques over Real Numbers

Laurent Granvilliers

granvilliers@irin.univ-nantes.fr

University of Nantes

Reduction and Propagation

- Compute the solution set of $\{y = x^2, x \ge y + 1\}$ in the box $[-10, 10]^2$
- Propagation = sequence of reductions

$$y = x^{2} \implies y \in [0, 10]$$

$$x \ge y + 1 \implies x \in [1, 10]$$

$$y \le x - 1 \implies y \in [0, 9]$$

$$y = x^{2} \implies y \in [1, 9]$$

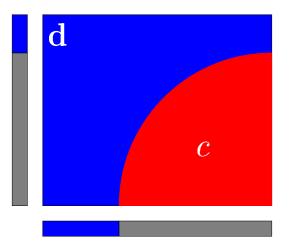
$$y = x^{2} \implies x \in [1, 3]$$

Projections of a Constraint

- Constraint $c(x_1, \ldots, x_n) \subseteq \mathbb{R}^n$
- Box $\mathbf{d} = \boldsymbol{d}_1 \times \cdots \times \boldsymbol{d}_n$

۲

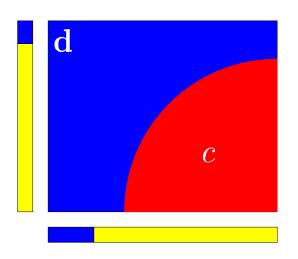
• Projection of c over x_i



Approximation of Projections

- Projections cannot be represented by floating-point intervals
- Approximation

۲

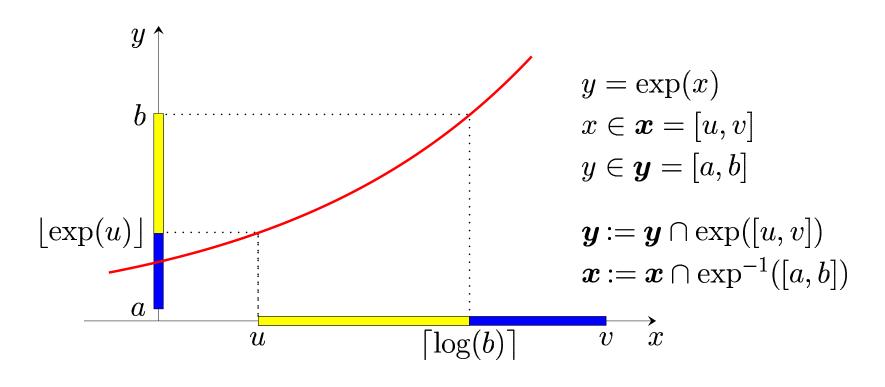


• Reduction is computation of some yellow box

Reduction: Inversion

• Cleary 87

• Reduce the domains of x and y st. $y = \exp(x)$



Laurent Granvilliers, Dagstuhl Seminar 2003 - p. 5/20

Inversion for Complex Constraints

• Cleary 87

۲

Decomposition into primitives

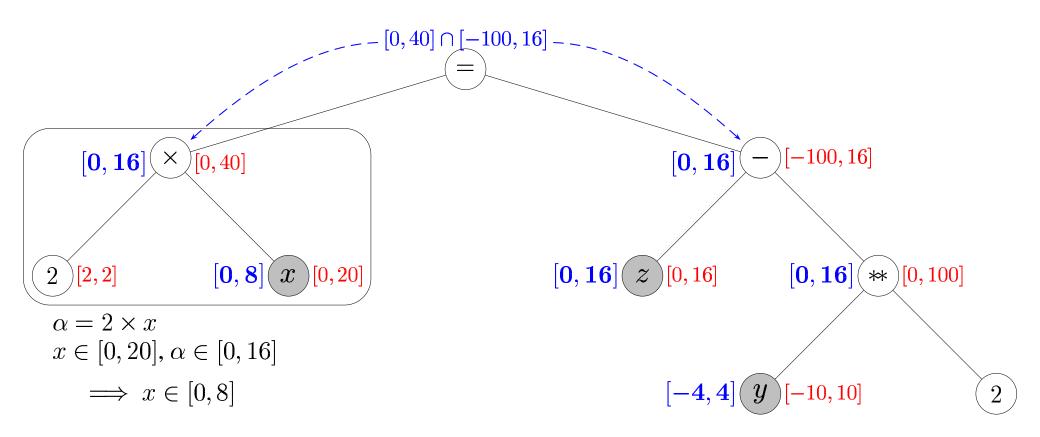
$$2x = z - y^2 \iff \begin{cases} \alpha = 2 \times x \\ \beta = y^2 \\ \alpha = z - \beta \end{cases}$$

for some $\alpha,\beta\in\mathbb{R}$

Slow compilation and propagation processes

Inversion for Complex Constraints

• Benhamou et al. 99



Dependency Problem

• The inversion technique can be weak

 $x + x = 0, x \in \mathbf{d} = [-1, 1]$

$$d := d \cap (-d)$$

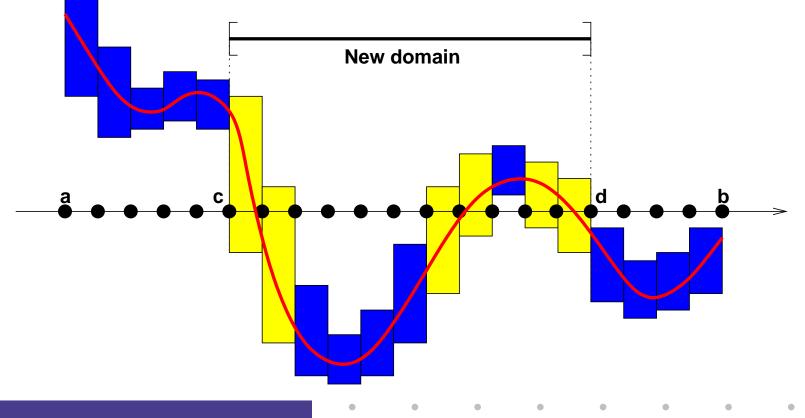
 $:= [-1,1] \cap [-1,1]$
 $:= [-1,1]$

Solutions

- symbolic transformation
- bisection-evaluation process

Reduction: Box-consistency

- Benhamou & McAllester & Van Hentenryck 94
- Reduce the domain of x st. f(x) = 0



Box-co. for Multivariate Constraints

- Consider a constraint $f(x_1, \ldots, x_n) = 0$ and an interval form f of f
- Given a box d box-consistency is computed for the set of interval functions

$$\left\{ \begin{array}{l} {\bm{f}}_1(x_1, {\bm{d}}_2, {\bm{d}}_3, \dots, {\bm{d}}_n) \\ {\bm{f}}_2({\bm{d}}_1, x_2, {\bm{d}}_3, \dots, {\bm{d}}_n) \\ & \ddots \\ {\bm{f}}_n({\bm{d}}_1, {\bm{d}}_2, \dots, {\bm{d}}_{n-1}, {\bm{x}}_n) \end{array} \right.$$

Reduction Model

- Let $\mathbb I$ be the set of closed intervals
- A reduction operator is a function $\mathbb{I}^n \to \mathbb{I}^n$ which is for all $x, y \in \mathbb{I}$
 - monotonic: $x \subseteq y \implies \theta(x) \subseteq \theta(y)$
 - contracting: $\theta(x) \subseteq x$
- Consistency techniques are monotonic and contracting
- These techniques are also verified!

Propagation Model

- Narin'yani 1983, Benhamou 1996, Apt 1998
- Lemma: given a finite set of reduction operators and a domain d the greatest common fixed-point of the operators included in d exists
- Propagation = application of operators
 - fair strategy \implies convergence
 - finiteness of domain \implies termination
 - independence wrt. the strategy

Fixed-point Propagation Algorithm

•

 $S := \{01, ..., 0n\}$

Box d

repeat

```
choose 0 in S
save := d
d := 0(d)
if d = save then
S := S - {0}
else
S := {0j | 0j depends on a modified domain}
```

until S is empty

Solver Cooperation

1. Generation of reduction operators

Inversion

- Box-consistency
- Interval methods
- Simplex
- 2. Propagation over the set of operators
 - good strategy (choose) \implies efficiency

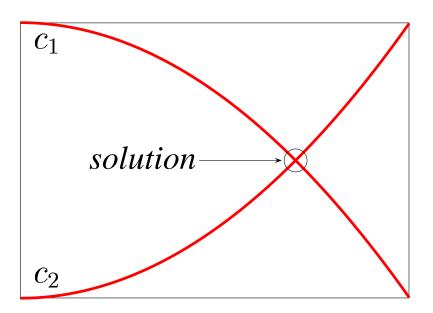
A Strategy

```
S := empty
for each constraint C do
  if there exists X in C occurring once
  then S := S U { inversion(c) }
```

```
for each variable X in C do
    if X occurs more than once in C
    then S := S U { box(C,X) }
od
if a square system of equations E can be computed
then S := S U { IntervalNewton(E) }
```

Locality Problem

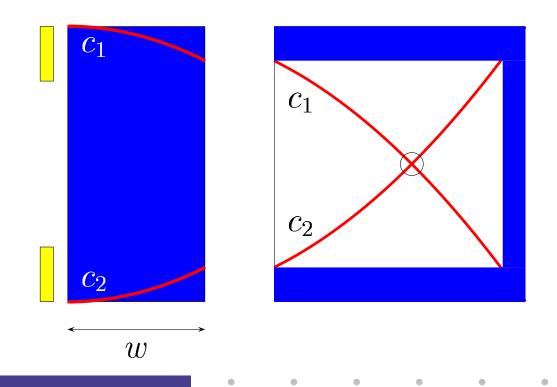
 Consider a difficult problem for inversion or box-consistency



• The intersection of projections is weaker than the projection of the intersection

Reduction: 3B-consistency

- Lhomme 1993
- Prove the inconsistency of a sub-domain at one bound of a variable domain



Bisection Algorithm

Classical algorithm

- precision of boxes: 10^{-8}
- choice of variable: round-robin
- bisection in 3 parts
- Reductions = cooperation of
 - I: inversion
 - B: box-consistency
 - N: interval Newton

Results

Problem	v	n	I-B-N	I-B	B-N	I-N
BB	10	1	0.1	0.2	0.1	3.4
	20	1	0.2	0.5	0.2	?
	40	1	0.5	1.0	0.5	?
	80	1	1.1	2.1	1.1	?
	160	1	2.2	4.1	2.2	?
MC 1	10	1	0.0	0.1	0.1	0.1
	20	1	0.1	0.4	0.7	0.4
	40	1	0.5	1.7	5.2	1.4
	80	1	2.4	6.9	41.4	6.4
Neuro	8	8	46.1	178.9	141.9	46.1
Kin 2	8	10	25.0	1175.2	53.3	19.2
Kin 1	12	16	0.7	110.9	2.0	0.7

Conclusion

- Consistency techniques are used in projects
 - automatic control (CNRS group on set-based methods)
 - computer-aided design (EPFL, RNTL CO2)
 - global optimization (COCONUT project)
 - image synthesis (PRIAMM project)
- Research directions: new types of constraints, specific propagation algorithms, inner approximations, quantified constraints, mixed-problems...