
SLAB: A MATLAB-like

Interpreter with Result

Verification

Shin’ichi OISHI

Waseda University

January 21, 2003, Schloss Dagstuhl

Abstract

Recently, we have investigated fast verification
method of numerical solutions for finite dimen-
sional linear simultaneous equations [1]. Here,
we have proposed a rounding mode controlled
verification method. Based on this method, we
have also proposed fast enclosing method for
eigenvalues of matrices [2]. Moreover, we have
developed a fast method for monotone sparse
linear systems [3] and a verified version of iter-
ative residual method [4], [5].

To test our fast enclosure method, we have
developed a new interpreter SLAB. Slab is a
MATLAB-like interpreter and has many new
features which are suited for verified numerical
computation. For example, SLAB has a valida-
tion mode in which the solution of Ax=b can
be obtained by x = A \ b with guaranteed accu-
racy. SLAB is a GPL-licensed software and can
be down loaded from the web cite

http://www.oishi.info.waseda.ac.jp/

~oishi/slab/slab-e.htm

1

1 Shin’ichi Oishi and Siegfried M. Rump: “Fast

verification of solutions of matrix equations”,

Numerische Mathematik 90 (2002) pp.755-

773

2 Shin’ichi OISHI: “Fast Enclosure of Matrix

Eigenvalues and Singular Values via Round-

ing Mode Controlled Computation”, Linear

Algebra and its Applications, 324 (2001)

pp.133-146.

3 Takeshi Ogita, Shin’ichi Oishi and Yasunori

Ushiro: “Fast Verification of Solutions for

Sparse Monotone Matrix Equations”, Com-

puting [Supple] 15 (2001) pp.175-187.

4 T. Ogita, S. Oishi and Y. Ushiro:”Fast Inclu-

sion and Residual Iteration for Solutions of

Matrix Equations”, Computing [Supple] 16

(2002).

2

5 T. Ogita, S. Oishi and Y. Ushiro:”Computation

of Sharp Rigorous Component wise Error

Bounds for Approximate Solutions of Sys-

tem of Linear Equations” to appear in Re-

liable Computing (2003)

§0 Fast Inclusion of Solutions for Linear
Systems

Let us consider

Ax = b, (1)

where A is an n×n matrix and b is an n-vector.

Assume all elements of A and b are doubles of

IEEE754. LU-decompostion method gives an

approximate solution with

2

3
n3 + O(n2)

floating points operations (FLOPS).

Oishi and Rump have shown that a verification

can be done with the same computational cost!

Shin’ichi Oishi and Siegfried M. Rump: “Fast

verification of solutions of matrix equations”,

Numerische Mathematik 90 (2002) pp.755-773

3

§1 Rounding Mode Controlled Compu-
tation

The key idea is to introduce ”Rounding Mode

Controlled Computation”.

Let us use IEEE754 double. Let A and B be

matrices whose elements are all double. Then

inclusion of a matrix product AB can be calcu-

lated by

down();

C=A*B;

up();

D=A*B; /* AB is included in [C,D] */

We can use the optimized BLAS’s dgemm in

this calculation!

4

§2 Fast Verification

Assume that an approximate LU decomposition

of A, say L and U , are calculated for the purpse

of calculating approximate solution x̃ of Ax = b.

Our fast method is

1. Calculates XL and XU of approximate in-

verses of L and U , respectively.

2. Evaluate an error bound by

‖x̃− xtrue‖ ≤
‖XU ∗XL ∗ (Ax̃− b)‖∞
‖XU ∗XL ∗A− I‖∞

.

Here, we propose to use the following formula

which is based on Higham’s backward formula:

‖XU ∗XL ∗A− I‖∞
≤ 2γn‖|XU ||XL||L||U |‖∞ + γn‖|XU ||U |‖∞.

5

Here,

γn =
nu

1− nu
, u = 2−53.

We can further use

‖|XU ||XL||L||U |‖∞ = (|XU |(|XL|(|L|(|U |e)))),
which shows that ‖|XU ||XL||L||U |‖∞ can be cal-

culated with O(n2) FLOPS. Here, e = (1,1, · · · ,1)T .

Example For 1000× 1000 A, time for calculat-

ing an approximate solution and that for ver-

ification are about 1 second, respectively pro-

vided that we use Pentium III 1.12Ghz and the

optimized BLASS. The method can be appli-

cable up to 5000 dimensional A with random

elements.

We have solved 15000 dimensional full matrix

problem with 8 CPU PC craster with SCALA-

PACK and MPI. In the next month, we will use

128 CPU PC craster system.

6

§3 What are problems for large prob-
lem?

Accumlation of Rounding Error

We have proposed a verification version of resid-

ual iteration.

T.Ogita, S. Oishi and Y. Ushiro:”Fast Inclusion

and Residual Iteration for Solutions of Matrix

Equations”, Computing Suppl. 16 (2002).

Let x̃ be an approximate solution. Let z̃ be an

approximate solution of Az = r, r = Ax̃ − b.

Then,

‖z̃ − xtrue‖∞ ≤ ‖z̃‖∞ + ‖A−1‖∞‖Az̃ − r‖∞

We must calculate r precisely. For the pur-

pose, Ogita, Rump and me have develop a new

efficient arithmetic system which utilize combi-

nation of double.
7

Memory (Space Complexity)

1. We have shown in principle that verifican

can be done with twice space complexity.

2. However, by experiments, we know that to

keep the speed it may needed more memory.

3. Thus, the limit is coming from a limitation

of memory rather than execution time.

8

§4 Eigenvalue Problems

If we use our rounding mode controlled compu-

tation, inclusion of all eigenvalues can be done

faster than calculation of all eigenvalues and

eigenvectors.

Shin’ichi OISHI: “Fast Enclosure of Matrix Eigen-

values and Singular Values via Rounding Mode

Controlled Computation”, Linear Algebra and

its Applications, vol. 324 (2001) pp.133-146.

§5 Verification using Iterative Solver

For monotone matrix equation, we have devel-

oped a verification method which can be imple-

mented on iterative solvers such as CG based

method.

Takeshi Ogita, Shin’ichi Oishi and Yasunori Ushiro:

“Fast Verification of Solutions for Sparse Mono-

tone Matrix Equations”, Computing [Supple] bf

15, (2001) pp.175-187 .

9

§6 Software

We have tested our fast methods on various

systems:

• C with CLAPACK and optimized BLAS –

good bud complicated–

• SCALAPACK and MPI on PC clusters –

good bud complicated–

• MATLAB from V to 6.5 –good bud no sourse

code and expensive–

10

• Scilab –good bud LINPACK–

• Octave –good bud LINPACK and no oper-

ator overloading–

• Rlab –good bud complicated if we add instructions–

11

§7 SLAB Thus, I have written my own inter-

preter.

• Byson and Flex

• Instruction for changing rounding mode.

• real and complex numbers

• GPL-license

• grammer similar to MATLAB but more like

C

• linear programming

12

• gnuplot for graphics

• verification mode

13

§8 Builtin Functions up(), down(), near()

Syntax

up(),

down(),

near()

These functions are functions for changing the

rounding mode of IEEE754 double precision float-

ing point numbers.

The function up() set the rounding mode to

the infinity,

the function down() set the rounding mode to

the -infinity,

the function near() to the nearest, respectively.

14

Slab has many new features which are suited for

verified numerical computaion. Such functions

are:

Rounding instructions up(), down(), and near()

are defined for rounding to the infinity, -

infinity and to the nearest, respectively.

validation mode To enter the validation mode,

type !.

In the validation mode, the solution of Ax=b

can be obtained by x = A\b with guaranteed

accuracy.

15

Example:

A> a=1000000;

A> sin(a)

ans =

-0.34999350217129177

A> !sin(a)

ans =

-0.34999350217129294

V> # The correct value of sin(a) is

V> # -0.3499935021712929512...

V> # Thus up to around 10^(-16)

V> # the value of sin(a) is

V> # validated in the validation mode.

V> # On the contrary,

V> # in the usual mode the value of sin(a)

V> # is correct up

V> # to arround 10^(-14).

16

Syntax

int(a,b)

The int instruction is used for making an inter-

val. The object a can be a double and matrix.

Example:

A> a=int(3,5)

ans =

[3 , 5]

A> A = rand(2);

A> Z = [A,A+0.1]

ans =

| [0.3 , 0.4] [-0.1 , 0] |

| [0.2 , 0.3] [0.1 , 0.2] |

The addtion, subtraction, mulitiplication and

(division) are overloading.

17

§9 Make a User Defined Function

Syntax

function func_name(a,b,c,...,m) {

x = sin(a);

y = cos(b);

...

z = tan(m);

result = x+y+z;

}

Here, func_name is a name of a function which

will be defined. Each sentence should be sepa-

raed by semicolon, ”;”.

The value which will be returned is a value of

the final sentence.

18

function f(A,b,n) {# validation of Ax=b

R=inv(A);x=R*b;

down();

U=R*A-eye(n);

s=A*x-b;

up();

V=R*A-eye(n);

t=A*x-b;

up();

r=int(s,t);

T=int(U,V);

d=abs(T);

Ar=R*r;

ar=abs(Ar);

dd=norm(d);

arr=norm(ar);

e=arr/(1-dd);

}

19

§10 Builtin Function eig

Syntax

eig(A)

For n×n matrix A, eig(A) returns its all eigen-

values and eigenvectors

A> A=rand(3);

A> sol=eig(A)

ans.val =

| * * * |

| * * * |

| * * * |

ans.vec =

| * * * |

| * * * |

| * * * |

20

In this example, sol.val gives a diagnal matrix

whose diagoanl elements consist all eigenvalues

of A. On the other hand, n-th column of sol.vec

is a eigenvector of A correspoindig to the n-th

diagnal element of sol.val.

This function uses CLAPACK functions with

optimized BLAS functions:

For a real symmetir A, dsyev_ is used.

For a real general A, dgeev_ is used.

For an Hermite A, zheev_ is used.

For a general complex A, zgeev_ is used.

21

§10’ s-file veig

Syntax

veig(A)

The function ’veig(A)’ is a verified eigenvalue

calculator. Here, A is an n x n matrix, whose

eigenvalues are to be determined. If the func-

tion ”veig(A)” returns a value e, then

min
i
|r − ri| ≤ e

holds. Here, ri are calculated eigenvalues of A

through eig(A) and r is an eigenvalue of A.

22

Example:

A> # Since ’veig’ function is defined in s-file,

A> # one should first

A> # read s-file ’veig.s’ by

A> read veig.s

A> # Assume that a matrix A is defined by for example

A> A=[1,2;3,4];

A> # Then, the eigenvalues of A can be

A> # calculated with guranteed

A> # accuracy by

A> veig(A)

ans =

0.00000000000000495

23

§11 Builtin Function dif

Syntax

dif(val,dimension,i)

The dif instruction is used for initializing auto-

matic differentiation. Let f : Rn → R. Here, R

is a set of real numbers. The double should be

set equal to n. The double i is to designate the

partial differentiation with respect to xi.

24

For example, let f(a, b) is a user-defined func-

tion defined by

A> function f(a,b) {

A> a_=a*a-b*b-3*a+2;

A> b_=2*a*b-3*b;

A> z_=[a_,b_];

A> }

25

If we set

A> a=dif(3,2,0)

ans =

3 < 1 0 >

A> b=dif(-5,2,1)

ans =

-5 < 0 1 >

Then, if we put a and b into f, we can calculate

the value f(3,−5) and the partial derivatives

fa(3,−5) and fb(3,−5):

A> f(a,b)

ans = -23 < 3 10 >

-15 < -10 3 >

26

§12 s-file fsolve

Syntax

fsolve(func,x)

The function ’fsolve(func,x)’ is a simultanuous

nonlinear equation solver based on the Newton

method. Here, the func is a name of function,

which should be defined by func = name(f) pro-

vided that a user-defined function f(x) is de-

fined separately. Then, use like fsolve(func,x)

to solve the nonlinear equation

f(x) = 0.

Here, x is an initial guess of a solution.

27

Example:

A> # Since ’fsolve’ function is defined

A> # in s-file, one should first

A> # read s-file ’fsolve.s’ by

A> read fsolve.s

A> # Then, define a nonlinear function.

A> function f(x) {

A> a_=x[0]*x[0]-x[1]*x[1]-3*x[0]+2;

A> b_=2*x[0]*x[1]-3*x[1];

A> z_=[a_,b_];

A> }

A> # Then, solve f(x)=0.

A> x=[1;1];

A> a=name(f);

A> y=fsolve(a,x)

ans =

| 1.000 |

| 0.000 |

28

§13 Builtin Function fft

Syntax

fft(a)

or

fft(a,n)

Here, a is 1 x m matrix, and n is to take n-point

fft. If n is not specified, n is automatically set

m. It should be noted that n must be a power

of 2.

ifft(b) calculates the inverse real fft.

29

Example:

A> a=[1,1,1,1,0,0,0,0];

A> b=fft(a)

ans =

| 4 0 1 2.41424 0 0 1 0.41421 |

A> c=ifft(b)

ans =

| 1 1 1 1 0 0 0 0 |

30

§14 Builtin Function linpro

Syntax

linpro(c,C,b)

The instruction linpro(c,C,b) solves the follow-

ing linear programming problem:

max: c’x;

subject to

Cx <= b;

x >= 0;

Here, c is an n-dimensional objective vector, C

m x n matrix, and b a right hand side vector.

31

Example:

A> c = [-1,2];

A> C = [2,1;-4,4];

A> b = [5,5];

A> linpro(c,C,b)

Value of objective function: 3.75

x0 1.25

x1 2.5

The function linpro is an interface to the GNU

’lp_solve’.

Remark: Input file of ’lp_solve’ is outputted

in the file ”./linpro/_temp”. Out put file of

’lp_solve’ is written in the file ”./linpro/_out”.

The command ’lread()’ read ’./linpro/_out’ file.

For detail, type ’lread’.

32

