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1 Introduction

Interval arithmetic and stochastic arithmetic have been both developed for the
same purpose, i. e. to control errors coming from floating point arithmetic
of computers and validate the results of numerical algorithms performed on
computers. Interval arithmetic delivers guaranteed bounds for numerical results
but requires special analysis and algorithms. On the other hand stochastic
arithmetic is a model for the Cestac method which provides confidence intervals
with known probability and can be easily implemented in existing numerical
softwares. This work continues our study from [1] of the algebraic properties
of stochastic arithmetic based on the comparison with interval arithmetic in
midpoint-radius form, and on the algebraic structures that are induced by the
operations on the two sets (stochastic numbers and intervals) cf. [7].

In the present paper following similar developements of interval arithmetic
we introduce spaces analogous to quasilinear spaces [5, 6].

2 Stochastic Arithmetic

Stochastic arithmetic has been mainly studied in [3, 4, 9]. A stochastic number
X is a gaussian random variable with a known mean value m and a known
standard deviation σ and is denoted X = (m,σ). The set of stochastic numbers
is denoted as S = {(m,σ) | m ∈ R, σ ∈ R+}. Stochastic arithmetic is in
fact a theoretical model for the discrete stochastic arithmetic which is used
in the Cestac method in which m and σ are computed using a Monte-Carlo
technique consisting in performing each arithmetic operation several times with
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an arithmetic with a random rounding mode, see [2, 8, 9]. Hence the Cestac
method takes naturally into account the correlation between errors whereas
stochastic arithmetic actually does not. Anyhow in most applications the results
predicted with stochastic arithmetic are identical or very close to those provided
by the Cestac method. Thus stochastic arithmetic is considered as giving a
good algebraic model for the Cestac method which uses the following classical
property.

Property: If X = (m,σ) ∈ S, 0 ≤ β ≤ 1 and r is a realization of X, then
there exist λβ only depending on β, such that

P (r ∈ [m− λβσ,m + λβσ]) = 1− β. (1)

Iβ,X = [m− λβ σ,m + λβ σ] is the confidence interval of X with probability
1 − β. Equality (1) is a well-known property of gaussian random variables.
For β = 0.05, λβ ≈ 1.96. The Cestac method computes m and σ by sampling,
stochastic arithmetic computes m and σ algebraically.

3 Arithmetic Operations Between Stochastic
Numbers

Let X1 = (m1, σ1) and X2 = (m2, σ2) be two stochastic numbers. (Usual)
equality between two stochastic numbers X1, X2 is defined by: X1 = X2, if
m1 = m2 and σ1 = σ2.

In this work we concentrate on the operations addition

X1 + X2 = (m1 + m2,
√

σ2
1 + σ2

2)

and multiplication by scalars γ ∈ R

γ ∗X = (γm, |γ|σ).

We have shown in [1] that the set S is an abelian monoid with respect to
addition with cancellation law.

Multiplication by scalars satisfies:

a) First distributive law: λ ∗ (X + Y ) = λ ∗X + λ ∗ Y ;

b) Associativity: λ ∗ (µ ∗X) = (λµ) ∗X;

c) Identity: 1 ∗X = X.

Remark. The second distributive law: (λ + µ) ∗X = λ ∗X + µ ∗X does not
hold in general. Moreover, it does not generally hold even for λ, µ nonnegative.
We thus have no quasi-distributive law (as in the case of intervals).
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The mean values satisfy the distributive law and thus form a linear space.
The standard deviations satisfy the following law:

(
√

λ2 + µ2) ∗ σ = λ ∗ σ + µ ∗ σ, λ ≥ 0, µ ≥ 0,

or, equivalently,

(
√

λ + µ) ∗ σ =
√

λ ∗ σ +
√

µ ∗ σ, λ ≥ 0, µ ≥ 0.

We investigate the space of standard deviations by embedding it in an ad-
ditive group, obtaining thus a space close to a quasilinear space with group
structure [6].
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