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1 Introduction

A problem which appears quite often in the validation of the results of numerical
algorithms using intervals is the branching based on the comparison of two
intervals when these intervals have a noon-empty intersection. This paper deal
with some possibility of ordering intervals with some probability and a technique
for the computation of this probability.

Let f be a density function (i.e., a Lebesgue integrable function on R such
that f(x) ≥ 0 and

∫∞
−∞ f(x)dx = 1) and let F (x) =

∫ x
−∞ f(t)dt be the distribu-

tion (function) of f .
Given two independant real random variables ξ, η with known densities (or

distributions) we want to compute the probability P (ξ > η). This may be useful
whenever the random variables represent numbers containing stochastic errors
as is the case with stochastic numbers [1–4].

Denote by fξ, gη the density functions of the random variables ξ, η resp. If
both densities fξ, gη have intervals as support sets A,B ⊂ R, that is:

i) fξ 6= 0 for ξ ∈ A, and fξ = 0 for ξ /∈ A;

ii) gη 6= 0 for η ∈ B, and gη = 0 for η /∈ B,

and if the support sets do not intersect (A∩B 6= ∅), then we have that P (ξ > η)
is either 0 or 1, depending on whether A > B or A < B. In these cases one
can speak of an order relation between distributions, that is a relation of the
form fξ < gη, resp. fξ > gη. In the general case, when 0 < P (ξ > η) < 1 the
number P (ξ > η) can serve as a measure (indicator) for such an ordering. For
this reason we shall denote M(fξ, gη) = P (ξ > η).
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Figure 1: domain definition for Pr(ζ < 0)

In what follows we investigate some rules for the computation of M(fξ, gη)
especially suitable for the case when the support sets of the densities are (com-
pact) intervals. A possible way to compute M(fξ, gη) is classically the following.
The definition domain of Pr(ζ < 0) is represented in figure (1), so we have:

M(fξ, gη) = P (ξ > η) = P (ζ > 0) = 1− P (ζ ≤ 0)

= 1−
∫ 0

−∞
hζ(ζ)dζ = 1−

∫ 0

z=−∞

∫ ∞

t=−∞
fξ(z + t)gη(t)dz dt,(1)

where fξ(x) is the density of ξ, and gη(x) is the density of η.
Thus formula (1) can be used for the computation of M(fξ, gη) = P (ξ > η).

However, we show here that an easier technique can be used in the case when
the support sets of the densities are intervals.

So, in the present work a simple method is proposed for the computation
of the probability P (ξ > η), where ξ, η are two real random variables with
known densities. The method is illustrated for some familiar densities Gaussian,
uniform).

2 Technique

Let R∗ = R ∪ {−∞} ∪ {∞}. Let B = [b, b], b ≤ b, b, b ∈ R∗. The probability
P (ξ ∈ B) for a random variable with a density f to belong to the interval B

is given by P (ξ ∈ B) = F (b) − F (b) =
∫ b

b fξ(t)dt; note that F (−∞) = 0 and
F (∞) = 1.

Proposition. For any two random variables ξ, η with given density functions
fξ, gη and any integer n ≥ 0 and system of real numbers t1, . . . , tn ∈ R and
ti < ti+1 (for n = 0 the system is considered empty), we have:

M(fξ, gη) =
n+1
∑

k≥l,k,l=1

pkl

∫ tk

tk−1

fξ(t)dt
∫ tl

tl−1

gη(t)dt, (2)
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wherein

pkl =
{

0, k < l,
1, k > l. (3)

In the case k = l the value of pkk depends on the details of fξ and gη.

Proof. Denote A1 = [−∞, t1], Ai = [ti−1, ti], i = 1, . . . , n,An+1 = [tn,∞].
Applying the conditional probabilities formula for the division of R we can
write:

M(fξ, gη) = P (ξ > η) =
n+1
∑

k,l=1

P (ξ > η, ξ ∈ Ak, η ∈ Al)

=
n+1
∑

k,l=1

P (ξ > η | ξ ∈ Ak, η ∈ Al)P (ξ ∈ Ak)P (η ∈ Al)

=
n+1
∑

k,l=1

pklP (ξ ∈ Ak)P (η ∈ Al),

where pkl = P (ξ > η | ξ ∈ Ak, η ∈ Al) = {0, if k < l; 1, if k > l}.
In the case k = l, that let us call f̃ξ and g̃η the densities of ξ and η on Ak.

(Note that they are not the restrictions of fξ and gη to Ak). Then we have:

pkk =
∫ tk

x=tk−1

∫ x

y=tk−1

f̃ξ(x)g̃η(y)dxdy (4)

This implies the proposition.

The above formula can be considered as a discretisation of (1) but it has
the advantages that the integrals (4) are defined on the same sub-interval for
the two variables and are thus easier to compute. Moreover the considered sub-
intervals can be small and it may be easy to obtain bounds for the coefficients
pkk.

Three obvious cases when the value of M is easily determined can be re-
treived with this formula:

For any two random variables ξ, η with given density functions f , g, resp.,
we have

a) If f ≡ g, then M(f, g) = 1/2;

b) In the case when f(x) = 0 for every x ≤ t, and g(x) = 0 for every x ≥ s,
t ≥ s, then M(f, g) = 1;

c) In the case when g(x) = 0 for every x ≤ t, and f(x) = 0 for every x ≥ s,
t ≥ s, then M(f, g) = 0.

These cases are retreived under appropriate division {ti} on R. Namely, in the
case a) take R as a single interval (empty division set, n = 0); in the cases b),
c) take n = 1, t1 = (s + t)/2.

In what follows the preceding technique based on formula (2) is applied to the
computation of the measure M in the cases of some well-known distributions.
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Figure 2: two Gaussian distributions

3 Uniform Distributions

Let us consider two random variables ξ and η defined on two intersecting inter-
vals A and B. A = [a, a] and B = [b, b] with a > b. Take n = 3 and t1 = b and
t2 = a. With the notations of (3) we have obviously: p12 = p13 = p23 = 0 and
p21 = p31 = p32 = 1. Concerning p11, p22, p33 we are in the case of both ξ and η
belonging to the same sub-interval with a same constant probability density. So
p11 = p22 = p33 = 1/2. Note that in fact only p22 has an interest as in formula
(2) the probabilities P (η ∈ A1) and P (ξ ∈ A3) are null.

4 Gaussian Distributions

Let us consider the same intersecting intervals as above but with two different
Gaussian distributions fξ, gη on each interval, having mean values m1, m2,
resp., and variances σ2

1 , σ2
2 , resp. Thus the density functions of ξ and η are:

fξ(x) = (2πσ2
1)−1/2e−(x−m1)2/(2σ2

1), gη(x) = (2πσ2
2)−1/2e−(x−m2)2/(2σ2

2). As-
sume m1 ≤ m2. Take n = 2, t1 and t2 is the abscissas of the points common
to fξ(x) and gη(x), and denote A1 = [−∞, t1], A2 = [t1, t2], and A3 = [t2,∞].
As before formula (3) gives pkl = 0 fork < l and pkl = 1 for k > l. Concerning
the coefficients pkk, k = 1, 2, 3 they depend on the values of m1,m2, σ1, σ2 and
they have to be computed with the integral of formula (4). As example let us
here compute p11. By hypothese ξ and η are in A11 then Pr(ξ) ∈ A1 = 1 and
Pr(η) ∈ A1 = 1. So let us call: S1 =

∫ t1
−∞ fξ(t)dt and S2 =

∫ t1
−∞ gη(t)dt. Then

f̃ξ = fξ/S1 and g̃η = gη/S2 and p11 = (
∫ t1

x=−∞
∫ x

y=−∞ fξ(x)gη(y)dxdy)/(S1S2).

Special case 1. m1 = m2. Then (t1 + t2)/2 = m1. The problem is symmetric
and p11 = 1− p33.

Special case 2. σ1 = σ2 = σ. In this case t1 = t2 and A22 = ∅.

Similar formulae have been deduced for the Beta distribution.
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5 A Note on Applications

These results can be be used for treating branchings using comparisons of in-
tervals when these intervals have a non empty intersection. They can also be
applied to the problems of interpolation and approximation in the case of inter-
val (uncertain but bounded) data with given densities (distributions). Thus this
approach may find useful applications in mathematical modelling situations. On
the other hand this approach contributes to the arithmetic theory of stochastic
numbers [3].
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