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Formulation of the Problem

e We have n measurement results x1,...,x,

)

e Traditional statistical approach: compute

r1i+ ...+
E=z=" n
n

V:(:cl—E)2+...+(:1:n—E)2 (o 0 = V)

n—1

e Reasons: V is an unbiased estimator of the variance;

for Gaussian, it is MLM.
e Often, we only have intervals x; = [z;, T;].
o Frample: for measurements, x; = [T; — Ay, T; + 4.
e What are E and V = [V, V]?
e For E, the answer is easy.
e When n'_; x; # (), we have V. = 0; else V > 0.

e Problem (Walster): what is the total set V of possible

values of V7
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For this Problem,
Straightforward
Interval Computations

Sometimes Overestimate

o Reminder:

— parse the function f(z,...,z,), and

— replace each elementary operation by the corr. op-

eration of interval arithmetic.
o Example: for x; = x9 = |0, 1].

o Actual range: since V = (x; — 13)?/2, the actual

range is V = [0,0.5].
o Fstimate: E = |0, 1], hence

(x; —E)*+ (x3 — E)* = [0,2] D [0,0.5].
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Centered Form

Sometimes Overestimates

e Reminder:

f(Xl, “ e ,Xn) g f(fl, e ,fn)—|—

.(Xl, X)) AL A,
where:
e ©; = (x; + ;) /2 is the interval’s midpoint and
o A\, = (x; —T;)/2 is its half-width.
e Not perfect (similar to Hertling):

e it produces an interval centered at f(Zy, ..., Ty,);

e when all intervals x; are equal, all midpoints z; are

the same:;
e hence the sample variance f(Zq,...,Z,) is 0;

® s0, the estimate’s lower bound is < 0, but V' > 0.
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First Result: Computing V

The following algorithm always compute V' in O(n?):

e First, we sort all 2n values z;, T; into a sequence

T ST S - S Zgn)-

e Second, we compute E and F and select all “small

intervals” [z(), T(z+1)] that intersect with [E, £].

e For each of the selected small intervals |y, T(x41)),

we compute the ratio r, = S; /Nk, where
Skdéf_ > x+ X T,
Z:Qizw(k-{-l) jifjgw(k)

and Ny is the total number of such 7’s and j’s

o If v € [T(), T(k+1)], then we compute

L > (z—-7)P+ % (T; — )

n — ]. i:§i>3}(/€+1) ]:Zl?j<£l;‘(k)

If N}, =0, we take V/ % 0.

! def
V}C_

e Finally, we return the smallest of the values V) as V.
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Example

e Input: x; = [2.1,2.6], xo = [2.0,2.1], x3 = [2.2,2.9],
x4 = [2.5,2.7), and x5 = [2.4,2.8].

e “small intervals”: [z(),z2)] = [2.0,2.1], [2.1,2.1],
2.1,2.2], [2.2,2.4], [2.4,2.5], [2.5, 2.6], [2.6, 2.7], [2.7, 2.8],
and [2.8,2.9].

e Sample average E = [2.24,2.62], so we keep [2.2,2.4],
2.4,2.5], [2.5,2.6], [2.6,2.7]. For these intervals:
¢S5, =70, Ny,=3,80r,=2.333...;
e S;=4.6, N5 =2, 80 r; =2.3;
e 56 =21 Ng=1,5015=2.1;

e S;=4.7, N; =2, sor; = 2.35.
e Only r4 lies within the corresponding small interval.

e Here, V, = 0.021666. .., so V = 0.021666 . . .
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Second Result:
Computing V is NP-Hard

e Theorem. Computing V is NP-hard.
e Comments:

— NP-hard means, crudely speaking, that there are
no general ways for solving all particular cases of

this problem in reasonable time.

— NP-hardness of computing the range of a quadratic

function was proven by Vavasis (1991).
— By using peeling, we can compute V' in exponential
time O(2").
e Natural question: maybe the difficulty comes from

the requirement that the range be computed exactly?

e Theorem. For every € > 0, the problem of com-

puting V. with accuracy € is NP-hard.
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Third Result:
A Feasible Algorithm
that Computes V
in Many Practical Situations

e (ase: all midpoints (“measured values”)

_ T; + T
Ir; — 2

of the intervals
X; — [fz — Ai; fz‘ -+ Az]
are definitely different from each other.

e Namely: the “narrowed” intervals

A A
Ti— Tt
n n

do not intersect with each other.

e In this case, there exists an algorithm computes V in

quadratic time.
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Algorithm

e Sort 2n endpoints of narrowed intervals into
T S T) < S Tgn)-
e Thus, IR is divided into 2n + 2 segments ( “small in-
tervals”) [z(x), T (k+1))-
e Select only “small intervals” [z(z), T(141)] that inter-
sect with E: for each, pick z; as follows:
o if 2 11) < Ty — Ay/n, then we pick z; = z;;
o if () > Z; + A;/n, then we pick z; = z;;
e for all other ¢, we consider both possible values

T, = X and T; = X;.

e For each of the sequences z;, we check whether the
average I is indeed within this small interval, and if

it is, compute the sample variance.

e The largest of the computed sample variances is V.
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Third Result (cont-d)

o (Question: what if two “narrowed” intervals have a

common point”?

o (ase: let us fix k and consider all cases C}, in which no
more than k “narrowed” intervals can have a common

point.

e Result: Vk, the above algorithm A computes V in

quadratic time for all problems € C}.
o Comments:

— Computation time ¢ is quadratic in n.
— However, t is exponential in k.

— So, when k 1, the algorithm A requires more and

more computation time.

— In our proof of NP-hardness, we use the case when

all n narrowed intervals have a common point.
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Sample Mean, Sample Variance:

What Next?

e Sample covariance

I =n _ _
n—1 El(xz — 7)W= ),

C:

e Result: both computing C and computing C' are NP-
hard problems.

e Sample correlation
C

Oz * Oy

p p—
e Result: both computing p and computing p are NP-
hard problems.

e Open problem: design feasible algorithms that work

in many practical cases.
e Median: feasible (since it is monotonic in x;).

e Open problem: analyze other statistical characteris-

tics from this viewpoint.
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