Exact Bounds on Sample Variance of Interval Data

Scott Ferson and Lev Ginzburg
Applied Biomathematics
100 North Country Road,
Setauket, NY 11733, USA
{scott,lev}@ramas.com

Vladik Kreinovich, Luc Longpré, and Monica Aviles Computer Science Department University of Texas at El Paso El Paso, TX 79968, USA {maviles,longpre,vladik}@cs.utep.edu

Formulation of the Problem

- We have n measurement results x_1, \ldots, x_n ,
- Traditional statistical approach: compute

$$E = \bar{x} = \frac{x_1 + \dots + x_n}{n},$$

$$V = \frac{(x_1 - E)^2 + \dots + (x_n - E)^2}{n - 1} \text{ (or } \sigma = \sqrt{V}).$$

- Reasons: V is an unbiased estimator of the variance; for Gaussian, it is MLM.
- Often, we only have intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$.
- Example: for measurements, $\mathbf{x}_i = [\widetilde{x}_i \Delta_i, \widetilde{x}_i + \Delta_i].$
- What are **E** and $\mathbf{V} = [\underline{V}, \overline{V}]$?
- For **E**, the answer is easy.
- When $\bigcap_{i=1}^{n} \mathbf{x}_i \neq \emptyset$, we have $\underline{V} = 0$; else $\underline{V} > 0$.
- Problem (Walster): what is the total set \mathbf{V} of possible values of V?

For this Problem, Straightforward Interval Computations Sometimes Overestimate

- Reminder:
 - parse the function $f(x_1, \ldots, x_n)$, and
 - replace each elementary operation by the corr. operation of interval arithmetic.
- *Example:* for $\mathbf{x}_1 = \mathbf{x}_2 = [0, 1]$.
- Actual range: since $V = (x_1 x_2)^2/2$, the actual range is $\mathbf{V} = [0, 0.5]$.
- Estimate: $\mathbf{E} = [0, 1]$, hence

$$(\mathbf{x}_1 - \mathbf{E})^2 + (\mathbf{x}_2 - \mathbf{E})^2 = [0, 2] \supset [0, 0.5].$$

Centered Form Sometimes Overestimates

• Reminder:

$$f(\mathbf{x}_1, \dots, \mathbf{x}_n) \subseteq f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i],$$

where:

- $\widetilde{x}_i = (\underline{x}_i + \overline{x}_i)/2$ is the interval's midpoint and
- $\Delta_i = (\underline{x}_i \overline{x}_i)/2$ is its half-width.
- Not perfect (similar to Hertling):
 - it produces an interval centered at $f(\tilde{x}_1, \ldots, \tilde{x}_n)$;
 - when all intervals \mathbf{x}_i are equal, all midpoints \tilde{x}_i are the same;
 - hence the sample variance $f(\tilde{x}_1, \ldots, \tilde{x}_n)$ is 0;
 - so, the estimate's lower bound is < 0, but $V \ge 0$.

First Result: Computing \underline{V}

The following algorithm always compute \underline{V} in $O(n^2)$:

- First, we sort all 2n values \underline{x}_i , \overline{x}_i into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$.
- Second, we compute \underline{E} and \overline{E} and select all "small intervals" $[x_{(k)}, x_{(k+1)}]$ that intersect with $[\underline{E}, \overline{E}]$.
- For each of the selected small intervals $[x_{(k)}, x_{(k+1)}]$, we compute the ratio $r_k = S_k/N_k$, where

$$S_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \ge x_{(k+1)}} \underline{x}_i + \sum_{j:\overline{x}_j \le x_{(k)}} \overline{x}_j,$$

and N_k is the total number of such i's and j's

• If $r_k \in [x_{(k)}, x_{(k+1)}]$, then we compute

$$V_k' \stackrel{\text{def}}{=} \frac{1}{n-1} \cdot \left(\sum_{i:\underline{x}_i > x_{(k+1)}} (\underline{x}_i - r)^2 + \sum_{j:\overline{x}_j < x_{(k)}} (\overline{x}_j - r)^2 \right).$$

If $N_k = 0$, we take $V'_k \stackrel{\text{def}}{=} 0$.

• Finally, we return the smallest of the values V'_k as \underline{V} .

Example

- Input: $\mathbf{x}_1 = [2.1, 2.6], \ \mathbf{x}_2 = [2.0, 2.1], \ \mathbf{x}_3 = [2.2, 2.9],$ $\mathbf{x}_4 = [2.5, 2.7], \ \text{and} \ \mathbf{x}_5 = [2.4, 2.8].$
- "small intervals": $[x_{(1)}, x_{(2)}] = [2.0, 2.1], [2.1, 2.1],$ [2.1, 2.2], [2.2, 2.4], [2.4, 2.5], [2.5, 2.6], [2.6, 2.7], [2.7, 2.8], and [2.8, 2.9].
- Sample average $\mathbf{E} = [2.24, 2.62]$, so we keep [2.2, 2.4], [2.4, 2.5], [2.5, 2.6], [2.6, 2.7]. For these intervals:
 - $S_4 = 7.0$, $N_4 = 3$, so $r_4 = 2.333...$;
 - $S_5 = 4.6$, $N_5 = 2$, so $r_5 = 2.3$;
 - $S_6 = 2.1$, $N_6 = 1$, so $r_6 = 2.1$;
 - $S_7 = 4.7$, $N_7 = 2$, so $r_7 = 2.35$.
- Only r_4 lies within the corresponding small interval.
- Here, $V_4' = 0.021666...$, so $\underline{V} = 0.021666...$

Second Result: Computing \overline{V} is NP-Hard

- Theorem. Computing \overline{V} is NP-hard.
- Comments:
 - NP-hard means, crudely speaking, that there are no general ways for solving all particular cases of this problem in reasonable time.
 - NP-hardness of computing the range of a quadratic function was proven by Vavasis (1991).
 - By using peeling, we can compute \overline{V} in exponential time $O(2^n)$.
- Natural question: maybe the difficulty comes from the requirement that the range be computed exactly?
- Theorem. For every $\varepsilon > 0$, the problem of computing \overline{V} with accuracy ε is NP-hard.

Third Result:

A Feasible Algorithm that Computes \overline{V} in Many Practical Situations

• Case: all midpoints ("measured values")

$$\widetilde{x}_i = \frac{\underline{x}_i + \overline{x}_i}{2}$$

of the intervals

$$\mathbf{x}_i = [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$$

are definitely different from each other.

• Namely: the "narrowed" intervals

$$\left[\widetilde{x}_i - \frac{\Delta_i}{n}, \widetilde{x}_i + \frac{\Delta_i}{n}\right]$$

do not intersect with each other.

ullet In this case, there exists an algorithm computes \overline{V} in quadratic time.

Algorithm

- Sort 2n endpoints of narrowed intervals into $x_{(1)} \le x_{(2)} \le \ldots \le x_{(2n)}$.
- Thus, IR is divided into 2n + 2 segments ("small intervals") $[x_{(k)}, x_{(k+1)}]$.
- Select only "small intervals" $[x_{(k)}, x_{(k+1)}]$ that intersect with \mathbf{E} ; for each, pick x_i as follows:
 - if $x_{(k+1)} < \tilde{x}_i \Delta_i/n$, then we pick $x_i = \overline{x}_i$;
 - if $x_{(k)} > \widetilde{x}_i + \Delta_i/n$, then we pick $x_i = \underline{x}_i$;
 - for all other i, we consider both possible values $x_i = \overline{x}_i$ and $x_i = \underline{x}_i$.
- For each of the sequences x_i , we check whether the average E is indeed within this small interval, and if it is, compute the sample variance.
- The largest of the computed sample variances is \overline{V} .

Third Result (cont-d)

- Question: what if two "narrowed" intervals have a common point?
- Case: let us fix k and consider all cases C_k in which no more than k "narrowed" intervals can have a common point.
- Result: $\forall k$, the above algorithm $\overline{\mathcal{A}}$ computes \overline{V} in quadratic time for all problems $\in C_k$.
- Comments:
 - Computation time t is quadratic in n.
 - However, t is exponential in k.
 - So, when $k \uparrow$, the algorithm $\overline{\mathcal{A}}$ requires more and more computation time.
 - In our proof of NP-hardness, we use the case when all n narrowed intervals have a common point.

Sample Mean, Sample Variance: What Next?

• Sample covariance

$$C = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y}).$$

- Result: both computing \overline{C} and computing \underline{C} are NP-hard problems.
- Sample correlation

$$\rho = \frac{C}{\sigma_x \cdot \sigma_y}.$$

- Result: both computing $\overline{\rho}$ and computing $\underline{\rho}$ are NP-hard problems.
- Open problem: design feasible algorithms that work in many practical cases.
- Median: feasible (since it is monotonic in x_i).
- Open problem: analyze other statistical characteristics from this viewpoint.

Acknowledgments

This work was supported in part:

- by NASA under grants NCC5-209, NCC2-1232, and NCC2-1243;
- by the Air Force Office of Scientific Research grants F30602-00-2-0503 and F49620-00-1-0365;
- by grant No. W-00016 from the U.S.-Czech Science and Technology Joint Fund, and
- by NSF grants CDA-9522207, ERA-0112968 and 9710940 Mexico/Conacyt.