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1 Summary

A common way to model uncertainty in the value of a quantity is to use a prob-
ability density function (PDF) or its integral, a probability distribution function
(CDF). When two such values are combined to form a new value equal to their
sum, product, max, etc., the new value is termed a derived distribution[5]. It is
well-known that derived distributions may be obtained by numerical convolu-
tion, Monte Carlo simulation, and analytically for specific classes of input dis-
tributions, under the assumption that the input distributions are independent.
It is also possible to obtain derived distributions for specified dependency rela-
tionships other than independence. However, it is not always the case that the
dependency relationship is known. Thus there is a need for obtaining solutions
without assuming independence or any other specific dependency relationship.
There are two numerical algorithms that have been implemented in software
for this. Numerical approaches have the advantage of applicability to a very
wide class of distributions. Probabilistic Arithmetic [6] is implemented in the
commercially available software tool RiskCalc [3]. Interval-Based Dependency
Analysis (IBDA) [2], which extends our previous tool [1] by eliminating the
independence assumption, is implemented in the software tool Statool and is
available upon request from the authors. While the two tools have fundamen-
tal similarities [4], a significant difference with respect to the present problem
is that IBDA supports, and Statool implements, excess width removal in the
underlying interval calculations, from some expressions. In this paper we apply
IBDA to generalize a solution to the well-known economic dispatch problem in
electric power generation to the case where the dependency relationship between
the fuel costs of two generators is unspecified.
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2 The Problem

The economic dispatch problem in electric power generation may be stated as
follows. It is desired to determine how much power should be generated by each
of two generators to meet a given level of demand so that total generation cost
is minimized. One of a number of approaches to solving this problem is termed
LaGrangian Relaxation [7]. We incorporate uncertainty into the LaGrangian
Relaxation technique for solving the sample problem by modeling uncertainty in
the cost of fuel to run the generators with probability distributions, postulating
in addition that the dependency between the two fuel costs of the two generators
is unknown (as would occur if one generator burns oil and the other coal). The
uncertainties are then propagated through the algebraic expression derived by
the LaGrangian Relaxation technique.

First, we specify the cost equations as

F1 = v1(8P1 + 0.024P 2
1 + 80), F2 = v2(6P2 + 0.04P 2

2 + 120),

where P1 and P2 are the power outputs of generators 1 and 2 in megawatts; v1

and v2 are the fuel costs for generators 1 and 2 in $ per M Btu; and F1 and
F2 are the generation costs for given power output levels and fuel cost rates.
Therefore generation costs change nonlinearly with power output according to
the following equations.

dF1

dP1
= v1(8 + 0.048P1),

dF2

dP2
= v2(6 + 0.08P2). (1)

Solving the problem requires minimizing an objective function

F = F1 + F2 = v1(8P1 + 0.024P 2
1 + 80) + v2(6P2 + 0.04P 2

2 + 120),

subject to the constraint P = P1 + P2 where P is the total customer demand
for electric power which for this example we take as 400 megawatts. This gives
a constraint function

P = P1 + P2 = 400. (2)

By the method of Lagrangian multipliers from calculus, at an extreme value of
this objective function,

dF1

dP1
=

dF2

dP2
= λ (3)

for some λ. This is derived from the Lagrange function L which relates objective
function F and constraint (1) according to L = F + λ · P , which implies

∂L
∂P1

=
dF1(P1)

dP1
− λ = 0

for generator 1 and similarly for generator 2.

From (1) and (3),

v1(8 + 0.048P1) = λ = v2(6 + 0.08P2), P2 = 400− P1,
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and solving simultaneous equations for P1 gives

P1 =
38v2 − 8v1

0.08v2 + 0.048v1
, P2 = 400− P1, (4)

as the most economical amounts of power to generate from generators 1 and
2 to meet the demand (assuming those amounts are within the capacity of
both generators). P1 and P2 are easily calculated for real values of v1 and v2,
but given distribution functions for v1 and v2, the problem requires evaluating
an expression on random variables v1 and v2 involving a sum, difference and
quotient. Solving it by dividing a difference of random variables by a sum
results in excessively wide envelopes on the CDFs for P1 and P2 because the
same operands occur in both terms, leading to excess width in the underlying
interval calculations. Instead the entire expression must be treated as a single
binary operation on v1 and v2. Figure 1 shows the results given PDFs describing
v1 and v2.

3 Discussion and Conclusion

Statool currently has certain limitations. Planned extensions include the fol-
lowing.

1. Asymptotic pdf tails. The process of discretizing a pdf into a histogram
does not presently allow for the case where a pdf tail trails off to plus
or minus infinity. Yet this implies setting definite bounds, though any
specific such bounds might be hard to justify. Indeed unusual and ex-
treme values can occur in the electric power domain, as happened for
example in the California power crises recently. The solution is to al-
low the discretization to include open intervals with an end point at ∞
or −∞. This in turn would require the arithmetic operations to be de-
fined on such intervals. Fortunately this is possible, e.g., [1,∞) + [1, 2] =
[2,∞), (−∞,−1] ∗ [−2,−1] = [1,∞), [1, 2]/[−1, 1] = (−∞,∞), etc.

2. Partial dependency. While the system currently can calculate either under
the assumption of independence, or with no assumption about dependency,
partial information about dependency is often present in real problems.
Correlation values are a typical example. An example would be prices of
different fuels, for which one would expect a generally positive correlation.

In the full paper we will explain the IBDA algorithm, and also include ex-
planations and figures, showing how assuming independence results in stronger
results, while excess width in interval evaluation of equation (4) leads to weaker
results. We will also remark on the implications of the CDF bounds to decision-
makers.

Figure 1: Solution for P1 of equation (4), given the histogram-discretized
PDFs for v1 and v2 shown. The CDF for optimum power generation from
generator 1 will be within the envelopes shown regardless of the dependency
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Figure 1:

relationship between inputs v1 and v2. The envelopes might be sufficient for a
decision, or might point out the need for additional information gathering to
sharpen the input distributions and/or identify their dependency relationship
sufficiently to support a decision.
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