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The purpose of this paper is to point out essential consideration for com-
puting tight bounds for the error constants required in the error estimation of
a numerical quadrature rule.

Due to Peano, cf. [2, 6], the quadrature error E(f) := I(f)− S(f) resulting
from approximation to the definite integral I(f) :=

∫ b
a w(x) f(x)dx by a quadra-

ture rule S(f) :=
∑M

i=1 wi f(xi) of degree d, where wi > 0, can be represented
as

E(f) =
∫ b

a
Kr(t) f (r)(t) dt , (1)

where f ∈ Cr[a, b], 1 ≤ r ≤ d + 1 and the Peano kernel Kr(t) is defined by

Kr(t) := Ex

(

(x− t)〈r−1〉
+

)

with (x− t)〈r〉 :=
(x− t)r

r!
and

(x− t)r
+ :=

{

(x− t)r , for x ≥ t ,

0 , for x < t .

Generally, the quadrature error (1) is estimated according to

|E(f)| ≤ ‖f (r)‖∞ ·
∫ b

a
|Kr(t)| dt , (2)

or for validated computation

E(f) ∈ f (r)([a, b]) ·
∫ b

a
K+

r (t) dt − f (r)([a, b]) ·
∫ b

a
K−

r (t) dt , (3)

where K+(t) := max(K(t), 0), K−(t) := max(−K(t), 0).
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If Kr(t) is definite on [a, b], i. e. Kr(t) does not change sign on [a, b], then
in (2), (3) there remains the integral

∫ b
a Kr(t) dt to be computed, which might

not be a difficult task, at least not for w(x) ≡ 1. However, this is not the usual
case. According to (1), we have

E(xr) = r! ·
∫ b

a
Kr(t) dt , 1 ≤ r ≤ d + 1 . (4)

It follows immediately that
∫ b

a Kr(t) dt = 0 for 1 ≤ r ≤ d. This implies that
only the Peano kernels of highest orders may be definite. If Kd+1(t) is definite
on [a, b], then

∫ b
a Kr(t) dt is equal to E(xd+1)/(d + 1)!, which can be easily

computed. On the other hand, if Kd+1(t) changes its sign on [a, b] and/or f
is not sufficiently smooth on [a, b], i. e. f ∈ Cr[a, b], 1 ≤ r ≤ d + 1, then for
the error estimation (2) and (3) the error constants

∫ b
a K+

r (t) dt and
∫ b

a K−
r (t) dt

have to be known, where 1 ≤ r ≤ d + 1.
A straightforward method for computing the error constant

∫ b
a |Kr(t)| dt is

to compute all the zeros of Kr(t) at first, then to integrate Kr(t)
∣

∣

∣

[xi,xi+1]
between

every two adjacent zeros within each subinterval [xi, xi+1], cf. [11, 9, 10]. Since
it is not easy to identify all the zeros of Peano kernels numerically, hence, in
[11] the method was only applied to Kr for r = 1, 2, in [9] the method was
only applied to Kd by analytically confirming that for Gauss-Legendre rules Kd

possesses only the zero 0. In [10] the first trial for the whole range 1 ≤ r ≤ d+1
was undertaken and interval computations was used. However, the numerical
results presented in [11, 9, 10] reveal themselves to be validated or improved. In
the literature there was also much effort given for estimating an upper bound
for

∫ b
a |Kr(t)| dt, cf. [2, 5, 3, 4]. Among them, good results in general can only

be obtained for r = d + 1. For 1 ≤ r ≤ d, the most suggested upper bounds are
relatively coarse. This paper adopts the same method used in [11, 9, 10] and
has successfully gained significant improvement in the computational quality for
the whole range 1 ≤ r ≤ d + 1.

In the presentation, essential consideration for doing the computation, the
algorithms as well as numerical results with comparison to published bounds
are proposed. All the ideas presented in this paper can also be applied to one-
dimensional Sard kernels appearing in the error representation of a numerical
cubature rule.
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