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Consider a discrete-time optimal control problem in the following direct form:
choose control values ui ∈ Rp for each timestep 0 ≤ i < N so as to minimize
z = F (xN ) where x0 is some fixed constant and the state equation is xi+1 =
fi(xi, ui) for 0 ≤ i < N . Here each fi is a smooth map from Rq ×Rp → Rq and
F is a smooth map from Rq to R. The dimension of ui may depend upon the
timestep i, but for notational convenience we omit this refinement.

We lose nothing by restricting attention to target functions of this form: the
more usual formulation where z has the form z =

∑N−1
i=0 Fi(xi, ui) + FN (xN ),

can be reduced to the form z = F (xN ) by augmenting each state xi with a
new component vi ∈ R defined by v0 = 0; vi+1 = vi + Fi(xi, ui) and defining
F (xN , vN ) = vN + FN (xN ).

In the direct formulation the Np independent variables are the controls ui :
0 ≤ i < N . Typically the number of timesteps, and hence the number of
independent variables is very large (millions). This makes the validated solution
of such problems difficult.

In the alternative indirect formulation, the only independent variables are
the q components of an initial costate x̃0. At each timestep i, the current controls
ui and the successor costate x̃i+1 are implicitly defined, in terms of the current
state xi and current costate x̃i, by the costate equations and the Pontryagin
equations

x̃i − [f ′x,i(xi, ui)]T x̃i+1 = 0; [f ′u,i(xi, ui)]T x̃i+1 = 0.

The state equation xi+1 = fi(xi, ui) then gives xi+1 in terms of xi and ui. In the
indirect formulation, the requirement for the path to be optimal is that x̃N −
F ′(xN ) = 0 which we observe can be regarded as a form of the transversality
condition. For an optimal path (although not in general) the numerical values
of the costates x̃i are equal to those of the adjoint states x̄i = ∂z/∂xi.

For a non-optimal path, the residual value r = x̃N −F ′(xN ) of the transver-
sality equation gives a measure of how far the initial costate value x̃0 differs from
that for the optimum path. An important advantage of the indirect approach
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for validated methods is the drastic reduction in the number of independent
variables, from Np to q.

In 1983 Pantoja described a computationally efficient stagewise construction
of the Newton direction for the direct formulation. Recently [6] we formulated
an indirect analogue of Pantoja’s algorithm, which gives exactly the Newton
step a0 for the initial costate with respect to a terminal transversality condition.
We believe this indirect reformulation of Pantoja’s algorithm potentially forms
a useful tool for attacking the problem of verified global optimal control using
interval methods.

We conclude this abstract by giving a scalar (non-interval) form of the indi-
rect Pantoja algorithm, and then indicate some of the possibilities.

Step 1. Given the fixed initial value for x0, set a trial initial value for x̃0. For
i from 0 up to N − 1 calculate ui ∈ Rp; x̃i+1, xi+1 ∈ Rq by solving the implicit
costate and Pontryagin equations, respectively

x̃i −
[

f ′x,i

]T
x̃i+1 = 0; ũi =

[

f ′u,i

]T
x̃i+1 = 0,

for ui and x̃i+1 and setting xi+1 = fi(xi, ui).

Step 2. Set z = F (xN ), and define aN ∈ Rq, DN ∈ Rq×q by

DN = F ′′(xN ); aN = −r where r = x̃N − F ′(xN ).

Step 3. For i from N − 1 down to 0 calculate ai ∈ Rq; Ai, Di ∈ Rq×q;Bi ∈
Rp×q;Ci ∈ Rp×p by

Ai =
[

f ′x,i

]T
Di+1

[

f ′x,i

]

+ (x̃i+1)
T [

f ′′xx,i

]

Bi =
[

f ′u,i

]T
Di+1

[

f ′x,i

]

+ (x̃i+1)
T [

f ′′ux,i

]

Ci =
[

f ′u,i

]T
Di+1

[

f ′u,i

]

+ (x̃i+1)
T [

f ′′uu,i

]

where [.] denotes evaluation at (xi, ui), and we write (for example)

(

[

f ′u,i

]T
Di+1

[

f ′x,i

]

)

j,k
for

q
∑

l=1

q
∑

m=1

[

∂(xi+1)l

∂(ui)j

]

(Di+1)l,m

[

∂(xi+1)m

∂(xi)k

]

etc.

If Ci is singular then the algorithm fails, otherwise set

Di = Ai −BT
i C−1

i Bi

ai =
[

f ′x,i

]T
ai+1 −BT

i C−1
i

[

f ′u,i

]T
ai+1

and STOP.
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Either the algorithm fails to terminate, or else at the end a0 satisfies

x̃N − F ′(xN ) + a0 ·
∂

∂x̃0
(x̃N − F ′(xN )) = 0.

Since in the region of an optimum path we have that all the Ci are positive
definite [6], the indirect algorithm can be combined with a variational analysis
to provide a largeish box around the (believed) global optimum for x̃0 in which
interval Newton establishes that only one solution to the transversality equation
exists.

For example if we set r to be a cartesian basis vector, then the algorithm
gives the corresponding row of A = J−1, where J = ∂r/∂x̃0 for the midpoint of
the box [x̃0] = x̃0 + ∆. Using Automatic Differentiation techniques [1] we can
differentiate through the costate and Pontryagin equations to evaluate ranges
for the derivatives B = [dr/dx̃0]. Then any optimal point in [x̃0] is also in
φ([x̃0] = x̃0 + a0 + ∆[I −AB].

This should significantly ease the task of proving other boxes to either con-
tain no solution to the transversality equations, or to be suboptimal.

We stress that the outline given here is very simplistic (it is assumed that
all state and control constraints have been incorporated into the target function
by penalty terms, for instance) and that much work remains to be done before
global optima for control problems can be validated rigorously in a reasonable
time. Nevertheless we believe that the approach set out here is a viable manifesto
for a programme to achieve this.

References

[1] M. Bartholomew-Biggs, “Automatic Differentiation of Implicit Functions
using Forward Accumulation”, Computational Optimization and Applica-
tions, 1998, Vol. 9, pp. 65–84.

[2] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon, “Au-
tomatic Differentiation of Algorithms”, Journal of Computational and
Applied Mathematics, 2000, Vol. 124, pp. 171–190.

[3] B. Christianson, “Reverse Accumulation and Implicit Functions”, Opti-
mization Methods and Software, 1998, Vol. 9, pp. 307–322.

[4] B. Christianson, “Cheap Newton Steps for Optimal Control Problems:
Automatic Differentiation and Pantoja’s Algorithm”, Optimization Meth-
ods and Software, 1999, Vol. 10, pp. 729–743.

[5] B. Christianson and M. Bartholomew-Biggs, “Globalization of Pantoja’s
Optimal Control Algorithm”, In: From Simulation to Optimization: 3rd
International Conference on Automatic Differentiation, Springer LNCS,
2001 (to appear).

3



[6] B. Christianson, “A Self-Stabilizing Pantoja-Like Indirect Algorithm for
Optimal Control”, Optimization Methods and Software, 2001, Vol. 16,
pp. 131–149.

[7] T. Coleman and A. Liao, “An Efficient Trust Region Method for Un-
constrained Discrete-Time Optimal Control Problems”, Computational
Optimization and Applications, 1995, Vol. 4, pp. 47–66.

[8] D. Conforti and M. Mancini, “A Curvilinear Search Algorithm for Un-
constrained Optimization”, Optimization Methods and Software, 2001 (to
appear).

[9] L. Dixon and M. Bartholomew-Biggs, “Adjoint-Control Transformations
for Solving Practical Optimal Control Problems”, Optimal Control Ap-
plications and Methods, 1981, Vol. 2, pp. 365–381.

[10] H. Kagiwada et al, Numerical Derivatives and Nonlinear Analysis,
Plenum, New York, 1986.

[11] J. F. A. De O. Pantoja, Algorithms for Constrained Optimization Prob-
lems, Ph.D. thesis, Imperial College of Science and Technology, University
of London, 1983.

[12] J. F. A. De O. Pantoja, “Differential Dynamic Programming and New-
ton’s Method”, Int J Control, 1998, Vol. 47, No. 5, pp. 1539–1553.

4


