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The computational manipulation of probability measures often requires the
treatment of interval values, not only due to numerical errors, but also due to
more fundamental difficulties: we may want to model imprecise beliefs; we may
have incomplete knowledge about probability values; we may be interested in
merging beliefs from groups of experts; and we may wish to verify the effect of
perturbations in probabilistic models [2, 17]. Such difficulties have often led to
the study of interval probability and related theories. The goal of this paper is
to present a brief overview of methods and results that can be relevant to the
validated manipulation of probabilistic models.

The most general representation for imprecision in probabilistic models seems
to be provided by the theory of sets of probabilities (called credal sets [13]). In
this work we focus on closed convex credal sets; there are axiomatic deriva-
tions of such credal sets and other variants [12, 16, 17]. Consider two examples.
First, consider a binary variable X and the set of measures defined by the in-
terval P (X = x0) ∈ [0.3, 0.4], where P (X = x0) is the probability of the event
{X = x0} — here a single interval can define the entire credal set. Second,
consider a variable Y that can take three values, {y0, y1, y2}. A probability
distribution for Y is entirely defined by a three-valued vector {p0, p1, p2} such
that pi ≥ 0 and

∑

i pi = 1. We can build a credal set by taking a distribution
p(Y ) and considering the set of all distributions r(Y ) such that the difference
|R(A) − P (A) | is always smaller than some positive ε for any event A (where
R(·) is the measure induced by r(Y ) and P (·) is the measure induced by p(Y )).
This type of credal set is called a total variation neighborhood in robust statis-
tics [10].

Given a credal set Q(X), we can obtain upper expectations for any bounded
function: E[f(X)] = maxP∈Q EP [f(X)]. Likewise, we can define lower expec-
tations: E[f(X)] = minP∈Q EP [f(X)]. Lower and upper expectations define
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expectations intervals, and the theory of credal sets can be viewed as a theory
that manipulates expectation intervals in a principled manner. We assume dis-
crete models in this paper, noting that an assessment of the form E[f(X)] = γ
is equivalent to a linear inequality

∑

X f(x)p(x) ≤ γ.
Conditioning is generally taken to mean elementwise application of Bayes

rule; the conditional credal set Q(X|Y ) is obtained by applying Bayes rule to
each element of the joint credal set Q(X, Y ) [8, 13].

Consider first the computation of upper expectations E[f(X)] with respect
to credal sets specified by linear constraints. We obtain a linear program with
analysis going back to the work of Boole and with extensions based on column-
generated methods, as reviewed by Hansen et al [9].

A more interesting challenge is the computation of upper posterior expec-
tations E[f(X)|Y ]. Still assuming linear constraints, we now have a linear
fractional optimization problem [15]. The most efficient method to deal with
these problems seems to be the Charnes–Cooper transformation, which reduces
the fractional problem to a linear program [11, 14]. Other methods, such as
Walley’s iterative scheme and the Dinkelbach-Jagannatham algorithm (known
in statistics as Lavine’s method) can be of value in specific cases [6].

An important situation in practice is the computation of E[f(X)|Y ] with re-
spect to a credal set Q(X) and a collection of “likelihood” credal sets Q(Y |X = x),
for all values of X. Surprisingly, we can still reduce this problem to a linear pro-
gram with some mild assumptions on the sets Q(Y |X = x), using an algorithm
presented in [6].

We now consider the impact of independence relations. The first difficulty
is that there are several definitions of independence for credal sets [5].

One possible definition (epistemic independence) states that variables X and
Y are independent when E[f(X)|Y ] = E[f(X)] and E[g(Y )|X] = E[g(Y )] for
any bounded functions f(X) and g(Y ). Algorithms for inference in multivari-
ate models based on epistemic independence are presented in [7], but their
computational complexity seems to be quite high. A simple Markov chain as
W → X → Y → Z, where all variables are binary, all probabilities are defined
by intervals, and each variable is epistemically independent of all ascendants
given the direct ascendant, defines a credal set Q(W,X, Y, Z) with more than 6
million extreme points!

A second possible definition for independence (strong independence) requires
that any extreme point of Q(X, Y ) satisfies p(X|Y ) = p(X) and p(Y |X) = p(Y ).
Computation of upper posterior expectations is now a multilinear program with
many possible local maxima. There has been great effort to solve such pro-
grams when multivariate models are represented by directed graphs (follow-
ing the successful theory of Bayesian networks). Exhaustive algorithms have
been implemented; the JavaBayes system, freely distributed by the first author
at http://www.cs.cmu.edu/˜javabayes, offers some support for strong indepen-
dence. Simulated annealing and genetic search have also been tested [3, 4]. Al-
though the optimization problem is a reverse geometric program [1], geometric
duality cannot be easily used here, because the number of dual variables is po-
tentially huge. The most promising approach seems to be branch-and-bound al-
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gorithms, coupled with redundancy-elimination computations. Because graph-
ical structures can be used to generate bounds on probabilities, it is possible
to gradually “cut” the sizes of credal sets when looking for a global maximum.
At the same time, convex hull algorithms can be used to eliminate redundant
vertices from credal sets.
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