## Exact Bounds on Sample Variance of Interval Data

Scott Ferson<sup>1</sup>, Lev Ginzburg<sup>1</sup>, Vladik Kreinovich<sup>2</sup>, and Monica Aviles<sup>2</sup>

 <sup>1</sup>Applied Biomathematics, 100 North Country Road, Setauket, NY 11733, USA, {scott,lev}@ramas.com
<sup>2</sup>Computer Science Department, University of Texas at El Paso El Paso, TX 79968, USA, {maviles,vladik}@cs.utep.edu

## Abstract

We provide a feasible (quadratic time) algorithm for computing the lower bound  $\underline{V}$  on the sample variance of interval data. The problem of computing the upper bound  $\overline{V}$  is, in general, NP-hard. We provide a feasible algorithm that computes  $\overline{V}$  for many reasonable situations.

Formulation of the problem. When we have n results  $x_1, \ldots, x_n$  of repeated measurement of the same quantity, traditional statistical approach usually starts with computing their sample average

$$E = \frac{x_1 + \ldots + x_n}{n}$$

and their sample variance

$$V = \frac{(x_1 - E)^2 + \ldots + (x_n - E)^2}{n - 1}$$

(or, equivalently, the sample standard deviation  $\sigma = \sqrt{V}$ ); see, e.g., [1].

Sample variance is an unbiased estimator of the variance of the distribution from which observations are assumed to be randomly sampled. For Gaussian distribution, this estimator is a maximum likelihood estimator of the distribution variance.

In some practical situations, we only have intervals  $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$  of possible values of  $x_i$ . This happens, for example, if instead of observing the actual value  $x_i$  of the random variable, we observe the value  $\tilde{x}_i$  measured by an instrument with a known upper bound  $\Delta_i$  on the measurement error; then, the actual (unknown) value is within the interval  $\mathbf{x}_i = [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$ .

As a result, the sets of possible values of E and V are also intervals. The interval  $\mathbf{E}$  for the sample average can be obtained by using straightforward interval computations, i.e., by replacing each elementary operation with numbers by the corresponding operation of interval arithmetic:

$$\mathbf{E} = \frac{\mathbf{x}_1 + \ldots + \mathbf{x}_n}{n}.$$

What is the interval  $[\underline{V}, \overline{V}]$  of possible values for sample variance V?

When the intervals  $\mathbf{x}_i$  intersect, then it is possible that all the actual (unknown) values  $x_i \in \mathbf{x}_i$  are the same and hence, that the sample variance is 0. In other words, if the intervals have a non-empty intersection, then  $\underline{V} = 0$ . Conversely, if the intersection of  $\mathbf{x}_i$  is empty, then V cannot be 0, hence  $\underline{V} > 0$ . The question is (see, e.g., [2]): What is the total set of possible values of Vwhen the above intersection is empty?

For this problem, straightforward interval computations sometimes overestimate: E.g., for  $\mathbf{x}_1 = \mathbf{x}_2 = [0, 1]$ , the actual  $V = (x_1 - x_2)^2/2$  and hence, the actual range  $\mathbf{V} = [0, 0.5]$ . On the other hand,  $\mathbf{E} = [0, 1]$ , hence

$$(\mathbf{x}_1 - \mathbf{E})^2 + (\mathbf{x}_2 - \mathbf{E})^2 = [0, 2] \supset [0, 0.5].$$

Three intervals  $\mathbf{x}_i$  equal to [0, 1] show that a centered form also does not always lead to the exact range.

The problem reformulated in statistical terms. The traditional sample variance is an unbiased estimator for the following problem: observation points  $x_i$  satisfy the equation  $x_i = u - \varepsilon_i$ , where u is an unknown fixed constant and the  $\varepsilon_i$  are independently and identically distributed random variables with zero expectation and unknown variance  $\sigma^2$ .

In our paper, we want to handle a situation in which each observation point  $\tilde{x}_i$  satisfies the condition  $\tilde{x}_i - u - \varepsilon_i \in \Delta_i \cdot [-1, 1]$ , where the values  $\Delta_i$  are assumed to be known. From this model, we can conclude that each  $u + \varepsilon_i$  is contained in the corresponding interval  $\tilde{x}_i + \Delta_i \cdot [-1, 1] = \mathbf{x}_i$ . As a solution to this problem, we take the interval consisting of all the results of applying the estimator V to different values  $x_1 \in \mathbf{x}_1, \ldots, x_n \in \mathbf{x}_n$ .

**Our first result: computing**  $\underline{V}$ . First, we design a *feasible* algorithm for computing the exact lower bound  $\underline{V}$  of the sample variance. Specifically, our algorithm is *quadratic-time*, i.e., it requires  $O(n^2)$  computational steps for n interval data points  $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$ . We have implemented this algorithm in C++, it works really fast. The algorithm is as follows (the proof that this algorithm is correct will be provided in the full paper):

- First, we sort all 2n values  $\underline{x}_i$ ,  $\overline{x}_i$  into a sequence  $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$ . This sorting requires  $O(n \cdot \log(n))$  steps.
- Second, we compute  $\underline{E}$  and  $\overline{E}$  and select all "small intervals"  $[x_{(k)}, x_{(k+1)}]$  that intersect with  $[\underline{E}, \overline{E}]$ .

• For each of selected small intervals  $[x_{(k)}, x_{(k+1)}]$ , we compute the ratio  $r_k = S_k/N_k$ , where

$$S_k \stackrel{\text{def}}{=} \sum_{i:\underline{x}_i \ge x_{(k+1)}} \underline{x}_i + \sum_{j:\overline{x}_j \le x_{(k)}} \overline{x}_j,$$

and  $N_k$  is the total number of such *i*'s and *j*'s. If  $r_k \notin [x_{(k)}, x_{(k+1)}]$ , we go to the next small interval, else we compute

$$V'_{k} \stackrel{\text{def}}{=} \frac{1}{n-1} \cdot \left( \sum_{i:\underline{x}_{i} > x_{(k+1)}} (\underline{x}_{i} - r)^{2} + \sum_{j:\overline{x}_{j} < x_{(k)}} (\overline{x}_{j} - r)^{2} \right).$$

(if  $N_k = 0$ , we take  $V'_k \stackrel{\text{def}}{=} 0$ ).

• Finally, we return the smallest of the values  $V'_k$  as  $\underline{V}$ .

Second result: computing  $\overline{V}$  is NP-hard. Our second result is that the general problem of computing  $\overline{V}$  from given intervals  $\mathbf{x}_i$  is NP-hard.

Third result: a feasible algorithm that computes  $\overline{V}$  in many practical situations. NP-hard means, crudely speaking, that there are no general ways for solving all particular cases of this problem (i.e., computing  $\overline{V}$ ) in reasonable time.

However, we show that there are algorithms for computing  $\overline{V}$  for many reasonable situations. For example, we propose an efficient algorithm  $\mathcal{A}$  that computes  $\overline{V}$  for the case when the "narrowed" intervals  $[\widetilde{x}_i - \Delta_i/n, \widetilde{x}_i + \Delta_i/n]$ – where  $\widetilde{x}_i = (\underline{x}_i + \overline{x}_i)/2$  is the interval's midpoint and  $\Delta_i = (\underline{x}_i - \overline{x}_i)/2$  is its half-width – do not intersect with each other. We also propose, for each positive integer k, an efficient algorithm  $\mathcal{A}_k$  that works whenever no more than k "narrowed" intervals can have a common point.

Acknowledgments. This work was supported in part by NASA under cooperative agreement NCC5-209 and grant NCC 2-1232, by NSF grants CDA-9522207, ERA-0112968 and 9710940 Mexico/Conacyt, by the Air Force Office of Scientific Research grant F49620-00-1-0365, and by Grant No. W-00016 from the U.S.-Czech Science and Technology Joint Fund.

The authors are greatly thankful to the anonymous referees for very useful suggestions.

## References

- S. Rabinovich, Measurement Errors: Theory and Practice, American Institute of Physics, New York, 1993.
- G. W. Walster, "Philosophy and practicalities of interval arithmetic", In: R. E. Moore (ed.), *Reliability in Computing*, 1988, pp. 307–323.