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A frequently used approach for solving nonlinear systems, combinatorial
optimization, or constrained global optimization problems is the generation of
relaxations and their use in a branch and bound framework. Generally speaking,
a relaxation of a given problem has the properties that

(i) each feasible point of the given problem is feasible for the relaxation,
(ii) the relaxation is easier to solve than the given problem, and

(iii) the solutions of the relaxation converge to the solutions of the original
problem, provided the maximal width of the set of feasible points converges
to zero.

For many problems a relaxation can be constructed, if the functions which define
the problem can be bounded from below by affine or, more generally, by convex
functions.

In our talk we address the construction of convex lower bounding and equally
concave upper bounding functions for multivariate polynomials. Both functions
together constitute a so-called conver—concave extension. For polynomials this
is obtained in a natural way if we represent the given polynomial (for simplicity
we consider here only the univariate case and concentrate on the unit interval
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in its Bernstein form

where the



are the Bernstein polynomials. The coefficients of this expansion, the so-called
Bernstein coefficients, can easily be computed from the coefficients of p:
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A fundamental property of the Bernstein expansion is its convex hull property
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which states that the graph of p over I is contained in the convex hull (denoted
by conv) of its control points. Based on this property, convex—concave exten-
sions of increasing complexity can be constructed (we are giving here only the
construction of the lower bounding function). E.g., we obtain an affine lower
bounding function if we consider the straight line which passes through a facet
of the lower part of the convex hull of the control points, the slope of which is
given by the absolute value of the slope between the control points associated
with the smallest and next to smallest Bernstein coefficients. A convex lower
bounding function is provided by the lower part of the convex hull of the control
points.

In Figures 1 and 2 convex—concave extensions for a polynomial of fourth
degree over the intervals [0, 0.5], [0,0.6], [0,0.7] and [0, 1] are displayed. In Fig.
1 the extension is based on one affine upper and lower bounding function. The
figure shows that this convex—concave extension is not inclusion isotone. In
Fig. 2 the extension is provided by the convex hull of the control points. In this
special example the convex hull is inclusion isotone. We show that this property
holds generally. However, it should be noted that inclusion isotonicity is not a
necessary prerequisite for constructing and using convex—concave extensions.

In the multivariate case the affine lower bounding function ¢ can be charac-
terized as the optimal solution of a linear programming problem. We present
an upper bound for the difference p — ¢ which exhibits in the univariate case
quadratic convergence with respect to the width of the interval.

Due to rounding errors, inaccuracies may be introduced into the calculation
of the Bernstein coefficients and therefore of the bounding functions. This may
lead to erroneous results in applications. We are giving some suggestions for
the way in which the calculations have to be performed so that verified results
are obtained.



Fig. 1. Failure of inclusion isotonicity with one affine function.
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Fig. 2. The convex hull is inclusion isotone.



