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One of the main problems of interval computations is to find a range
of a given function on given intervals. To be more precise: given n input inter-
vals x1, . . . ,xn and an algorithm f(x1, . . . , xn) that transforms n real numbers
x1, . . . , xn into a real number y = f(x1, . . . , xn), find the range

y = f(x1, . . . ,xn) = {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

Usually, the endpoints of the intervals xi come from measurements, and mea-
surement usually produces rational numbers, so we can assume that the intervals
xi have rational endpoints. If we cannot compute the exact range, we can at
least try to find an enclosure Y ⊇ y for the range.

Straightforward interval computations: its advantages and drawbacks.
Historically the first method for computing the enclosure for the range is the
method which is sometimes called “straightforward” interval computations. This
method is based on the fact that inside the computer, every algorithm consists
of elementary operations (arithmetic operations, min, max, etc.). For each el-
ementary operation f(x, y), if we know the intervals x and y for x and y, we
can compute the exact range f(x,y). The corresponding formulas form the so-
called interval arithmetic. In straightforward interval computations, we repeat
the computations forming the program f step-by-step, replacing each operation
with real numbers by the corresponding operation of interval arithmetic. It is
known that, as a result, we get an enclosure for the desired range.

In some important cases, the enclosure obtained by using straightforward
interval computations is actually the exact range. There are several sufficient
conditions for straightforward interval computations to be exact: e.g., it is exact
when f(x1, . . . , xn) is an explicit expression in which each variable occurs only
once; another condition is given by Hansen in his 1997 RC paper.
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However, there are known cases when the resulting enclosure is much larger
than the actual range. For example, for the expression f(x1, x2) = x1 + x1 · x2,
straightforward interval computations are exact when x2 ≥ 0 and not exact
when, e.g., x1 = [x1, x1] is a non-degenerate interval and x2 = [−1,−1]. In-
deed, in the second case, f(x1, x2) = 0, so we have a 1-point range [0, 0], but
straightforward interval computations result in [x1 − x1, x1 − x1].

More sophisticated methods and the first methodological question.
Several methods have been proposed to reduce the overestimation: centered
form, bisection, monotonicity check, etc. E.g., Hansen’s generalized interval
arithmetic takes into account dependence between interval variables and thus,
computes the range of x1 + x1 · (−1) as [0, 0].

Each new method improves the enclosures, often reducing the enclosure to
the exact range, but for each known method, there are cases when this method
still overestimates.

In such situations, when many methods have been proposed and none of
them is perfect, a natural question is: Is a perfect method – that would always
return the exact range in reasonable time – possible at all? This methodological
question is important for algorithm designers:

• If a perfect method is possible, then it is reasonable to spend some time
looking for it.

• On the other hand, if such a method is not possible at all, then looking for
a perfect method would be a waste of time – like looking for a solution-in-
radicals of general fifth other algebraic equation or for a ruler-and-compass
angle trisection.

If no general perfect method is possible, then, instead of wasting time looking
for such a method, we should look either for classes of functions and/or domains
for which it is possible to compute the exact range, or for algorithms that still
overestimate, but produce better estimates than the existing ones.

A (known) answer to the first methodological question. For interval
computations, this important methodological question was answered in 1981,
when Gaganov proved that the problem of computing the range is NP-hard
(see, e.g., [1] and references therein).

Crudely speaking, NP-hard means that there are no general ways for solving
this problem (i.e., computing the exact range) in reasonable time. (As an aside,
it is possible to compute the range exactly in time that increases exponentially
with n [1].) Of course, every NP-hard problem has easier-to-solve subclasses,
and the problem of range estimation is no exception: as we have mentioned
there are several important classes of functions for which we can compute the
exact range in reasonable time. However, the NP-hardness result means that
when we design a general range estimation algorithm, we can, in general, only
compute enclosures for the desired range.
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Maybe the difficulty from the requirement that the range be computed ex-
actly? In practice, it is often sufficient to compute, in a reasonable amount of
time, usefully accurate bounds for y, i.e., bounds which are accurate within a
given accuracy ε > 0. Alas, for any ε, such computations are also NP-hard.
Second methodological question. When we use an algorithm – e.g., straight-
forward interval computations – to estimate the range, we know that the result
may be an overestimation. But is it?

As we have mentioned, there are many important sufficient conditions un-
der which straightforward interval computations produce an exact range. New
better sufficient conditions are being discovered. However, none of the known
conditions is necessary: for each of these conditions, there are cases not covered
by this condition in which the results are nevertheless exact.

Again, we have a natural question: are perfect (i.e., efficient, necessary and
sufficient) conditions possible at all? If they are possible, then it is reasonable
to spend some time looking for them. If such conditions are not possible, then
looking for such perfect conditions would be a useless waste of time.
Our answer to this question. Let us consider algorithms f(x1, . . . , xn) that
consist only of the operations +, −, ·, min, and max.
Theorem. The problem of checking whether for a given algorithm f(x1, . . . , xn)
and given intervals x1, . . . ,xn, straightforward interval computations are exact,
is NP-hard.
A similar result holds if we allow division as well.

In other words, no feasible necessary and sufficient conditions are possible for
checking whether the estimate obtained by using straightforward computations
is exact. As a result, instead of trying to find such conditions, we should fully
concentrate on identifying classes of functions (or functions and box values) for
which straightforward computations lead to the exact range. It is known that
Gauss elimination and completing the square of a quadratic lead to exact range.
Finding more cases like that is worth the effort.
Related open problems. In practice, it is usually sufficient to compute the
range within a given accuracy ε. How difficult is it to check whether for a given
algorithm f(x1, . . . , xn) and given intervals x1, . . . ,xn, straightforward interval
computations are accurate within the given accuracy?

What if we consider other methods – such as centered form?
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