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1 Introduction

Interval slopes are useful in the rigorous treatment of non-smooth optimization
problems, as we have outlined in [3, Ch. 6]. There, we developed formulas for
outer estimates for the ranges of slopes of non-smooth and discontinuous func-
tions. Slopes of non-smooth functions provide a simple alternative, computable
with automatic differentiation procedures, to concepts such as the generalized
gradient [1], and semigradient [5].

For various reasons, it may also be useful to compute inner estimates to the
range of slopes for non-smooth or for discontinuous functions. For example,
we can develop theory relating slopes to generalized gradients; depending on
that theory, inner slope estimates would then be guaranteed to be elements of
the generalized gradient. We could then develop general, automatic algorithms
based on previous algorithms that utilized generalized gradients.

An alternate reason for developing inner estimates is to obtain bounds on
the overestimation in the outer slopes.

Formulas for inner estimates for slopes are somewhat trickier than formulas
for outer estimates. In [6], such formulas for inner slopes for various elementary
functions, such as max and |·| are presented. The development there is analogous
to that of [3, Ch. 6].

Incorporation of the formulas for inner slopes into expressions for objective
functions, etc. requires an arithmetic based on inner estimations, rather than
standard interval arithmetic. We have used twin arithmetic as Kreinovich and
Nesterov [4, 7] have proposed. This arithmetic is operationally equivalent to
Kaucher arithmetic (ibid.).

2 A Few Details

We term our procedure automatic twin slope computation (ATSC). Inner and
outer bounds of the actual slope set are given simultaneously for nonsmooth
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functions such as |f(x)|, max {f(x), g(x)}, f, g : Rn → R, and expressions
defined by if-then-else branches.

Definition 1 (Twin arithmetic [4] and [7]). A twin is a pair of intervals t =
(xinn,x), with associated relations ⊆ and v, such that xinn ∈ IR∪ {∅} ,x ∈ IR,
and for y ∈ IR, y v t denotes xinn ⊆ y ⊆ x. (x,x) is a degenerate twin, and
y v (∅,x) means that there is only an outer estimation of y, which is x.

Basically, a twin estimation of some function f(x1, . . . , xn) consists of a pair
of intervals, the inner interval estimation, finn(t) and the outer interval estima-
tion f(x). An inner interval estimation must only contain values that are in the
actual range of f . We denote the twin estimation of f by

ftwin(t) = (finn(t), f(x)).

The basic arithmetic operations with twins given in [7] are identical with
those given in Kaucher arithmetic [2] for the set of proper intervals, i.e., [a, b],
where a < b.

ATSC evaluates functions specified by algorithms or formulas in such a way
that all operations are executed according to the rules of a twin slope arithmetic
to guarantee inner and outer estimations for the function and slope values.
Throughout, x̌ = (x̌1, x̌2) and x = (x1,x2) will represent twins such that x̌2 ⊆
x2.

Definition 2 Let x and x̌ be real twins and let u : x2 → R be a real function.
A twin slope for u over x and centered at x̌ is defined as the twin

Stwin(u,x, x̌) = (Sinn(u,x, x̌),S(u,x2, x̌2)),

where Sinn(u,x, x̌) and S(u,x2, x̌2), the inner and outer slope estimations, are
obtained according to the rules of a twin slope arithmetic.

Twin slope arithmetic is based on defining operations and standard functions
on automatic twin ordered triplets of the form 〈〈ǔ, u, u(s)〉〉, where ǔ, u, and u(s)

are real twins. ǔ is the twin evaluation of u(x) over x̌, u is the twin evaluation of
u(x) over x and u(s) is the twin slope Stwin(u,x, x̌). Inner estimates for slopes
are expressed in terms of bounds of intervals, considering concavity conditions of
the functions, and executing all intermediate operations with inward rounding.
Outer estimates for slopes are obtained with the formulas given in [3] with
outward rounding. The following example illustrates the application of ATSC.

Example 1 Let f(x) = x2 − 4x + 2. Considering the interval [1, 7] and its
midpoint 4, the actual slope is S](f, [1, 7], 4) = [1, 7], and the actual range is
fu([1, 7]) = [−2, 23]. Let x = ([1, 7], [1, 7]) and x̌ = ([4− ε, 4 + ε], [4− ε, 4 + ε]),
where ε is large enough so repeated inward rounding does not result in the empty
set. The next table presents intermediate evaluations using twin arithmetic and
twin slope arithmetic with forward substitution. In this table, xr, x̌, and xs
denote the range, center and twin slope evaluations for the intermediate variables
respectively (rounded out or in as appropriate to three digits). Also, op indicates
which intermediate operation is performed to compute the displayed result.
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op
x1 = x
x2 = x2

1
x3 = 4x1

x4 = x2 − x3

x5 = x4 + 2

op xr x̌ xs
x1 ([1, 7], [1, 7]) ([4, 4], [4, 4]) ([1, 1], [1, 1])
x2 ([1, 49], [1, 49]) ([16, 16], [15.9, 16.1]) ([5, 11], [4.99, 11.1])
x3 ([4, 28], [4, 28]) ([16, 16], [15.9, 16.1]) ([4, 4], [3.99, 4.01])
x4 ([−3, 21], [−27, 45]) ([0, 0], [−0.01, 0.01]) ([1.01, 6.99], [.999, 7.01])
x5 ([−1, 23], [−25, 47]) ([2, 2], [1.99, 2.01]) ([1.01, 6.99], [.999, 7.01])

Finally the twin slope, and the twin enclosures evaluation with 15 digits in
the computation, are

Stwin(f,x, x̌) =
([1.00000000000001, 6.99999999999997],
[0.999999999999982, 7.00000000000004]) ,

ftwin(x) =
([−.99999999999997, 22.9999999999997],
[−25.0000000000001, 47.00000000000004]) .
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