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Abstract

We present interval analysis based procedures for construction of the
well-known Bode and Nyquist frequency response plots for nonrational
transfer functions. The proposed procedures can be used to construct the
plots reliably and to a prescribed accuracy over a user-specified frequency
range. The procedures overcome the limitations of the only available
method for nonrational transfer functions that is based on arbitrary grid-
ding of the given frequency range. Several important examples drawn
from various branches of engineering are used to demonstrate the merits
of the proposed procedures.
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1 Introduction

For over five decades, the Bode and Nyquist frequency response plots have been
of great use in frequency domain analysis and synthesis of linear systems, see,
for instance, [1, 6, 11]. For transfer functions (TFs) having a rational form,
an automatic frequency grid selection procedure is available in the MATLAB
toolbox [4] to generate the frequency response plots. However, this procedure
has several limitations:

1. it does not guarantee that the generated plots are of a user-specified ac-
curacy,
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2. it uses an unreliable phase unwrapping procedure that can be fooled if a
suitably fine frequency grid is not chosen in the frequency region having
sharp phase changes, and

3. it is not applicable to the large and important class of nonrational transfer
functions.

The class of nonrational transfer functions is of great practical importance,
especially in chemical process control where virtually every process has signif-
icant time-delays (a time delay is modeled as a e−τds term, where τd is the
amount of time delay, and this leads to a nonrational transfer function). Some
of the application areas where nonrational transfer functions can be found are:

1. pressure fluctuations in a long flexible hose-tube connecting servo-valve to
actuator in hydraulic servo system [3],

2. feedback system with measurement time delays [10],

3. heating of a one dimension metal rod along its length by a steam chest
[12],

4. heat-exchanger systems [12],

5. multi-modal reactor systems in nuclear reactors [2], and

6. flexible or smart structures.

At the present time, the only method for generating the Bode and Nyquist
frequency response plots for such nonrational transfer functions is through ar-
bitrary rastering or gridding of the frequency range of interest. However, as is
well-known, this so-called gridding method has significant limitations: (a) the
number of grid points required to obtain a specified accuracy is unknown, and
(b) for a given frequency response plot, the amount of error present is unknown,
i.e., no error estimates are available. These limitations show up particularly
severely when the frequency responses exhibit single or multiple sharp peaks or
dips (this happens for the application systems we mentioned above). Despite
the severe limitations of the gridding method, surprisingly little effort has been
made in the literature to overcome them.

In this work, we propose a procedure each to generate the Bode and Nyquist
frequency response plots for nonrational transfer functions. Since our proce-
dures are based on a Vector - Adaptive subdivision and evaluation strategy, we
call them as VA procedures. VA procedures are guaranteed to automatically
generate the plots reliably and to a prescribed accuracy, throughout a given
frequency range. The VA procedures are applicable to a very general class of
transfer functions in the continuous as well as in the discrete-time domains.
Transfer functions involving a composition of time-delay and transcendental
terms can be handled equally easily in the VA procedures, without the need
for any approximations. Moreover, error estimates are readily available from all
plots that have been generated by the VA procedures.
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2 A Procedure for Bode Plot Generation

We present the proposed VA procedure for Bode plot generation. A similar
procedure can be given for the Nyquist plot generation.

The Vector-Adaptive Procedure (VA) for Bode Plot Construction

• Inputs : An expression for the transfer function g(s), the frequency interval
Ω of interest, and the specified maximum width ε of each magnitude and
phase rectangle in the generated Bode plot. In general, ε can be different
for magnitude and phase plots.

• Output: A collection of magnitude and phase rectangles, each of width at
most ε, and enclosing the actual Bode magnitude and phase plot.

BEGIN Procedure

1. From the transfer function expression g(s), obtain the magnitude and
phase expressions fmag(ω) and fphase(ω), where ω is the frequency vari-
able.

2. Construct natural interval extensions Fmag(Ω), Fphase(Ω) for fmag(ω),
fphase(ω), respectively.

3. Set current frequency subinterval as Ω and set the solution list Lsol as
empty.

4. (Adaptive subdivision and vectorized evaluation)

(a) Subdivide all current frequency subintervals, and discard the original
subintervals.

(b) Using vectorized operations, perform vectorized evaluation of Fmag(Ω)
over the frequency subintervals obtained in above substep.

(c) Deposit all magnitude rectangles whose widths are less than ε in the
solution list Lsol, and discard the corresponding frequency subinter-
vals from further processing 1. Keep the remaining frequency subin-
tervals in the current frequency list for further processing.

(d) If there are no more frequency subintervals left for processing, go to
the following step. Else, go back to the beginning of this step (of
adaptive subdivision and vectorized evaluation), and repeat.

5. Output the generated Bode magnitude plot as the collection of all magni-
tude rectangles present in the solution list Lsol.

6. Repeat the above three steps but for Fphase(Ω). Output the generated
Bode phase plot as the collection of all phase rectangles present in the
solution list Lsol.

END Procedure.
1The corresponding frequency subintervals are no longer needed as these have produced

small enough magnitude rectangles which have been just stored.
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3 Results and Discussion

We test the performance of the proposed VA procedures on several real-life
nonrational transfer function examples. We also test them on some challenging
rational transfer function examples. The examples are chosen from the applica-
tion problems listed above.

We program the VA procedures using the interval analysis toolbox INT-
LAB [14] in the MATLAB environment. We carry out all computations on a
PC/Pentium-III 550 MHz machine. In all the examples, we set the prescribed
accuracy as εmag = 1 decibel (dB) and εphase = 1 deg. This means that mag-
nitude (resp. phase) side of each box in the plot is to have a width at most of
1 dB (resp. 1 deg.).

We compare the frequency response plots generated using the VA procedures
with those obtained using conventional rastering or gridding of the frequency
interval, for three different grids of 102, 103, and 104 grid points. Further, we
benchmark all results against the plot obtained using a very dense grid of 5×105

grid points.
The results of the examples show that the gridding method yields large errors

in the plots, if the frequency grid size is not carefully chosen. For instance, in
our examples, it was found that grids of 104 grid points were often required, and
in some extreme cases, even grids of 105 grid points were inadequate to obtain
the same accuracy. Further, the accuracy of the obtained frequency response
plots is unknown unless and until these are benchmarked against the “exact”
plots (hopefully obtained using very dense grids). Without a good estimate of
the grid points to be used and of the error present in the generated plots, there
is every danger that one may be lead to erroneous analysis and synthesis results.
The proposed procedures relieve the user of the difficulties associated with grid
point selection and lack of error estimates.

(The Table containing the comparative analysis of errors, and the plots of
frequency responses, are not given here due to space constraints but will be
given in the full paper).
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