
Motivations for an Arbitrary Precision Interval
Arithmetic and the MPFI Library

N. Revol1 and F. Rouillier2

1Lab. ANO, University of Lille and
and CNRS/ENSL/INRIA Project Arenaire

LIP, École Normale Supérieure de Lyon, France
2Project Spaces, LORIA/INRIA/LIP 6, France

1 Motivations for Changing Arithmetic

Nowadays, computations involve more and more operations and consequently
errors. The limits of applicability of some numerical algorithms are now reached:
for instance the theoretical stability of a dense matrix factorization (LU or QR)
is ensured under the assumption that n3u < 1, where n is the dimension of the
matrix and u = 1+ − 1, with 1+ the smallest floating-point larger than 1; this
means that n must be less than 200,000, which is almost reached by modern
simulations. The numerical quality of solvers is now an issue, and not only
their mathematical quality. Let us cite studies performed by the CEA (French
Nuclear Agency) on the simulation of nuclear plant accidents and also softwares
controlling and possibly correcting numerical programs, such as Cadna [10] or
Cena [20].

Another approach consists in computing with certified enclosures, namely
interval arithmetic [21, 2, 18]. The fundamental principle of this arithmetic
consists in replacing every number by an interval enclosing it. For instance,
π cannot be exactly represented using a binary or decimal arithmetic, but it
is certified that π belongs to [3.14159, 3.14160]. The advantages of interval
arithmetic are numerous. On the one hand, it exhibits the property of validated
or certified computing. On the other hand, computer implementations are based
on outward roundings and thus computed results take into account rounding
errors and constitute a way to estimate these errors. A last and very important
advantage, even if it is often less known, is that this arithmetic provides global
information: for instance, it provides the range of a function over a whole set S,
which is crucial for global optimization; furthermore, if this range is a (strict)
subset of S, then Brouwer’s theorem states that this function has a (unique)
fixed-point and this can be used by Newton’s algorithm for instance. Such
properties cannot be reached without set computing, and interval arithmetic
computes with sets and is easily available.

1



However, in spite of the improvements in interval analysis, the problem of
overestimation, i.e. of enclosures which are far too large and thus inaccurate,
seems to be the destiny of interval computation when it is implemented using
fixed-precision floating-point arithmetic. Using a multiple precision postpones
the occurrence of numerical problems, however the number of correct figures
remains unknown. Computing with intervals provides guaranteed results, but
the bounds can be far apart even when the input data are provided with the
machine precision; a remedy for this phenomenon consists in computing with a
higher precision. This proposal is the core of the MPFI library (Multiple Preci-
sion Floating-point Interval arithmetic library), a library implementing arbitrary
precision interval arithmetic which is described in this paper.

This quest for extra accuracy can be found in other works such as those
by [9] where polynomial expressions are symbolically rewritten before being
evaluated, so as to reduce the overestimation due to dependency, or by [5]
where high-order Taylor expansions are used. In this latter work, the time
overhead is about 1500 for a single evaluation, however it is compensated by
the reduction in the number of steps performed by the algorithm. Real-world
applications where extra accuracy is required are to be found in automatics (we
have been asked to integrate linear systems with high accuracy) or chemistry:
determining a molecular conformation entails the minimization of an energy
function and requires accurate evaluations of this energy function.

Several multiple precision interval packages are available. Let us quote for
instance intpak [11] and intpakX [13] for Maple or a similar package for Mathe-
matica [17]. Due to unverified assumptions on the roundings of elementary func-
tions (0.6 ulp for intpak in Maple, 1 ulp for Mathematica), to bugged roundings
(for instance, with 3 decimal digits, the rounding towards −∞ of 1−9.10−5 gives
1 instead of 0.999 in Maple v6 and v7), and to several undue assumptions, these
packages cannot be considered as reliable. Earlier works include the “range
arithmetic” [1], a multiple precision library which aims at indicating the num-
ber of correct digits rather than at performing interval arithmetic, and IntLab
[27] which primarily implements efficiently interval algorithms using MatLab,
and, besides, mainly provides a type for arbitrary precision computations but
implements few related functionalities. Such an arithmetic was also mentioned
as an easy-to-implement extension to Brent’s multiple precision package MP as
early as 1981 [7]. Anyway, none of the aforementioned packages implements a
complete and really reliable arbitrary precision interval arithmetic and this led
us to implement our own library.

2 Theoretical Background

The theoretical result underlying this idea can be found in [23]: let us denote
by X an interval, by f a function and by F an interval extension of f , where
F is given by a Lipschitz expression, let ε correspond to the current computing
precision p: ε = 2−p, then F (X) overestimates f(X) and the overestimation is

2



bounded by
q(f(X), F (X)) ≤ c1w(X) + c2ε (1)

where q is the Hausdorff distance, w(X) is the width of X and the constants c1

and c2 depend on F . This means that the computing precision can become a
limiting factor and that being able to increase it can be an issue.

Furthermore, a classical procedure in interval analysis is the bisection one:
if the output width is too large, then the inputs are split in two (or more) parts
and the computation is repeated on each part. Bisection is a way to escape the
wrapping effect by providing a paving of the sought set, and also the depen-
dency problem, even if, in that respect, nothing supersedes the use of a good
formulation. Bisection is often the last resort to get more accuracy, by reducing
in formula (1) the quantity w(X). In cases where w(X) = u (which happened
in our experiments on global optimization), only an increase in the computing
accuracy, by “adding new floating-point numbers” between the endpoints of X,
would have yielded a solution.

It can be noticed that the rule of thumb “to get more digits, one has to
increase the computing precision by roughly the same number of digits” can fail,
for instance when computing a square root or more generally a 1/n-th power
close to 0. However, the rule of thumb becomes in such cases “to get α more
digits, one has to increase the computing precision by roughly nα digits”. In
other words, in most cases an increase in the computing precision yields an
improved accuracy on the results.

This is also the starting point of Müller’s work on an effective simulation of a
Real RAM [22], following the theoretical results by Brattka and Hertling [6] on
the feasibility of a Real RAM. In Müller’s work, a computation is performed and,
if the final accuracy is not sufficient, then the whole computation is restarted
with an increased precision; this is reiterated until the outputs are accurate
enough.

3 The MPFI Library

In order to implement an arbitrary precision interval arithmetic, a multiple pre-
cision library was needed. By multiple precision, it is meant that the computing
precision is not limited to the single or double precision of machine floating-point
numbers; on the contrary, arbitrary precisions should be available. Furthermore,
this computing precision must be dynamically adjustable to fulfill the accuracy
needs. A more precise requirement for interval arithmetic is the outward round-
ing facility: this ensures that for each operation, the interval computed using
floating-point arithmetic contains the interval obtained if exact real arithmetic
were used. Even more desirable is exact directed rounding to avoid losing accu-
racy, i.e. the interval computed using floating-point arithmetic is the smallest
one (for inclusion); however, it is rarely fulfilled for elementary functions. To
sum up, compliance with the IEEE 754 standard for floating-point arithmetic,
extended to elementary functions, is welcome.

3



The Arithmos project of the CANT team, U. Antwerpen, Belgium [8], or the
MPFR library (Multiple Precision Floating-point Reliable library), developed by
the Spaces team, INRIA Lorraine, France [12], are such libraries. For portabil-
ity and efficiency reasons (MPFR is based on GMP and efficiency is a motto
for its developers) and also because of the availability of the source code, we
chose MPFR. The corresponding library, named MPFI [25], is a portable library
written in C for arbitrary precision interval arithmetic. It is based on the GNU
MP library and on the MPFR library and is part of the latter. The largest
achievable computing precision is provided by MPFR and depends in practice
on the computer memory on which it runs. The only theoretical limitation,
which may be removed soon, is that the exponent must fit in an integer. Let
us just say that it is possible to compute with numbers of several millions of
binary digits if needed.

Intervals are implemented using their endpoints, which are MPFR reliable
floating-point numbers: this is not visible for the user but ensures that the
swelling of intervals’ widths is less important than with the midpoint-radius rep-
resentation such as implemented by Rump in IntLab [27, 28]. Indeed, switching
the rounding modes incurs no penalty with multiple precision arithmetic and the
motivation for this choice in IntLab does not hold for MPFI: every multiple pre-
cision operation is a software one. The arithmetic operations are implemented
and the elementary functions available up to now are exp, log, sine and cosine;
all functions provided by MPFR will shortly be included as well (trigonometric
and hyperbolic trigonometric functions and their reciprocals).

The planned functionalities, that will be added in a near future, include a
C++ interface à la Profil/BIAS [19] for ease of use, basic tools for linear algebra
(vector and matrix data types, additions and multiplications) and automatic
differentiation (forward differentiation by overloading operators and functions).

4 Applications

The MPFI library is already in use. Rouillier and Zimmermann [26] have de-
veloped a hybrid algorithm (symbolic/interval) for isolating real roots of poly-
nomials, Revol [24] has implemented interval Newton algorithm [15] adapted
to multiple precision computations. A main advantage of using MPFI is that
one is no more limited by the computing precision: for instance one can impose
arbitrary accuracy on both the root and the residual in Newton’s algorithm
[4]. Furthermore, the aforementioned implementations manage to adapt dy-
namically the precision to the computing needs without restarting the whole
program. This desirable feature will be sought after for future implementations
of other algorithms.

4



5 Conclusion

MPFI is a library for multiple precision interval arithmetic. It is written in
C and built upon MPFR and GMP and can be freely downloaded. It is still
under development: new facilities such as automatic differentiation and linear
algebra will be added in the near future. It still has enabled us to implement
and test some algorithms and this will be pursued with a careful study of the
solution of linear systems and of global optimization of continuous functions
[14, 3]. Applications such as parameter estimation in automatics [16] will offer
the opportunity to gain further insight in the development of new algorithms.

References

[1] O. Aberth and M. J. Schaefer, “Precise computation using range arithmetic,
via C++”, ACM TOMS, 1992, Vol. 18, No. 4, pp. 481–491.

[2] G. Alefeld and J. Herzberger, Introduction to interval analysis, Academic
Press, 1983.

[3] R. Baker Kearfott, Rigorous global search: continuous problems, Kluwer,
1996.

[4] R. B. Kearfott and G. W. Walster, “On stopping criteria in verified non-
linear systems or optimization algorithms”, ACM TOMS, 2000, Vol. 26,
No. 3, pp. 373–389.

[5] M. Berz and J. Hoefkens, “Verified high-order inversion of functional depen-
dencies and interval Newton methods”, Reliable Computing, 2001, Vol. 7,
pp. 1–20.

[6] V. Brattka and P. Hertling, “Feasible real random access machines”, J. of
Complexity, 1998, Vol. 14, No. 4, pp. 490–526.

[7] R. P. Brent, “A Fortran multiple-precision arithmetic package”, ACM
TOMS, March 1978, Vol. 4, pp. 57–70.

[8] CANT Research Group, Arithmos: a reliable integrated com-
putational environment, University of Antwerpen, Belgium,
http://win-www.uia.ac.be/u/cant/arithmos, 2001.

[9] M. Ceberio and L. Granvilliers, “Solving Nonlinear Systems by Constraint
Inversion and Interval Arithmetic”, In Int. Conf. on Artificial Intelligence
and Symbolic Computation (AISC’2000), LNAI 1930.

[10] J.-M. Chesneaux, S. Guilain, and J. Vignes, La bibliothèque CADNA:
présentation et utilisation. http://www-anp.lip6.fr/cadna, 1996.

[11] A. E. Connell and R. M. Corless, “An experimental interval arithmetic
package in Maple”, In Num. Analysis with Automatic Result Verification,
1993.

5



[12] D. Daney, G. Hanrot, V. Lefèvre, F. Rouillier, and P. Zimmermann, The
MPFR library, http://www.mpfr.org, 2001.

[13] I. Geulig and W. Krämer, Intervallrechnung in Maple - Die Erweiterung
intpakX zum Paket intpak der Share-Library, Technical Report 99/2, Uni-
versität Karlsruhe, 1999.

[14] E. Hansen, Global optimization using interval analysis, Marcel Dekker,
1992.

[15] E. Hansen and R.I. Greenberg, “An interval Newton method”, J. of Applied
Math. and Computing, 1983, Vol. 12, pp. 89–98.

[16] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied interval analysis,
Springer Verlag, 2001.

[17] J. Keiper, “Interval arithmetic in Mathematica”, Interval Computations,
1993, No. 3.

[18] R. Klatte, U. Kulisch, C. Lawo, M. Rauch, and A. Wiethoff, C-XSC: A
C++ class library for extended scientific computing, Springer Verlag, 1993.

[19] O. Knueppel, “PROFIL/BIAS - a fast interval library”, Computing, 1994,
Vol. 53, No. 3-4, pp. 277–287.

[20] P. Langlois, “Automatic linear correction of rounding errors”, BIT Numer-
ical Algorithms, 2001, Vol. 41, No. 3, pp. 515–539.

[21] R.E. Moore, Interval analysis, Prentice Hall, 1966.

[22] N. Müller, “The iRRAM: Exact Arithmetic in C++”, In Proc. Workshop
on Constructivity and Complexity in Analysis, Swansea, 2000.

[23] A. Neumaier, Interval methods for systems of equations, Cambridge Uni-
versity Press, 1990.

[24] N. Revol, Newton’s algorithm using multiple precision interval arithmetic,
Research Report 4334, INRIA, 2001; submitted to Numerical Algorithms.

[25] N. Revol and F. Rouillier, The MPFI library
http://www.ens-lyon.fr/~nrevol, 2001.

[26] F. Rouillier and P. Zimmermann, Efficient isolation of polynomial real
roots, 2001.

[27] S. Rump, “INTLAB - Interval Laboratory”, In: T. Csendes (ed.), Devel-
opments in Reliable Computing, Kluwer, 1999, pp. 77–104.

[28] S. Rump, “Fast and parallel interval arithmetic”, BIT, 1999, Vol. 39, No. 3,
pp. 534–554.

6


