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Abstract

We present an algorithm for computing rigorous solutions to a large
class of ordinary differential equations. The main algorithm is based on
a partitioning process and the use of interval arithmetic with directed
rounding. As an application, we prove that the Lorenz equations support
a strange attractor, as conjectured by Edward Lorenz in 1963. This con-
jecture was recently listed by Steven Smale as one of several challenging
problems for the 21st century. We also prove that the attractor is ro-
bust, i.e., it persists under small perturbations of the coefficients in the
underlying differential equations. Furthermore, the flow of the equations
admits a unique SRB measure, whose support coincides with the attrac-
tor. The proof is based on a combination of normal form theory and
rigorous computations.

1 Background to the Problem

The following non-linear system of differential equations,

ẋ1 = −σx1 + σx2

ẋ2 = %x1 − x2 − x1x3 (1)

ẋ3 = −βx3 + x1x2,

was introduced in 1963 by Edward Lorenz, see [5]. As a crude model of at-
mospheric dynamics, these equations led Lorenz to the discovery of sensitive
dependence of initial conditions - an essential factor of unpredictability in many
systems. Numerical simulations for an open neighbourhood of the classical pa-
rameter values σ = 10, β = 8/3 and % = 28 suggest that almost all points in
phase space tend to a strange attractor - the Lorenz attractor.

For % > 1, there are three fixed points: the origin and the two “twin points”

C± = (±
√

β(%− 1),±
√

β(%− 1), %− 1).
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Numerical experiments indicate the existence a forward invariant open set
U containing the origin but bounded away from the fixed points C±. If we let
ϕ denote the flow of (1), we can form the maximal invariant set

A =
⋂

t≥0

ϕ(U, t).

Due to the flow being dissipative, the attracting set A must have zero volume.
It must also contain the unstable manifold of the origin Wu(0), which seems to
spiral around C± in a very complicated, non-periodic fashion, see Figure 1(a).
In particular, A contains the origin itself, and therefore the flow on A can not
have a hyperbolic structure. The reason is that fixed points of the vector field
generate discontinuities for the return maps, and as a consequence, the hyper-
bolic splitting is not continuous. Apart from this, the attracting set appears to
have a strong hyperbolic structure as described below.

As it was very difficult to extract rigorous information about the attracting
set A from the differential equations themselves, a geometric model of the Lorenz
flow was introduced by John Guckenheimer in the late sixties, see [2]. This
model has been extensively studied, and it is well understood today, see e.g.
[3], [14], [12], [8], [9], [10]. Oddly enough, the original equations introduced
by Lorenz have remained a puzzle. A few computer-assisted proofs, however,
have quite recently been announced, see [1], [4], and [6]. These articles deal
with subsets of A which are not attracting, and therefore only concern a set
of trajectories having measure zero. Despite this, it has always been widely
believed that the flow of the Lorenz equations has the same qualitative behaviour
as its geometric model. We prove that the geometric model does indeed give an
accurate description of the dynamics of (1).
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Figure 1: (a) A part of the unstable manifold of the origin. (b) The return map
acting on Σ.

By the use of a Poincaré section, the flow of (1) can be reduced to a first
return map R acting on the section Σ ⊂ {x3 = %−1}, as schematically illustrated
in Figure 1(b).

Note that R is not defined on the line Γ = Σ ∩W s(0): these points tend to
the origin, and never return to Σ. Due to the fixed point at the origin, the return
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times are not bounded. This constitutes a serious obstruction to any numerical
approach. This is overcome by introducing a local change of coordinates, and
we prove the following properties of the return map R:

• There exists a compact set N ⊂ Σ such that N \ Γ is forward invariant
under R, i.e., R(N \ Γ) ⊂ int(N). This ensures that the flow has an
attracting set A with a large basin of attraction. We can then form a
cross-section of the attracting set: A ∩ Σ = ∩∞n=0R

n(N) = Λ.

• On N , there exists a cone field C which is mapped strictly into itself by
DR, i.e., for all x ∈ N , DR(x) · C(x) ⊂ C(R(x)). The cones of C are
centered along two curves which approximate Λ, and each cone has an
opening of at least 5◦.

• The tangent vectors in C are eventually expanded under the action of DR:
there exists C > 0 and λ > 1 such that for all v ∈ C(x), x ∈ N , we have
|DRn(x)v| ≥ Cλn|v|, n ≥ 0. In fact, the expansion is strong enough to
ensure that R is topologically transitive on Λ.

The proof can be broken down into two main sections: one global part, which
involves finding enclosures to solutions of ODEs, and one local part, which is
based on normal form theory. Both parts require the use of interval arithmetic,
as described in [7].

2 The Main Result

In a recent issue of the Mathematical Intelligencer the Fields medalist Steven
Smale presented a list of challenging problems for the 21th century, see [11].
Problem number 14 reads as follows:

Is the dynamics of the ordinary differential equations of Lorenz that
of the geometric Lorenz attractor of Williams, Guckenheimer, and
Yorke?

By proving the three abovementioned properties of R, we provide an affir-
mative answer to Smale’s question:

Main Theorem For the classical parameter values, the Lorenz equations sup-
port a robust strange attractor A. Furthermore, the flow admits a unique SRB
measure µϕ with supp(µϕ) = A.

In fact, we prove that the attracting set is a singular hyperbolic attractor.
Almost all nearby points separate exponentially fast until they end up on oppo-
site sides of the attractor. This means that a tiny blob of initial values rapidly
smears out over the entire attractor, as observed in numerical experiments. The
complete proof has been published in [13].
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[1] Z. Galias and P. Zgliczyński, “Computer assisted proof of chaos in the
Lorenz equations”, Physica D, 1998, Vol. 115, pp. 165–188.

[2] J. Guckenheimer, “A strange, strange attractor”, In: Marsden and Mc-
Cracken (eds.), The Hopf Bifurcation and its Applications, Springer-Verlag,
New York, 1976.

[3] J. Guckenheimer and R. F. Williams, “Structural Stability of Lorenz At-
tractors”, Publ. Math. IHES, 1979, Vol. 50, pp. 307–320.

[4] S. P. Hasting and W. C. Troy, “A Shooting Approach to the Lorenz Equa-
tions”, Bull. Amer. Math. Soc., 1992, Vol. 27, pp. 298–303.

[5] E. N. Lorenz, “Deterministic Non-periodic Flow”, J. Atmos. Sci., 1963,
Vol. 20, pp. 130–141.

[6] K. Mischaikow and M. Mrozek, “Chaos in the Lorenz Equations:
A Computer-Assisted Proof”, Bull. Amer. Math. Soc. 1995, Vol. 32, pp.
66–72.

[7] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1966.

[8] D. Rand, “The topological classification of Lorenz attractors”, Math. Proc.
Camb. Phil. Soc., 1978, Vol. 83, pp. 451–460.

[9] C. Robinson, “Homoclinic Bifurcation to a Transitive Attractor of Lorenz
Type”, Nonlinearity, 1989, Vol. 2, pp. 495–518.

[10] M. Rychlik, “Lorenz attractors through a Sil’nikov-type bifurcation. Part
1”, Ergod. Th. & Dynam. Sys. 1989, Vol. 10, pp. 793–821.

[11] S. Smale, “Mathematical problems for the next century”, Math. Intelli-
gencer, 1998, Vol. 20, pp. 7–15.

[12] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange At-
tractors, Springer-Verlag, New York, 1982.

[13] Tucker, W., “A Rigorous ODE Solver and Smale’s 14th Problem”, Foun-
dations of Computational Mathematics, 2002, Vol. 2, No. 1, pp. 53–117.

[14] R. F. Williams, “The Structure of Lorenz Attractors”, Publ. Math. IHES,
1979, Vol. 50, pp. 321–347.

4


