Explains for the first time how "computing with words" can aid in making subjective judgments

Lotfi Zadeh, the father of fuzzy logic, coined the phrase "computing with words" (CWW) to describe a methodology in which the objects of computation are words and propositions drawn from a natural language. *Perceptual Computing* explains how to implement CWW to aid in the important area of making subjective judgments, using a methodology that leads to an interactive device—a "Perceptual Computer"—that propagates random and linguistic uncertainties into the subjective judgment in a way that can be modeled and observed by the judgment maker.

This book focuses on the three components of a *Perceptual Computer*—encoder, CWW engines, and decoder—and then provides detailed applications for each. It uses interval type-2 fuzzy sets (IT2 FSs) and fuzzy logic as the mathematical vehicle for perceptual computing, because such fuzzy sets can model first-order linguistic uncertainties whereas the usual kind of fuzzy sets cannot. Drawing upon the work on subjective judgments that Jerry Mendel and his students completed over the past decade, *Perceptual Computing* shows readers how to:

- Map word-data with its inherent uncertainties into an IT2 FS that captures these uncertainties
- Use uncertainty measures to quantify linguistic uncertainties
- Compare IT2 FSs by using similarity and rank
- Compute the subsethood of one IT2 FS in another such set
- Aggregate disparate data, ranging from numbers to uniformly weighted intervals to nonuniformly weighted intervals to words
- Aggregate multiple-fired IF-THEN rules so that the integrity of word IT2 FS models is preserved

Free MATLAB-based software is also available online so readers can apply the methodology of perceptual computing immediately, and even try to improve upon it. *Perceptual Computing* is an important go-to for researchers and students in the fields of artificial intelligence and fuzzy logic, as well as for operations researchers, decision makers, psychologists, computer scientists, and computational intelligence experts.

JERRY M. MENDEL is Professor of Electrical Engineering at the University of Southern California. A Life Fellow of the IEEE and a Distinguished Member of the IEEE Control Systems Society, Mendel is also is the recipient of many awards for his diverse research, including the IEEE Centennial Medal, the Fuzzy Systems Pioneer Award from the IEEE Computational Intelligence Society, and the IEEE Third Millennium Medal.

DONGRUI WU is a Postdoctoral Research Associate at the University of Southern California, where he recently obtained his PhD in electrical engineering.

Subscribe to our free Electrical Engineering eNewsletter at wiley.com/enewsletters Visit wiley.com/ieee

WILEY wiley.com Cover Illustration: John Woodcock/iStockphoto

IEEE Press Series on Computational Intelligence David B. Fogel, Series Editor

PERCEPTUAL COMPUTING

AIDING PEOPLE IN MAKING SUBJECTIVE JUDGMENTS

JERRY M. MENDEL DONGRUI WU

IEEE

MENDEL • WU

PERCEPTUAL

COMPUTING

AIDING PEOPLE IN MAKING SUBJECTIVE JUDGMENTS

(¥)

WILEY

PERCEPTUAL COMPUTING Aiding People in Making Subjective Judgments

JERRY M. MENDEL DONGRUI WU

IEEE Computational Intelligence Society, Sponsor

IEEE Press Series on Computational Intelligence David B. Fogel, *Series Editor*

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

Contents

Preface			
1	Intro	oduction	1
	1.1	Perceptual Computing	1
	1.2	Examples	3
		1.2.1 Investment Decision Making	3
		1.2.2 Social Judgment Making	5
		1.2.3 Hierarchical Decision Making	7
		1.2.4 Hierarchical and Distributed Decision Making	9
	1.3	Historical Origins of Perceptual Computing	11
	1.4	How to Validate the Perceptual Computer	15
	1.5	The Choice of Fuzzy Set Models for the Per-C	16
	1.6	Keeping the Per-C as Simple as Possible	19
	1.7	Coverage of the Book	20
	1.8	High-Level Synopses of Technical Details	24
		1.8.1 Chapter 2: Interval Type-2 Fuzzy Sets	24
		1.8.2 Chapter 3: Encoding: From a Word to a Model—The Codebook	26
		1.8.3 Chapter 4: Decoding: From FOUs to a Recommendation	27
		1.8.4 Chapter 5: Novel Weighted Averages as a CWW Engine	29
		1.8.5 Chapter 6: If–Then Rules as a CWW Engine	29
	Refe	prences	31
2	Inter	rval Type-2 Fuzzy Sets	35
	2.1	A Brief Review of Type-1 Fuzzy Sets	35
	2.2	Introduction to Interval Type-2 Fuzzy Sets	38
	2.3	Definitions	42
	2.4	Wavy-Slice Representation Theorem	45
	2.5	Set-Theoretic Operations	45
	2.6	Centroid of an IT2 FS	46
		2.6.1 General Results	46
		2.6.2 Properties of the Centroid	50
	2.7	KM Algorithms	52

vii

 \oplus

-

		2.7.1	Derivation of KM Algorithms	52
		2.7.2	Statements of KM Algorithms	53
		2.7.3	Properties of KM Algorithms	54
	2.8	Cardin	ality and Average Cardinality of an IT2 FS	56
	2.9	Final I	Remark	58
	Appe	endix 2/	A. Derivation of the Union of Two IT2 FSs	58
	Appe	endix 21	B. Enhanced KM (EKM) Algorithms	59
	Refe	rences		61
3	Enco	oding: I	From a Word to a Model—The Codebook	65
	3.1	Introdu	uction	65
	3.2	Person	FOU Approach for a Group of Subjects	67
	3.3	Collec	ting Interval End-Point Data	77
		3.3.1	Methodology	77
		3.3.2	Establishing End-Point Statistics For the Data	81
	3.4	Interva	al End-Points Approach	82
	3.5	Interva	al Approach	83
			Data Part	84
			Fuzzy Set Part	89
			Observations	99
			Codebook Example	101
			Software	104
		3.5.6	Concluding Remarks	105
	3.6	Hedge		105
	Appe		A. Methods for Eliciting T1 MF Information From Subjects	107
			Introduction	107
			Description of the Methods	107
			Discussion	110
			3. Derivation of Reasonable Interval Test	111
	Refe	rences		114
4	Deco	ding: H	From FOUs to a Recommendation	117
	4.1	Introdu		117
	4.2	Simila	rity Measure Used as a Decoder	118
		4.2.1	Definitions	118
		4.2.2	Desirable Properties for an IT2 FS Similarity Measure	119
			Used as a Decoder	
		4.2.3	Problems with Existing IT2 FS Similarity Measures	120
		4.2.4	Jaccard Similarity Measure for IT2 FSs	121
		4.2.5	Simulation Results	122
	4.3	Rankiı	ng Method Used as a Decoder	123
		4.3.1	Reasonable Ordering Properties for IT2 FSs	128
		4.3.2	Mitchell's Method for Ranking IT2 FSs	128
		4.3.3	A New Centroid-Based Ranking Method	129

CONTENTS **ix**

		4.3.4	Simulation Results	129
	4.4	Classif	ier Used as a Decoder	130
		4.4.1	Desirable Properties for Subsethood Measure as a Decoder	130
		4.4.2	8	131
		4.4.3	Vlachos and Sergiadis's IT2 FS Subsethood Measure	131
		4.4.4	Simulation Results	132
	Appe	ndix 4A	Α	135
		4A.1	Compatibility Measures for T1 FSs	135
		4A.2	Ranking Methods for T1 FSs	137
	Appe	ndix 4E	3	137
		4B.1	Proof of Theorem 4.1	137
			Proof of Theorem 4.2	139
		4B.3	Proof of Theorem 4.3	140
	Refe	rences		141
5	Nove	l Weigl	hted Averages as a CWW Engine	145
	5.1	Introdu	action	145
	5.2	Novel	Weighted Averages	146
	5.3		l Weighted Average	147
	5.4	Fuzzy	Weighted Average	149
		5.4.1	α -cuts and a Decomposition Theorem	149
		5.4.2	Functions of T1 FSs	151
		5.4.3	Computing the FWA	152
	5.5	Linguis	stic Weighted Average	154
		5.5.1	Introduction	154
		5.5.2	Computing the LWA	157
		5.5.3	Algorithms	160
	5.6	-	cial Case of the LWA	163
	5.7	Fuzzy 1	Extensions of Ordered Weighted Averages	165
		5.7.1	Ordered Fuzzy Weighted Averages (OFWAs)	166
		5.7.2	Ordered Linguistic Weighted Averages (OLWAs)	166
	Appe	endix 5A		167
		5A.1	Extension Principle	167
		5A.2	Decomposition of a Function of T1 FSs Using α -cuts	169
		5A.3	Proof of Theorem 5.2	171
	Refe	rences		173
6	IF–T	HEN R	Rules as a CWW Engine—Perceptual Reasoning	175
	6.1	Introdu	iction	175
	6.2	A Brie	f Overview of Interval Type-2 Fuzzy Logic Systems	177
		6.2.1	Firing Interval	177
		6.2.2	Fired-Rule Output FOU	178
		6.2.3	Aggregation of Fired-Rule Output FOUs	178
		6.2.4	Type-Reduction and Defuzzification	178

 \ominus

-(

		625	Observations	179
		6.2.6		180
		0.2.0		160
	()	D	Attributes	100
	6.3	-	otual Reasoning: Computations	180
			Computing Firing Levels	181
		6.3.2	1 0 18	182
	6.4	-	otual Reasoning: Properties	184
		6.4.1	General Properties About the Shape of \tilde{Y}_{PR}	185
		6.4.2	Properties of \widetilde{Y}_{PR} FOUs	186
	6.5	Examp		187
	Appe	endix 6/	A	191
		6A.1	Proof of Theorem 6.1	191
		6A.2	Proof of Theorem 6.2	191
		6A.3	Proof of Theorem 6.3	191
		6A.4	Proof of Theorem 6.4	192
		6A.5	Proof of Theorem 6.5	192
		6A.6	Proof of Theorem 6.6	192
		6A.7	Proof of Theorem 6.7	193
		6A.8	Proof of Theorem 6.8	194
	Refe	rences		195
7	Assi	sting in	Making Investment Choices—Investment Judgment	199
		· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	Adv	isor (IJ	A)	
				100
	7.1	Introd	uction	199
		Introd Encod	uction er for the IJA	202
	7.1	Introdu Encod 7.2.1	uction er for the IJA Vocabulary	202 202
	7.1 7.2	Introd Encod 7.2.1 7.2.2	uction er for the IJA Vocabulary Word FOUs and Codebooks	202 202 203
	7.17.27.3	Introdu Encod 7.2.1 7.2.2 Reduc	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks	202 202 203 204
	7.17.27.37.4	Introdu Encod 7.2.1 7.2.2 Reduc CWW	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA	202 202 203 204 214
	 7.1 7.2 7.3 7.4 7.5 	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA	202 202 203 204 214 215
	7.17.27.37.4	Introdu Encod 7.2.1 7.2.2 Reduc CWW	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA bles	202 202 203 204 214 215 216
	 7.1 7.2 7.3 7.4 7.5 	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA er for the IJA ples Example 1: Comparisons for Three Kinds of Investors	202 202 203 204 214 215
	 7.1 7.2 7.3 7.4 7.5 	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA bles	202 202 203 204 214 215 216
	 7.1 7.2 7.3 7.4 7.5 	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA er for the IJA ples Example 1: Comparisons for Three Kinds of Investors	202 202 203 204 214 215 216 216
	 7.1 7.2 7.3 7.4 7.5 7.6 	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA ler for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA	202 202 203 204 214 215 216 216 221
	 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA ler for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA	202 203 204 214 215 216 216 221 228
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Refe	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac Conchrences	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA er for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA usions	202 203 204 214 215 216 216 221 228 228 233
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Refe	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac Conchr rences sting in	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA ler for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA	202 203 204 214 215 216 216 221 228 228
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Refe	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac Conchr rences sting in	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA er for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA usions	202 203 204 214 215 216 216 221 228 228 233
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Refe	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac Conchr rences sting in	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA er for the IJA er for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA usions Making Social Judgments—Social Judgment Advisor	202 203 204 214 215 216 216 221 228 228 233
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Refe Assi (SJA	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac Conchr rences sting in	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA er for the IJA er for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA usions Making Social Judgments—Social Judgment Advisor	202 203 204 214 215 216 216 221 228 228 233 235
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Refe Assi (SJA 8.1	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac Conchr rences sting in	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings ctive Software for the IJA usions Making Social Judgments—Social Judgment Advisor uction n an SJA	202 203 204 214 215 216 216 221 228 228 233 235
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Refe Assi (SJA 8.1	Introdu Encod 7.2.1 7.2.2 Reduc CWW Decod Examp 7.6.1 7.6.2 Interac Conclu- rences sting in A) Introdu Design	uction er for the IJA Vocabulary Word FOUs and Codebooks tion of the Codebooks to User-Friendly Codebooks Engine for the IJA ler for the IJA bles Example 1: Comparisons for Three Kinds of Investors Example 2: Sensitivity of IJA to the Linguistic Ratings etive Software for the IJA usions Making Social Judgments—Social Judgment Advisor uction	202 203 204 214 215 216 216 221 228 228 233 235 235

_

CONTENTS Xi

		8.2.4	Rulebase Generation	242
		8.2.5	Computing the Output of the SJA	245
	8.3	Using	an SJA	246
		8.3.1	Single Antecedent Rules: Touching and Flirtation	247
		8.3.2	Single Antecedent Rules: Eye Contact and Flirtation	249
		8.3.3	Two-Antecedent Rules: Touching/Eye Contact and	251
			Flirtation	
		8.3.4	On Multiple Indicators	253
		8.3.5	On First and Succeeding Encounters	255
	8.4	Discus	ssion	255
	8.5	Conclu	usions	256
	Refe	rences		257
9		sting in isor (PJ	Hierarchical Decision Making—Procurement Judgment	259
			, ,	250
	9.1	Introd	e Evaluation Problem Statement	259
	9.2 9.3			260 263
	9.5	9.3.1	for Missile Evaluation: Design Encoder	263 263
		9.3.1	CWW Engine	203 265
			Decoder	265
	9.4		for Missile Evaluation: Examples	266
	9. 4 9.5		arison with Previous Approaches	200
	9.5	9.5.1	* *	273
		9.5.2		275
		9.5.3	1 11	278
		9.5.4	Discussion	278
	9.6	Conclu		280
			A: Some Hierarchical Multicriteria Decision-Making	280
		oplication	-	200
	Refe	rences		282
10	Assi	sting in	Hierarchical and Distributed Decision Making—	283
	Jour	nal Pu	blication Judgment Advisor (JPJA)	
	10.1	Introd	uction	283
	10.2	The Jo	ournal Publication Judgment Advisor (JPJA)	284
	10.3	Per-C	for the JPJA	285
		10.3.1	Modified Paper Review Form	285
			Encoder	286
		10.3.3	CWW Engine	288
			Decoder	290
	10.4	Exam		291
			Aggregation of Technical Merit Subcriteria	291
			Aggregation of Presentation Subcriteria	294

 \oplus

XII CONTENTS

	10.4.3 Aggregation at the Reviewer Level	299
	10.4.4 Aggregation at the AE Level	300
	10.4.5 Complete Reviews	304
	10.5 Conclusions	309
	Reference	310
11	1 Conclusions	
	11.1 Perceptual Computing Methodology	311
	11.1 Perceptual Computing Methodology11.2 Proposed Guidelines for Calling Something <i>CWW</i>	311 312

 \oplus

Preface

Life is full of subjective judgments: those we make that affect others and those that others make that affect us. Such judgments are personal opinions that have been influenced by one's personal views, experience, or background, and can also be interpreted as personal assessments of the levels of variables of interest. They are made using a mixture of qualitative and quantitative information. Emotions, feelings, perceptions, and words are examples of qualitative information that share a common attribute: they cannot be directly measured; for example, eye contact, touching, fear, beauty, cloudiness, technical content, importance, aggressiveness, and wisdom. Data (one- or multidimensional) and possibly numerical summarizations of them (e.g., statistics) are examples of quantitative information that share a common attribute: they can be directly measured or computed from direct measurements; for example, daily temperature and its mean value and standard deviation over a fixed number of days; volume of water in a lake estimated on a weekly basis, as well as the mean value and standard deviation of the estimates over a window of years; stock price or stock-index value on a minute-to-minute basis; and medical data, such as blood pressure, electrocardiograms, electroencephalograms, X-rays, and MRIs.

Regardless of the kind of information—qualitative or quantitative—there is uncertainty about it, and more often than not the amount of uncertainty can range from small to large. Qualitative uncertainty is different from quantitative uncertainty; for example, words mean different things to different people and, therefore, there are linguistic uncertainties associated with them. On the other hand, measurements may be unpredictable—random—because either the quantity being measured is random or it is corrupted by unpredictable measurement uncertainties such as noise (measuring devices are not perfect), or it is simultaneously random and corrupted by measurement noise.

Yet, in the face of uncertain qualitative and quantitative information one is able to make subjective judgments. Unfortunately, the uncertainties about the information propagate so that the subjective judgments are uncertain, and many times this happens in ways that cannot be fathomed, because these judgments are a result of things going on in our brains that are not quantifiable.

XIV PREFACE

It would be wonderful to have an interactive device that could aid people in making subjective judgments, a device that would propagate random and linguistic uncertainties into the subjective judgment, but in a way that could be modeled and observed by the judgment maker. This book is about a methodology, perceptual computing, that leads to such a device: a perceptual computer (Per-C, for short). The Per-C is not a single device for all problems, but is instead a device that must be designed for each specific problem by using the methodology of perceptual computing.

In 1996, Lotfi Zadeh, the father of fuzzy logic, published a paper with the very provocative title "Fuzzy Logic = Computing With Words." Recalling the song, "Is That All There Is?," his article's title might lead one to incorrectly believe that, since fuzzy logic is a very well-developed body of mathematics (with lots of real-world application), it is straightforward to implement his paradigm of computing with words. The senior author and his students have been working on one class of applications for computing with words for more than 10 years, namely, subjective judgments. The result is the perceptual computer, which, as just mentioned, is not a single device for all subjective judgment applications, but is instead very much application dependent. This book explains how to design such a device within the framework of perceptual computing.

We agree with Zadeh, so fuzzy logic is used in this book as the mathematical vehicle for perceptual computing, but not the ordinary fuzzy logic. Instead, interval type-2 fuzzy sets (IT2 FSs) and fuzzy logic are used because such fuzzy sets can model first-order linguistic uncertainties (remember, words mean different things to different people), whereas the usual kind of fuzzy sets (called type-1 fuzzy sets) cannot.

Type-1 fuzzy sets and fuzzy logic have been around now for more than 40 years. Interestingly enough, type-2 fuzzy sets first appeared in 1975 in a paper by Zadeh; however, they have only been actively studied and applied for about the last 10 years. The most widely studied kind of a type-2 fuzzy set is an IT2 FS. Both type-1 and IT2 FSs have found great applicability in function approximation kinds of problems in which the output of a fuzzy system is a number, for example, time-series forecasting, control, and so on. Because the outputs of a perceptual computer are words and possibly numbers, it was not possible for us to just use what had already been developed for IT2 FSs and systems for its designs. Many gaps had to be filled in, and it has taken 10 years to do this. This does not mean that the penultimate perceptual computer has been achieved. It does mean that enough gaps have been filled in so that it is now possible to implement one kind of computing with words class of applications.

Some of the gaps that have been filled in are:

- A method was needed to map word data with its inherent uncertainties into an IT2 FS that captures these uncertainties. The *interval approach* that is described in Chapter 3 is such a method.
- Uncertainty measures were needed to quantify linguistic uncertainties. Some uncertainty measures are described in Chapter 2.

fmatter.qxd 2/26/2010 9:45 AM Page xv

- How to compare IT2 FSs by using similarity was needed. This is described in Chapter 4.
 How to rank IT2 FSs had to be solved. A simple method in the day.
- How to rank IT2 FSs had to be solved. A simple ranking method is also described in Chapter 4.
- How to compute the subsethood of one IT2 FS in another such set had to be determined. This is described in Chapter 4.
- How to aggregate disparate data, ranging from numbers to uniformly weighted intervals to nonuniformly weighted intervals to words, had to be determined. Novel weighted averages are a method for doing this. They include the interval weighted average, fuzzy weighted average and the linguistic weighted average, and are described in Chapter 5.
- How to aggregate multiple-fired if-then rules so that the integrity of word IT2 FS models is preserved had to be determined. Perceptual reasoning, which is described in Chapter 6, does this.

We hope that this book will inspire its readers to not only try its methodology, but to improve upon it.

So that people will start using perceptual computing as soon as possible, we have made free software available online for implementing everything that is in this book. It is MATLAB-based (MATLAB[®] is a registered trademark of The Mathworks, Inc.) and was developed by the second author, Feilong Liu, and Jhiin Joo, and can be obtained at http://sipi.usc.edu/~mendel/software in folders called "Perceptual Computing Programs (PCP)" and "IJA Demo." In the PCP folder, the reader will find separate folders for Chapters 2–10. Each of these folders is self-contained, so if a program is used in more than one chapter it is included in the folder for each chapter. The IJA Demo is an interactive demonstration for Chapter 7.

We want to take this opportunity to thank the following individuals who either directly contributed to the perceptual computer or indirectly influenced its development: Lotfi A. Zadeh for type-1 and type-2 fuzzy sets and logic and for the inspiration that "fuzzy logic = computing with words," the importance of whose contributions to our work is so large that we have dedicated the book to him; Feilong Liu for codeveloping the interval approach (Chapter 3); Nilesh Karnik for codeveloping the KM algorithms; Bob John for codeveloping the wavy slice representation theorem; Jhiin Joo for developing the interactive software for the investment judgment advisor (Chapter 7); Terry Rickard for getting us interested in subsethood; and Nikhil R. Pal for interacting with us on the journal publication judgment advisor.

The authors gratefully acknowledge material quoted from books or journals published by Elsevier, IEEE, Prentice-Hall, and Springer-Verlag. For a complete listing of quoted books or articles, please see the References. The authors also gratefully acknowledge Lotfi Zadeh and David Tuk for permission to publish some quotes from private e-mail correspondences.

The first author wants to thank his wife Letty, to whom this book is also dedicated, for providing him, for more than 50 years, with a wonderful and supportive

XVI PREFACE

environment that has made the writing of this book possible. The second author wants to thank his parents, Shunyou Wu and Shenglian Luo, and his wife, Ying Li, to whom this book is also dedicated, for their continuous encouragement and support.

Jerry M. Mendel Dongrui Wu

Los Angeles, California September 2009