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ABSTRACT

A Newton method using interval arithmetic for an

n-dimensional vector equation f(x) = 0 is treated. Some of

the properties of the Newton operator are investigated. This

leads to two criteria for the non-existence and for the

existence of a zero of f(x) in a given vector interval.

Furthermore a posteriori error bounds for a given real vector

sequence converging to a zero of f(x) can be established. An

example deals with the application to convex programming.



ON THE NEWTON METHOD IN INTERVAL ANALYSIS

Karl Nickel

1. Introduction.

Let f(x) be a real valued n-dimensional vector function of

the n-dimensional real vector x. The solutions A of the problem

f(x) = 0 (1)

are treated. The Newton method for (1) defines a sequence

fx( V))}by setting

x (0) "appropriate",
S(2)

x(v+l) := Nx(v) for v = 0, 1,

where the Newton operator N is definee by

Nx := x - f'-1(x) f(x) (3)

(f' is the Fr~chet derivative (Jacobian matrix)). Under certain

assumptions (k exists, f,- 1 exists in a neighbourhood of 9, x( 0 )

is "close" to x, ... ) the sequence {x(v)) converges super-

linearly or even quadratically to i. Unfortunately this is not

true for general starting vectors x(0), as the following one

dimensional example shows:

Example: Let 0 < a < b and define

Sponsored by the United States Army under Contract No:
DA-31-124-ARO-D-462.



2~~ 233 x X for 0 < x < a

/x- for a < x < b;

f (x)

3v372 1/6 (x-b/3)I/3 for b < x

-f(-x) for x < 0

There exists exactly one solution R = 0 to (1) in (-=, •).

The function f C1 (-00, -) with f' > 0 and f' 1 > 0, hence the

operator N from (3) can always be applied with the result

o . Ix¢°)i < a: Ix(v+l)/x(v)1 <I 1-3(1-1x¢°) I/a)/(3-21x¢°) I/a)

< 1, hence {x(v)} is always

convergent with x(v) R = 0

a < _x(0)_ l I b: x(2v)=x(0), x(2v+l) =-x(0): {x( )} is an

alternating sequence with Ix(V)I = Ix( 0 )l

and is not convergent;

b < Ix(0)I lx(v+l)/x(v)l I 1+(l-b/lx(°)i) > 1

{x(v)} is always divergent with

Ix(v)I + +- for v .

R. E. Moore [4] first suggested replacing the real Newton

method (2), (3) by the following interval Newton method:
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X(0) • •(0) "appropriate"

;Ev' := n ,f xvXV (4)

x(v+l) E •(v+1) arbitrarily ,

where the interval Newton transformation operator is defined by

N-T(x, x) x - 1,-1(3) f(x) . (5)

Here {_(V)} denotes a n-dimensional interval vector sequence,

P'(x) is an interval extension of the Jacobian matrix.

The following surprising fact seems not to be widely known:

In the one-dimensional case n = I the interval Newton method

defined by (4) and (5) never fails! It delivers always two

convergent sequences: x(v) .;(v) - X with R, x x for

V = 0, 1, ... , if only f - CI, if P,-1 exists and if x t 3(O)

(see K. Nickel [5] and R. Krawczyk [3]). Hence:

a) While the real Newton method (2), (3) gives convergence

only in the neighbourhood of i, the interval Newton

method (4), (5) provides convergence for all initial

values x (0) if only x(O) is chosen such that x x

b) The interval Newton method (4), (5) provides not only

an approximating real sequence {x(v)} with x(v) * R. but

computes at the same time a sequence of error bounds

{X(v)} with i(v) , R. In the case of the real Newton

method (2), (3) no such error bounds are generally

available.

#1136 -3-



Applied to the above example this shows that while the

real Newton method (2), (3) failed if Ix( 0 )1 ý a, the interval

Newton method (4), (5) gives a convergent approximating sequence

{x( )} and convergent error bounds {x ()}, if only 0 = x e x(0),

regardless of the initial value x(0)

Unfortunately a similar statement is not true in the case

of more than one variable: if n > 1 then in general (4), (5)
does not give two converging sequences {x(V)} and {R(v)}, as

counterexamples show.

The purpose of the following paper is twofold: to

investigate some of the properties of the operator N-T and to find

a way to guarantee convergence of the sequence R(v) - x. It will

be shown that two very simple criteriae can be derived fror the

Newton operator which - when fulfilled - guarantee either the

existence and uniqueness of a solution x of (1) in a given

interval vector x or guarantee the nonexistence of such a

solution x in R. Both criteria can easily be programmed for a

computer. In order to get unrestricted convergence of {x(\)}, a

new approach is recommended: Since the definition of the real

sequence {x(v)} by (4) does not always lead to a convergent

series, it is suggested to compute this real sequence {x(v)) by

any method providing convergence x(v) - x. Then the sequence
{R(v)} constructed a posteriori by (4) is a sequence of error

bounds, i.e. x 3F(v) and it follows easily that it always

converges, i.e. £im X(.) = This leads to very satisfying a

posteriori error bounds in linear lgebra problems, for eigen-
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value problems, for the finding of roots of polynomials etc. As

a special example it will be shown, that this approach can

successfully be used for the purpose of convex programming. A

simple example will show how it works. Since the definition and

use of the interval arithmetic and interval analysis is not yet

known widely enough, special emphasis has been given to listing

all assumptions and definitions.

In what follows a slightly different interval Newton

operator N(x, 3) will be used, which is a generalization of

W(x, 3) from (5). This goes back to an idea of E. R. Hansen (2].

2. Notations.

Let R denote the field of real numbers. Let a, 8 R

with a < $ and denote by F := [a, B] the closed interval with

endpoints a and 0. Let j (7) be the set of all closed intervals

in 7 with endpoints in R; denote analoguously by 1(R)the set

of all intervals in R.

Let •, •, • R with n < C and let T . n, A] IL (R).

The special function intval (•, •) with interval:

R x R(R)- U(R)is defined by

T if ET>

intval (•, [) : n, •] if >

[R, •] if • < n

i.e. intval (•, E) is the smallest interval in A(R) containing

#1136 -5-



both C and 6.

Let JR be the n-dimensional Euclidean vector space with

elements a, b, ... , z and the corresponding components a , b , .

z c R for v = l(1)n. Interval vectors and interval matrices

are vectors and matrices with intervals from 11(R) as components.

In what follows they will be distinguished from real vectors and

real matrices by a bar; hence x denotes a real vector, x an

interval vector; X resp. Y is a real resp. interval matrix. An

n x n interval matrix K is said to be invertible and to have an

inverse B, iff any real n x n matrix A c A has an inverse A-1

and if A-1 e E. Kindly note that an interval inverse in general

is not unique. Let Rn(Rn) be the set of all interval vectors

a, b, ... , z with the corresponding components a, b , ...

z •E (R) for v = 1(1)n. Since real vectors can be treated as

degenerate interval vectors it follows that Rn C R n(Rn). Let
xEe, - E ](Rn) with components x and x for v = l(1)n.

The special function Intval (x, x) with Intval : Rn x H n (Rn)

÷fn ( Rn) is the n-dimensional analogue of intval(•, •) and is

n ndefined by y Intval (x, x) H (R )has the components

y• := Intval (x V, xV) for v l(1)n. The interval arithmetic

operations in In(Rn) are defined as usual (see R. E. Moore (4]);

they will be not distinguished from the real arithmetic

operations since no confusion should occur.

Let u c R (Rn be the special interval vector with components

u : (a= , 6] for v = l(l)n. 1n(U) is the set of all

interval vectors in u (i.e. whose components are contained in y).
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Let f(x) = f(x 1 , x 2 , ... , xn) with f: i ÷ Rn and T(3)

T(' x2' 3F2 ... , R-) with F: [,n(U) _ (I nl n) denote a real vector

function and an interval vector flinction respectively. The

corresponding components are denoted by f (x) = f (x1 , ... , xn)

and F 1= () 3F•1 . ) respectively with f : u - R and

P: In(U) ] 1(R). The function T(K) is called an interval

extension of f(x) on i, if

f(x) f(x) for all x e u;

and if

T(x) C Y(y) for x C: and for all x, y C . (6)

If f(x) is a rational function then an interval extension 1(6)

of f(x) (the "natural" extension) is obtained by replacing the

real variable x by an interval variable R and the real

arithmetic operators in f(x) by the corresponding interval

arithmetic operators.

Let f: U - Rn and let f eC(U) Let the (real) n x n

matrix $(x, y) have the components V

j(x#, x2, ... , x', yV, Yv+i1 'I Yn) for p, v = 1(1)n, which

are defined as divided differences by (flv := af U/xv)

f P (xl, .. Xv-lYv~yv+1, .. yn)-f P (x1, ... ,XV-l~xvyv+I, •.. yn)

Yv - xv

for x. y

fli (xl,...,xv.lxvyv+l,...,yn) for xv =YV

#1136 -7-



The matrix O(x, y) is continuous for x, y E u. Define the class

of functions

{f(x) C CI(u) 10-1(x, y) exists with

*-(x, y) E B(X, ) CB* (7)

for all x, y c x C U, where B(x, 3)
has the property (6) with respect to the

variable i and

:U x Inn ) _ I[n (R n) x ]n (R n) and

B*E ]n( n) X ni(Rn)e

3. Results.

It is in general difficult to decide if *-(x, y) exists

for a given function f(x) and if there are bounds B(x, R) and B*

such that (7) holds. The following criterion provides a

sufficient condition which can easily be checked on a computer:

Criterion: Let f for P, v = l(1)n be interval extensions of

f := V f /ax on U. Let the interval matrix

F' (x, R) have the components

f]I (xl' ..."I x--1  xv .... 'n Let F'C(u, u) be

nonsingular. Then f e 3 with B(x, x)

F,-l(x, x) and B* • ,-u, u).

Proof: By the (one dimensional) mean value theorem there exist

real numbers z,, I [min(x P, yV), max(x , y)] Cii such that for

1j, v = l(1)n
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= qI I(X :I I .I | Yv ..

S= ] (xI, ... , xv 1, y P ., y) .. I

fV (X) ' -(u),

Hence 0(x, y) E Y, (x, 3) c F, (3, 3) C F' (, U). Since ,-i (U, U)

exists, there exist also the other inverses with

- -1
#-(x, y) , B(x, x):=F'-I(x, 3•) C •,-(•, i•) C B*

=F' (u-i, ).

The basic idea of this criterion comes from a paper from E. R.

Hansen 12).

Lemma: Let f c 3 and let x, y c U. Then the following identity

holds:

f(y) = f(x) + O(x, y) (y - x) . (8)

The proof is very simple: By using the definition of the V

one gets for P, v = 1(1)n:

f Ij(y) = f )(ylY2,Y3,....,yn)

= f P (x lY2,Y3, •. Yn)+(Yl-Xl)vll(xlYlY2, •. Yn)

1 f13 (Xl6X2'y3"""yn)+(Yl-Xl) •i (xI'YI' .... Yn)

+ (Y2-X2) •l2 (x l'x2'Y2I ... " Yn )
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n= (x)+Vl (yv-x V)-P (xI 1,..Fvyv, ... ,yn)

These are the components of (8).

Definition (Interval Newton Operator):

Let ft and x c x C u. Let the interval Newton operator

N(x, x) with R: Ux n(R n) (J_ R n) be defined by

N(x, x) x- B(x, x)f(x) (9)

Theorem: Let x E X Cu, let f • , let KN(x, x) be defined by (9)

and let ý c • with f(x) = 0. Then the following 5 statements

hold:

a) Any solution x of (1) in u is unique.

b) if k R then ýc RtNx, 3Z) .

c) If -x n iT(x, 3i) = b, then : k x.

d) If N(x, X) C F then x E x.

e) Let the real vector sequence {x(v)} with x (v) u for

v = 0, 1, ... have the property

Lim x(V) =
V)-o0-

Then the interval vector sequence {R(v)), defined for

v = 0, 1, ... by

-(-1)0-:13

i(v) := Intval (x(V), 3i(v-l)) (10)

-10- zv) zv-)nNxv,7) #1136



has the two properties

X for v = 0, 1, ... , (11)

and

£im (V) =x. (12)
V4-b.

Proof: Ad a) Let x, 9 , be two zeros of f(x). Then from

(8) it follows that X(^, 9)(Y - £) 0, but since 1 exists for

all x, ý e U this implies x = y-

Ad b) Put y := x in (8). This gives

0 = f(x) + *(x, A) X) Since (x, x) exists and with (7)

one gets immediately x = x - *-(x, x) f(x) f x - R~x, R) f(x) =

1(x, R) .

Ad c) Suppose x e x. Then from b) it follows that also

X N(x, 3F) which contradicts the assumption 3E n N(x, 3)

Hence j x.

Ad d) Define for fixed x c R the real operator

Ty := x - 01 (x, y) f(x)= y - -1(x,y). Clearly T is continuous forall

y cx. Furthermore because of Ty * x - B(x, R) f(x)

= N(x, R) C R, the iperator T maps R into x. Since x is a convex

set, the Schauder fixpoint theorem can be applied with the

result: there exists a real vector x cx such that X^ = Tx.

This implies #-l(x, x) f(^) = 0 and therefore f(x) = 0, i.e.

is also a zero of f(x).

Ad e) The property (11) follows immediately from b).

Furthermore since x(V y(v) C U and B(x, R) has the property ý6)

in x it follows that

#1136 -l-



Fi(x(v), •(V)) , ii(x(v), i)
Mv - (v -Vx B(x ,)u) f(xv))

cx (V) f(x(v))

hence lim N(x(v), y M) = x. Therefore with

•(v-i) n,-(x(v), -(v)) C -(x(v), j(v)) it follows also that

£im x(v-i) n N(x(v), y(v)) = 7, which completes the proof of the

theorem.

Remarks: Ad a) The class 3 is so small that it contains only

functions f(x) with at most one zero x in U.

Ad b) Any solution x of (1) contained in the interval

vector x is also contained in the image of the Newton trans-

formation: i.e., the Newton transformation "does not lose"

any zero of f(x).

Ad c) This is a criterion for the non-existence of a

zero x of f(x) in the interval vector R. This criterion can be

programmed to be checked by a computer!

Ad d) This is a criterion for the existence of a

zero x of f(x) in the interval vector x. This criterion can also

be checked for by a computer.

Ad e) If somehow a convergent real vector sequence

{x(v)} with x( V) - for v - - has been determined, the

application of the Newton operator by (10) produces immediately a

sequence {x(v)} of bounds to {x( )} and x (a posteriori error

bounds), such that x (v) for v = 0, 11(.....)This

sequence converges too toward x. The speed of convergence

-12- #1136



(linear, superlinear, quadratic, ... ) can easily be related to

the speed of convergence of {x(V)}.

If x E x then the Newton Operator N can be applied to the

pair x, i and the result b) of the theorem holds. Assume that

the interval vector ( v-1) has already been computed. Since the

sequence {x(v)} is defined independently of the sequence {x(v)I,

no guarantee is given that the next term x(V) i v) and that

therefore LE R(x(v), x(V-l)). This is the reason why the

intermediate interval vector Y(v) is introduced in (10).

4. Example. Convex programming.

Let p = 4(x) with 0: R n R and E € C2 (Rn )and let ' be

bounded from below on Rn. The unconstrained minimization

prob.em

O(x) = minimum (13)

is considered. Define the function

f(x) := a/ax

with f: R n _, Rnand f F C(R n)and define the set

S := {x C R nI (x) 4(x (0))

(0) n
for a given real vector x E R . Let S be a convex set

containing S. Let the Hessian matrix

H(x) :- a2 /ax2 = 'f/xx

satisfy the condition

#1136 -13-



11(X, X) I (X, H (y) X) • (X, X)

with P > 0 (where C.,.) is the inner product in Rn)for any

vector x c R n and y c S. Then S is bounded and the minimum

problem (13) is in S a convex problem and has exactly one

solution which is the only zero x of f(x) in S. Furthermore

the real Newton method (2), (3) applied to the function f(x)

and starting with x(0) produces a sequence {x(\)} with x(v) S

which always converges to x (where perhaps a finite number of

steps have to be changed in order to get always *(x (v+l)) <

p(x(V))), see Goldstein [l].

Hence the above suggestion can be used, provided f c 3 for

a certain interval vector U containing S. This being true the

interval vector sequence {i(v)) defined by (10) has the

properties (11) and (12), i.e., provides error bounds and

converges toward x. To the author's knowledge to the problem

(13) no other procedure is yet known which gives an interval

vector sequence x(v) with the properties (11) and (12).

Numerical example.

The following example is chosen to be as simple as possible

in order to show all the steps of the above method. Let n = 2,

E > 0 and 22(xI, x x2 + x2 + x2 x 2 . Then
2( 2) x1  2 1 2

x + E 2

x 2 (l + C x1 )

and
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a2 +iC3x2 2 c xlx)af/ax := a 2 /ax 2 :

2 c xI x2 1 + C xI 2
'2 1  2  1+

It is trivial that =1 2 = 0 is the unique solution of (13) in

R2. Let -:= (-1, 1] and let U have the components

:= U 2  Define S {xCIR 2I XlI, 1x2 1 < /T-/?}. Then

for the initial values xl(0) x(0) := 1 it follows that
1 2

S C S := {xi eR 2 I*(x) < *(x( 0 ) H C S. One sees easily that

1 > 0 and X := 1 + 6£ + 3e2 can be chosen. Furthermore

/ + 2 -2 ex

(af/ax)1 £ :=M/det
-2 c x x2 1 + C x 2

2 1£ 2 2

where det := 1 + E(Xl2 + x 2) 3 c2 x2 x2 > 0 for

2, 2max(x2, x 2 ) < i/c, thus c < 1 in u. From this result it is

simply shown that the real Newton method (2), (3), starting with

x(0) gives a convergent sequence {x(v)} with x(v) c U and
x(V) - for v ,where xl(v+l) x(v+l) := 2 e x1(03

11(1 + ()) for v = 0, 1......

To apply the interval Newton method (4), (5), compute

I ~ ~ 1 +£ 2CX( +
*(x ~ ,~ 2X 1  1 £x( 2  Y2 )

Y2(xl + yl) 1+ C x 2

and

#1136 -15-



1- x1 (X2 + Y2 )
1 (x, y) := det flx,y),

Y2 + 2

with det *(x, y) =1+ c(x2 + y2 2 Y2 x 2 + (

Hence *- (x, y) E B(x, 3) := T-l(x, R), where *-i is the natural

interval extension of *- , i.e.,

1 + E x x (x2 + x2)

I(x, 1) - 2(x,3)

-_"2_xl + 'l) 1 + c x2-

2 -22) 2 l•(lx lx lx
with Net-(x, R) 2+ -(x 2 + 2 E --

Finally B(x, x) F B* := B(U, U) with

1i+ E Y 2 2 c "2

* : 2 c Y2* . and

det-B* := 1 + 2 Y y2 + 3 c2 Y-4 = I + c(2 + 30) [-1, 1] > 0 for

0 < c < 1/3. Kindly note that the interval matrix B* is only

defined for 0 < c < 1/3, while *-l was defined in the much larger

region 0 < £ < 1. This loss is quite typical for the switch

from real to interval arithmetic in the case of matrices.

To apply the above criterion one computes

1+ C R2 2 E xl
2 R

•'(x, •):

2 c Ix 1 + C xI 2
21 ;F2

-16- #1136



Hence

Cx2 -2 E:x

F,- (x, 1) := (x,

with E: F'1 (i2 2 ;+ C ;2)/e ~~

e1  ~, ( +E2 -2 2 -- 2
with Uet C~x, R) (1 + C x2 ) - c x1 3F x 2.

This gives

+ E7 Y 1+ 2E 2

(u2 U) 2=/detF(u,u),

with det F(i, 9) = 1 + E(2 + 5e) [-1 1] > 0 for 0 < e < (vT-1)/5.

By comparing these results one sees clearly, as stated in the

above criterion, that B(x, 3) C F' 1-(x, x) and B*C Y'-1 (U, U).

Kindly note that B* is defined for 0 < E < 1/3 while

F,-(u, u) is defined only in the still smaller interval

0 c £ < (vT-i)/5 = 0.29(l).

Table 1 shows some numerical results for £ = 0.5 and

v 0(1)5. We remark that the symmetry of the problem which is

illustrated in the real sequence {x ()} by x(V) = x(V)
1 2 s t

carried over to the sequence {x(v)}, due to the asymmetry of

B(x, F) and therefore of N(x, R). Please note also, that for the

higher values of v it is not true, that x(V) . E(v)| This means:

the error interval 3(v) containing the solution x is not only an

error bound for x but also an improvement over the approximation

x(v). This very favorable property is quite typical for the use

of the Newton operator, at least in the neighbourhood of the solution.
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