o

THE UNIVERSITY
OF WISCONSIN

AD7358838

Address:

Mathematics Rescarch
Center
The University of Wisconsin
Madison. Wisconsin 53706
U.S.A.

R3




THE UNIVERSITY OF WISCONSIN
MATHEMATICS RESEARCH CENTER

Contract No. : DA-31-124-ARO-D-462

‘ON THE NEWTON METHOD IN INTERVAL

ANALYSIS

Karl Nickel

This document has been approved for public
release and sale; its distribution is unlimited.

MRC Technical Summary Report # 1136

December 1971 D - D ) C )
PE_W”‘" el

Received March 25, 1971 FED 1972

- LJL._A..D-J u s

B

Madison, Wisconsin 53706




ABSTRACT

A Newton method using interval arithmetic for an
n-dimensional vector equation f(x) = 0 is treated. Some of
the properties of the Newton operator are investigated. This
leads to two criteria for the non-existence and for the
existence of a zero of f(x) in a given vector interval.
Furthermore a posteriori error bounds for a given real vector
sequence converging to a zero of f(x) can be established. Aan

example deals with the application to convex programming.




ON THE NEWTON METHOD IN INTERVAL ANALYSIS

Karl Nickel

l. Introduction.

Let f(x) be a real valued n-dimensional vector function of

the n-dimensional real vector x. The solutions £ of the problem
f(x) =0 (1)

are treated. The Newton method for (1) defines a sequence

x™V)) by setting

(0)

X "appropriate",
(2)
x(v+1) := Nx(v) for v=20,1, ...
where the Newton operator N is defined by
Nx := x - £ (x) £(x) (3)

(f' is the Fréchet derivative (Jacobian matrix)). Under certain

1 exists in a neighbourhood of £, x(o)

assumptions (& exists, f'
is "close" to X, ...) the sequence {x(“)] converges super-
linearly or even guadratically to X. Unfortunately this is not

(0)

true for general starting vectors x , as the following one

dimensional example shows:

Example: Let 0 < a < b and define

Sponsored by the United States Army under Contract No:
DA-31-124-ARO-D-462,




(" 2
% X - % 325 for 0 < x < a;
/a /a
vx for a < x < b ;
£(x) = (
Y377 b1/6 (x-b/3)1/3 for b < x ;
-f(-x) for x<0.
.

There exists exactly one soluticn 2 = 0 to (1) in (-», =),

1

The function f ¢ C,(-=, =) with £' > 0 and £'"" > 0, hence the

operator N from (3) can always be applied with the result

0 < x99 <a: [xOVx < 1m31-1x9 ra) s 3-21x % | /a)
< 1, hence {x(v)} is always
convergent with x(v) + R =0 ;
a < Ix(o)l < b: x @V (0 @) (0 (x4 an
alternating sequence with Ix(v)l = |x(°?|
and is not convergent;
b < lx(O)l : lx(v+l)/x(v)| > l+(1—b/|x(°)|) > 1 s

x™M} is always divergent with
|x(v)l + +o for v + » ,
R. E. Moore [4] first suggested replacing the real Newton

method (2), (3) by the following interval Newton method:
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(0) _ xl0)

x "appropriate" ,

J_‘(\,.g.]_) .= ;(\)) N wF (x(\)), i(\’)) ) (4)

x(v+l) c §(V+1) arbitrarily ,

/
where the interval Newton transformation operator is defined by

NT(x, x) := x - Y® fx) . (5)

=(v . . .
Here {x( )} denotes a n-dimensional interval vector sequence,

T'(x) is an interval extension of the Jacobian matrix.

The following surprising fact seems not to be widely known:
In the one-dimensional case n = 1 the interval Newton method

defined by (4) and (5) never fails! It delivers always two

x V) ) X with %, x(v)E V) for

Z(0)

convergent sequences: + R x
v=0,1, ..., if only £ ¢ C, if 771 exists and if % «

(see K. Nickel [5] and R. Krawczyk ([3]). Hence:

a) While the real Newton method (2), (3) gives convergence
only in the neighbourhood of X, the interval Newton

method (4), (5) provides convergence for all initial

(0) =(0) (0)

values x' ', if only X is chosen such that % ¢ X

b) The interval Newton method (4), (5) provides not only

(v)

an approximating real sequence {x(v)} with x + X, but

computes at the same time a sequence of error bounds

(™} with x'¥) » %. In the case of the real Newton
method (2), (3) no such error bounds are generally

available.
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Applied to the above example this shows that while the
real Newton method (2), (3) failed if |x'®)| > a, the interval
Newton method (4), (5) gives a convergent approximating sequence

vy z(0)

{x(v)} and convergent error bounds {x if only 0 = X ¢

regardless of the initial value x(o).

Unfortunately a similar statement is not true in the case
of more than one variable: if n > 1 then in general (4), (5)
does not give two converging sequences {x(v)} and {E(v)}, as

counterexamples show,

The purpose of the following paper is twofold: to
investigate some of the properties of the operator NT and to find
a way to guarantee convergence of the sequence §(V) > X. It will
be shown that two very simple criteriae can be derived fror the
Newton operator which - when fulfilled - guarantee either the
existence and uniqueness of a solution X of (1) in a given
interval vector X or guarantee the nonexistence of such a
solution X in X. Both criteria can easily be programmed for a
computer. In order to get unrestricted convergence of {§(v)}, a
new approach is recommended: Since the definition of the real
sequence {x(v)} by (4) does not always lead to a convergent
serieg, it is suggested to compute this real sequence {x(v)} by

(v)

any method providing convergence x + x. Then the sequence

{E(v)} constructed a posteriori by (4) is a sequence of error

V) and it follows easily that it always

converges, i.e. im ;(v) = X. This leads to very satisfying a

Vo

posteriori error bounds in linear ' lgebra problems, for eigen-

bounds, i.e. x € X
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value problems, for the finding of roots of polynomials etc. As
a special example it will be shown, that this approach can
successfully be used for the purpose of convex programming. A
simple example will show how it works. Since the definition and
use of the interval arithmetic and interval analysis is not yet
known widely enough, special emphasis has been given to listing

all assumptions and definitions.

In what follows a slightly different interval Newton
operator N(x, X) will be used, which is a generalization of

NT(x, X) from (5). This goes back to an idea of E. R. Hansen [2].

2. Notations.

Let R denote the field of real numbers. Let a, B ¢ R
with a < B and denote by Y := [a, B] the closed interval with
endpoints a and 8. Let I (Y) be the set of all closed intervals
in Y with endpoints in R; denote analoguously by I(R) the set

of all intervals in R .

Let £, n, T ¢« R with n < ¢ and let § := [nr tle I (R).
The special function intval (g,é) with interval :

R x I(R)~+ I(R) is defined by

if € € §

e

~o

intval (g, T) := < (n, € if € > ¢ ;

L g, tl if £ <n,

i.e. intval (&, E) is the smallest interval in I(R) containing

#1136 -5-



both £ and E.

Let R™ be the n-dimensional Euclidean vector space with
elements a, b, ..., z and the corresponding components a, ., bv’ ceey
z, ¢ R for v = 1(1)n. Interval vectors and interval matrices
are vectors and matrices with intervals from I (R) as components.

In what follows they will be distinguished from real vectors and
real matrices by a bar; hence x denotes a real vector, X an

interval vector; X resp. X is a real resp. interval matrix. An
n x n interval matrix A is said to be invertible and to have an

. = . . = . -1
inverse B, iff any real n x n matrix A € A has an inverse A

and if A-1

¢ B. Kindly note that an interval inverse in general
is not unique. Let I®(R®) be the set of all interval vectors
a, b, ..., z with the corresponding components 5\), Bv’ ooy

Ev ¢ I(R) for v = 1(1)n. Since real vectors can be treated as
degenerate interval vectors it follows that R" c IIn( Rn). Let
Xx ¢ R°, X ¢I®(R™ with components x,, and I\) for v = 1(1)n.

The special function Intval (x, X) with Intval : R" x 1™(R"

)
+ I™(R"™) is the n-dimensional analogue of intval (¢, £) and is
defined by y := Intval (x, X) ¢ I"(R™)has the components
;v := Intval (xv, §v) for v = 1(1)n. The interval arithmetic
operations in lIn(]Rn) are defined as usual (see R. E. Moore [4]};

they will be not distinguished from the real arithmetic

operations since no confusion should occur.

Let u ¢ I"(R™)be the special interval vector with components

u, = Y := {a, B) for v = 1(1)n. 1" (0) is the set of all

interval vectors in u (i.e. whose components are contained in Y).

-6~ #1136



Let £(x) = £(x;, Xy, ..., x) With £: T > R” and ¥(x) =

f(fl, §2, cees §£) with F: I™(@) » I®(R™) denote a real vector
function and an interval vector function respectively. The
corresponding components are denoted by fu(x) = fu(xl' cesy xn)
and fu(i) = fu(il, ey §h) respectively with £, 2 + R and
T: I'(W) > E(R). The function E(X) is called an interval

extension of f(x) on u, if
F(x) := f(x) for all x ¢ u;
and if
f(x) € F(y) for x Cy and for all X, y eu . (6)

If f£(x) is a rational function then an interval extension f (x)
of f(x) (the "natural" extension) is obtained by replacing the
real variable x by an interval variable x and the real
arithmetic operators in f(x) by the corresponding interval

arithmetic operators.

Let £: U+ R™ and let £ ¢ c1(T). Let the (real) n x n
matrix ¢(x, y) have the components Puv =
¢uv(xl’ Koo ever Xy Yoo Yyuqr eoer Y,) for u, v = 1(1)n, which

are defined as divided differences by (fuv := afu/axv)

(fu‘xl'""xv-l’yv’yv+l""’yn)-fu(xl"’"xv-l’xv'yv+1""'yn)
Yy T %y
for X, # Y,
“uv ’4
qu (xl"°"xv-l'xv'yv+1"'°’yn) for x, =y, -
#1136 L -7



The matrix ¢(x, y) is continuous for x, y ¢ u. Define the class

of functions
3 := {f(x) ¢ CHG) l¢_1(x, y) exists with
o"l(x, y) ¢ B(x, X) C Bw (7)

for all x, y ¢ x C u, where B(x, X)

has the property (6) with respect to the
variable x and

B: ux I"(@ »~ I™(R™) x I"(R") and

B* e« I™(R")x IP(RM)}.

3. Results.

It is in general difficult to decide if ¢-1(x, y) exists
for a given function f(x) and if there are bounds B(x, X) and B¥
such that (7) holds. The following criterion provides a

sufficient condition which can easily be checked on a computer:

Criterion: Let fu for u, v = 1(1)n be interval extensions of
f 1= 3fp/3xv on u. Let the interval matrix
F'(x, X) have the components

£, (Xpr eees X g0 X, .00, X)). Let F'(u, u) be
nonsingular. Then f ¢ § with B(x, x) :=

-—

F'_I(X, X) and B* := F'-l(ﬁ, u) .

Proof: By the (one dimensional) mean value theorem there exist
real numbers z,, ¢ [min(xv, yv), max(xv, Yv)] C u such that for
b, v=1(1)n

-8~ #1136




Puy = Py (Xpe ceer Xyr Yoo eees ¥)

fuv (xl' secr Xyl1r Zpyr Yygpr ceev yn)

[}

fﬁv (Xys voer X, g0 2 pr Yygpr oo Y,)

LX)

e T (x5, ..o, xv_lﬁxv,xv+y.. n

uv
C fp.v(x) (e fpv(u) .
Hence ¢(x, y)e F'(x, X)C F'(X, X) Cc F'(U, u). Since 7l o

exists, there exist also the other inverses with

¢l (x, y) ¢« Bix, :=F"1(x, ¥ cFIx, % c B+

The basic idea of this criterion comes from a paper from E. R.

Hansen [2].

Lemma: Let f ¢ 3 and let x, y € u. Then the following identity

holds:
E(y) = £(x) + ¢(x, ) (y - %) . (8)

The proof is very simple: By using the definition of the Py

one gets for u, v = 1(1l)n:

£ (y)

u fu(y11y21Y31-~-rYn)

= fu(xl'Y21Y3,---,Yn)+(yl-xl)¢ul(x1,y1ny2.---,yn)

fu (xllx2IY3I L Iyn)+(y1-xl) ¢ul(xl’yl'y2' te. 'Yn)
+(Y2"x2)¢u2 ("1"‘2 tYgrees ’yn)

#1136 -9-
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n
€, (x)+ Il(yv-xv)¢uv(x1,...,xv,yv,...,yn) .
V=

These are the components of (8),
Definition (Interval Newton Operator):

Let f¢ 3 and x ¢ x C u. Let the interval Newton operator
N(x, X) with §: T x I™(R™) > I"® ™) be defined by

ﬁ(xl 3_{) = X - E(xl ;)f(X) . (9)

Theorem: Let x¢ x CU, let f¢ 35 , let N(x, X) be defined by (9)
and let X ¢u with £(X) = 0. Then the following 5 statements

hold:

a) Any solution x of (1) in u is unique.

~

b) If X ¢ X then X ¢ N{x, X).
c) If x N N(x, X) = ¢, then X § Xx.

d) If N(x, X) C X then X ¢ X.

e) Let the real vector sequence {x(V)} with x(v) ¢ u for

v=20, 1, ... have the property
(v)

Lim x =X .
Voo

(V)y  gefined for

Then the interval vector sequence {X

v=20,1, ... by

PR )
7V = mvar (xV), g1y, > (10)
;(v) = ;(V'l) n ﬁ(x(v), ;(V))
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has the two properties

2ex™ forv=o0,1, ..., (11)
and

gim ™ = % . (12)

V>0

Proof: Ad a) Let X, ¥y ¢ U be two zeros of f(x). Then from

-~ ~ A

(8) it follows that ¢(x, y){(y - X) = 0, but since ¢~! exists for

A

all X, ¥ ¢ u this implies X

]
>

Ad b) Put y := X in (8). This gives

0= £(x) + ¢(x, X) (X - x). since ¢ T (x, %) exists and with (7)

one gets immediately X = x -~ ¢ T(x, %) £(x) ¢ x - Bix, X) £(x) =
N(x, X).

Ad c) Suppose X ¢ X. Then from b) it follows that also
%X ¢ N(x, X) which contradicts the assumption ¥ N N(x, X) = ¢.
Hence X { X.

Ad d) Dpefine for fixed x ¢ X the real operator
Ty := X - ¢-1(x, y) f(x)=y -¢'l(x,y). Clearly T is continuous for all
y ¢ X. Furthermore because of Ty ¢ x - B(x, X) £(x}
= N(x, X) € X, the Lperator T maps X into X. Since X is a convex
set, the Schauder fixpoint theorem can be applied with the
result: there exists a real vector X ¢ X such that X = TX.
This implies 6" (x, x) £(X) = 0 and therefore f(%) = 0, i.e. X
is also a zero of f(x).

Ad e) The property (ll) follows immediately from b).

(V)
€

Furthermore since x §(\’) C u and B(x, X) has the property (6)

in X it follows that

$1136 -11-




Fa™, 7))« §x!), B

=x™M 5™, 5 £x™V)y

Cx(\)) - 'é'* f(x(\))) .

W) s |

hence %im N(x X. Therefore with

Ve

xv-1) g ﬁ(x(v), ?‘v)) C ﬁ(x(v), ;(v)) it follows also that

gim XV ﬁ(x(v), ;(v))

Ve

= %, which completes the proof of the

theorem.

Remarks: Ad a) The class J is so small that it contains only

functions f(x) with at most one zero x in u.

Ad b) Any solution X of (1) contained in the interval
vector X is also contained in the image of the Newton trans-
formation: i.e., the Newton transformation "does not lose"
any zero of f(x).

Ad c¢) This is a criterion for the non-existence of a
zero x of £(x) in the interval vector X. This criterion can be
programmed to be checked by a computer!

Ad d) This is a criterion for the existence of a
zero x of f£(x) in the interval vector X. This criterion can also
be checked for by a computer.

Ad e) If somehow a convergent real vector sequence
{x(v)} with x(v) + x for v + » has been determined, the
application of the Newton operator by (10) produces immediately a
sequence {;(v)} of bounds to {x(V)} and x (a posteriori error
bounds), such that x o xO) for v = 0, 1, ... . This

sequence converges too toward X. The speed of convergence

-12- #1136




(linear, superlinear, quadratic, ...) can easily be related to

the speed of convergence of {x(v)}.

If X ¢ X then the Newton Operator N can be applied to the
pair x, X and the result b) of the theorem holds. Assume that

the interval vector E(V-l) has already been computed. Since the

sequence {x(v)} is defined independently of the segquence {§(v)},

(\))e ;(V‘l)

no guarantee is given that the next term x and that

therefore X ¢ ﬁ(x(V), ;(v-l)). This is the reason why the

(v)

intermediate interval vector y is introduced in (10).

4. Example. Convex programming.

Let ¥ = y(x) with y: R"> Rand ¥ ¢ C,(R") and let ¥ be
bounded from below on R"”. The unconstrained minimization

probiem
P (x) = minimum (13)

is considered. Define the function

£(x) := 23y/ox
with £: R "+ R"and £ « Cl(an) and define the set
S 1= {xe RPyx) < vx'?)}
for a given real vector x(o) ¢ R". Let § be a convex set

containing S. Let the Hessian matrix
H(x) := 32y/0x% = 3£/3x
satisfy the condition

#1136 =13~




uix, x) < (x, H(y)x) < rx(x, x)

with p > 0 (where (.,.) is the inner product in Rn)for any
vector x ¢« R ® and Yy ¢ §, Then S is bounded and the minimum
problem (13) is in § a convex problem and has exactly one
solution which is the only zero X of f(x) in S. Furthermore
the real Newton method (2), (3) applied to the function f£(x)

(0)

and starting with x produces a sequence {x(v)} with x™ ¢ s

which always converges to X (where perhaps a finite number of
steps have to be changed in order to get always w(x(v+l)) <
w(x(v))), see Goldstein [1].

Hence the above suggestion can be used, provided f ¢ § for
a certain interval vector U containing S. This being true the
interval vector sequence {;(v)} defined by (10) has the
properties (11) and (12), i.e., provides error bounds and
converges toward X. To the author's knowledge to the problem
(13) no other procedure is yet known which gives an interval

=(v)

vector sequence x with the properties (11) and (12).

Numerical example.

The following example is chosen to be as simple as possible
in order to show all the steps of the above method. Let n = 2,

e > 0 and Zw(xl, x,) = xi + xg + € xi xg. Then

x (1 + ¢ x2)
f(xl, xz) := P/3AIX = )
xz(l + ¢ Xl)

and
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l+ ¢ x 2 £ Xx

1 %2
3f/3x 1= 32y dx2 := ]

NN

2
2 € X1 X, 1l + € Xy

It is trivial that il = ﬁz = 0 is the unique solution of (13) in

Rz. Let ¥ := [-1, 1] and let u have the components

u, := Ez := Y. Define § := {x ¢ R 2 ||x1|, |x,| < Y2¥€}. Then
for the initial values x{o) = xéo) t= 1 it follows that
uCs := {xe R.zlw(x) < w(x(o))} C §. One sees easily that

u 2= 1 >0and X := 1 + 6¢ + 352 can be chosen. Furthermore

l + ¢ xi -2 € x1 x2
(3g/3x)” L := /det ,

2
-2 ¢ X)X, 1+ ¢ X5

where det := 1 + e(xi + x%) -3 €2 xi xg > 0 for

max(xi, xg) < 1/e, thus € < 1 in u. From this result it is

simply shown that the real Newton method (2), (3), starting with
x(0) (v)

(v)

X + x for v + », where x

¢ u and

(v)3
1 /

gives a convergent sequence {x(v)} with x

(v+1) . _(v+l) _
l 4 x2 H

(1+3c¢ x{“’z) for v=20, 1, ...

2 e X

To apply the interval Newton method (4), (5), compute
2
1 + ¢ Y5 € xl(x2 + yz)
¢(x, y) :=
€ yz(xl + yl) 1 + ¢ xi

and

#1136 =15~




1+ ¢ Xy -€ xl(x2 + yz)
¢_1(xl y) := /det ¢(x,y),
-€ yz(xl + yl) i+e yg

. _ 2, .2 2
with det ¢(x, y) =1 + €(xl+y2) € xl YZ(xl xz +Y2 x2 +YI YZ)‘

Hence ¢_l(x, y) ¢ B(x, X) := $'l(x, X), where 3-1 is the natural

interval extension of ¢-1, i.e.,

2 -
l + ¢ x] -€ xl(x2 + x2)

vith FTEEF(x, X = 1+ elx) + K3 - €2 x) Kplx; %, + %) x, + X, %)

Finally B(x, X) ¢ B* := B(u, u) with

1+ ¢ 72 2 ¢ Y2
Bt := //et B* , and
2 ¢ 72 14+¢ 72

SEB* = 1+2¢y2 +3e>7 =1+c¢€(2+3¢e) [-1, 1] > O for

0 < e < 1/3. Kindly note that the interval matrix B* is only
defined for 0 < € < 1/3, while ¢'l was defined in the much larger
region 0 < € < 1. This loss is quite typical for the switch

from real to interval arithmetic in the case of matrices.

To apply the above criterion one computes

-2 -
l + ¢ X, 2 ¢ X X,
F'(x, X) := .
2 ¢ X, % 1+c¢€x?
€ X X 1

-16- #1136



Hence
1+ 6 x2 -2 € X, X
1 1 72
Frolix, 0 := /aet F(x,X),
- - = =2
2 ¢ Xy X, l + ¢ X5
. = .- 2 =2 2 = =2
with det F(x, X) := (1 + ¢ xl)(l + € x2) -4 ¢ X; X1 X5.
This gives
1+ ¢ 72 2 € 72
FlE, o e /d_et F(3,3) .
2 € ?2 1+ ¢ 72

with det F(u, W) = 1 + €(2 + 5¢) [-1 1] > 0 for 0 < € < (/8-1)/5.
By comparing these results one sees clearly, as stated in the
above criterion, that B(x, x) € F' Y (x, x) and B*C F'"1(3, 0).
Kindly note that B* is defined for 0 < € < 1/3 while

F'-l(ﬁ, u) is defined only in the still smaller interval

0 < e < (/6-1)/5 = 0.29(1).

Table 1 shows some numerical results for ¢ = 0.5 and
v = 0(1)5. We remark that the symmetry of the problem which is
illustrated in the real sequence {x(v)} by x{v) = xév) is not

carried over to the sequence {i(v)}, due to the asymmetry of

B(x, X) and therefore of N(x, X). Please note also, that for the

higher values of v it is not true, that x(v)e i(v)l This means:

(v)

the error interval x containing the solution x is not only an

error bound for x but also an improvement over the approximation
x(v). This very favorable property is quite typical for the use

of the Newton operator, at least in the neighbourhood of the solution.
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