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Inner estimation of the united solution set of
interval linear algebraic system

Luomia Kuprivanova

It is shown that an algebraic interval solution of interval linear algebraic systems with matrix composed
of “reverse” iterval clements of the input matrix is a maxinuun inner estimation for the united solution
set in the sense of inclusion.

OueHka CHM3y OOBEAMHEHHOI0 MHOXeCTBa
peleHi! MHTEPBAABHBIX AMHEMHBIX
aAreOpaiIecKux CUCTeM

A. Kyvnirusarosa

Moxazano, ¥To AU EGPANUECKOE HHTEPRATHHOE PEIEHItE HHTEPBAILHOR JTHHEAHON 2areGpanveckon cn-
CTEMB, MATPHIA KOTOPOH COCTABIEHD M3 «HHBEPTHPOHAHHBIX® HHTECPBAION — IEMEHTOH ICXOIHON
MATPHIN, ABIAETCA MAKCHMAILHON ONEHKON CHIZY 1T ODLCUHEHKONO MHOKECTBA PEINCHINT B CMKCTE
BRANYECHHA.

Introduction

We will denote intervals and interval vectors by Latin letters a, b, ¢, ... (with or without index),
interval matrices by capital Latin letters A, B, C, ... Real vectors and matrices will be denoted
by Latin letters with lower dots a.b,c,..., A, B,C,... Endpoints of intervals and of interval
vectors will be denoted by a, @ (lower and upper endpoints, respectively). real numbers—by
Greek letters a, 8,7, ..., and also by small Latin letters with lower dots or with bars.

Let us consider a real system of linear equations
Az =b

where g;;, b; vary in intervals, that is, g, € |a;;, ;) and b; € [b;, b;]. Also assume that for all
a;; the matrix A4 is nonsingular.

It is common knowledge that the set of all solutions to real systems obtained by considering
all possible values of coefficients from the given intervals (the united solution set) is not an
interval vector, and may have a complicated structure. There are many papers devoted to
computing outer estimations for this set (see, eg., [7, 9]).

In this paper a way of finding an interval vector that is an inner estimation for the united

solution set is presented.

(© L. Kupriyanova, 1995
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For this purpose an extended interval arithmetic of Kaucher [2] is used whose objects are
intervals = = [z, 7], the requirement £ < T being unnecessary. The intervals with £ < T (proper
intervals) are interpreted by us as the sets of points { on the real axis satxsfvmg r<ELT.
The intervals with £ > T (improper intervals) are used by us for intermediate computations as
auxiliary objects. For example, suppose we wish to find an algebraic interval solution of the
interval equation

[-1,1]+ 2 =10.3]
that is, that interval z such that substitution of  into this equation renders it an identity. The
interval [1, —1], additive inverse for [—1,1], is an improper interval and is not interpreted as
set of real numbers, but it aids finding a solution

r=[0,3+[1,-1] =12
Substituting Z into the equation, we obtain the identity

The interval [1,2] is proper and has a real meaning.

Thus, the extended interval set, compared-te the classical interval set, has better propérties,
namely, the existence of additive inverses (for all intervals) and the existence of multiplicative
inverses (for intervals not containing zero). Besides, the arithmetic introduced in a suitable
way allows us to obtain the result by effecting equivalent transformations. So, given an initial
problem dealing with proper intervals (with sets of real numbers) we use the objects of the
extended interval set in the solution process. If the obtained solution is a proper interval then
the problem is considered to be solved.

In Section 1, we cite the relevant elements of theory concerning the extended set of
intervals and also a theorem needed for a proof that the resulting interval vector is contained
in the united solution set.

In Section "2, properties of the algebraic interval solution for the system 'with the dual
matrix and a fundamental theorem on maximum inner estimation for the united solution set
are proposed.

In Section 3, we present a way for finding an algebraic interval solution, proposed
originally by Zyuzin [12, 13] for the systems with coefficients from I(R). It is shown that the
algorithm also keeps its properties in more general cases and may have more general-purpose
application than just the inner estimation problem.

In Section 4, some examples illustrating the properties of algebraic interval solutions for
the system with dual matrix are presented.

1. Some properties of an extended interval set

An extended interval arithmetic was proposed by Kaucher [2]. We will use it in the form given
by Gardenes, Trepat [1].
Let [(R):={z={r,Z] | z,T € R, < T} be a set of intervals with positive widths and

I'R):={z=[z,7] | z,T € R}
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be a set that contains intervals both with positive width (proper) and with negative width
(improper). The detailed presentation of properties of the set I*(R) can be found in [1, 2]
We cite only those that are necessary here.

Definition 1.1. The magnitude w(z) = T — z will be called the width of the interval
« = [z,T) € I"(R).

Definition 1.2. We shall refer to an interval x € I*(R) as a proper interval if £ < ¥ and as
an improper interval if £ > T.

Definition 1.3. (of unary operations on I*(R))

dual(z) = [7,z);
opp(z) = [-z,-TJ;
— [z, T if xis proper,
pr(x) - ['CE I if T is improper.

=

[z
(-
Definition 1.4. (of inclusion on I*(R))
(zCy e y<z&z<y)

If one of inequalities is strong, i.e. (x C y) & (x # y), then we shall write “c C y”.
Definition 1.5.

<y & ((Vx;é pr(z))(Vy € pr(y)) 7 > y)
(r<y) & ((Vr € pr(z))(Vy € pr(y)) T > y)

The real numbers z € R are identified with intervals such that 7 = [r,z] € I*(R). Then
the record “x > 07, given 0 = [0, 0], means "(V:z; € pr(:z)) z > 0", Similarly “0 C z” means
“r<0<7Z and “c C 0" means “T<0< 2"

To define arithmetic operations over the elements of J*(R), let us introduce a characteristic
of interval direction which will be denoted by Q.
Definition 1.6. Let a; € I*(R). Define the lattice operations

Vai = supca; = [infca;, sup<a;

i 1 3

/\ a; = infca; = [supg a;,inf< i)

. 1 T
on a bounded set of a; where i can run through a finite set or a countable set or continuum.
Definition 1.7. Characteristic of interval direction

0 = \ if x is proper;
' AN if T is improper.

It follows from the definition that z =

zepr(z)
Definition 1.8. (of arithmetic operations)

axb:= ° Qb Q'*b.y *E{+1_1'7/}'
acpr(a) bepr(b)

According to this definition all operations can be described as operations with endpoints of
intervals in the following way.
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Addition
a+b=[a+ba+b]
a-b=[a-ba-h.
Mudtiplication
1) if @ >0 & b >0 then ab = [ab, ab};
2) if a >0 & b <0 then ab = [ab, ab);
3) ifa > 0& b2 0 then ab = [ab, abj;
4) if @ > 0 & b C 0 then ab = [ab, ab];
3) if a <0 & b <0 then ab = [ab, abj;
6) if a <0 & b2 0 then ab = [ab, ab);
7)if a <0 & bCO then ab = [ab, ab;
8) if a 2 0 & b 2 0 then ab = [min{abd, ab}, max{ab, ab});
9) if a C 0 & b C 0 then ab = [maz{ab, ab}, min{ab, ab};
10)ifa C0& 520 then ab=0.
Division {for 0 ¢ pr(b))
1/6 = [1/6,1/8);
a/b=a-(1/b).
Algebraic diision (solution of equation bz = a for 0 & pr(b))
1/.b:=[1/b,1/8};
a/b=a-(1/b).

A detailed presentation of properties of the operations introduced above can be found in [1]
Here the subdistributivity property, some generalized concept of a united interval extension,
and also the inclusion monotonicity property for the introduced operations will be necessary.
Theorem 1.1. (on subdistributivity) Let a,b,c € I*(R).

If a is a proper interval then a(b+c) € ab+ac;

if a is an improper interval then a(b+c¢) 2 ab+ac
Definition 1.9. If f(z,y) is a real function,
= (T1,%2,...,%p)7 is a proper interval vector,

z
y (#1,92,---,Yg)T is an improper interval vector,
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we define “interval extensions” of [ as

My =V A Fflzy),
q:Ezy'EPr(y)
Yy = AV flzy).

yepe(y) z€x

Remark. In general these two functions can be distinct. However, we shall consider a function
f. where each interval occurs only once, and for this function, f* = f**, and both f* and f**
coincide with the natural interval extension obtained when intervals replace the real variables
and interval arithmetic operations replace corresponding real operations.

The following theorem from [1] will be needed later.
Theorem 1.2. If f*(z,y) is proper then

(Vzez)(Iyepr(y) flzy) e f(z.y)

It is not difficult to show that inclusion monotonicity of interval operations is valid for all
elements of I*(R).

Theorem 1.3. Interval operations introduced by Definition 1.7 are monotone with respect to
inclusion, ie. for a,b,z,y € I*'(R)

(eCb&zrCy)=>(axxzCbxy), wherex€ {+,—,-,/}

2. Algebraic interval solution for the system with dual
matrix

Let us consider the real linear algebraic system
Az =) (2.1)

the coefficients of which vary in intervals such that 4 € A, b € b, where A is a proper interval
n X n-matrix, b is a proper interval n-vector, and (VA € A) det(A) # 0.

Definition 2.1. The united solution set (or a union of all solutions of the real system (2.1)) is
that set of real vectors

g :={z| Az =bA€ Abeb} (2.2)
It follows from the definition that
(Veea') (A€ A) (beb) Az=b 23)

In general, * is not an interval vector.
Problem. To find a maximal inner estimation for z*, i.e. a maximal interval vector z satisfying
the property (2.3)

(Vzez) (3Ae A) (Fed) Ar=b.

To solve this problem, let us consider an interval system

Az =b. (2.4)
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Definition 2.2. An interval vector =° satistving the system (2.4), ie. an interval vector which
when substituted into (2.4) makes the equations of this system the true equalities, will be called
an algebraic interval solution of this system.

In general, algebraic interval solutions are not unique; additional investigation is necessary
to determinate conditions for uniqueness. However, Shary [8] has given conditions that imply
uniqueness for proper matrices. Uniqueness is not relevant 1o the properties studied here.

Definition 2.3. A set of real vectors [3, 5, 6]
zc:={z | Az C b}

will be called a tolerable solution set.
It follows from the definition that

(Vzexc) (VA€ A) (3beb) Ar=b (2:3)

zc € z*, and also that z¢ is not an interval vector in general. However, if the system (2.5)
has the algebraic interval solution z¢, all components of which are proper, then z° is an inner
estimation of the tolerable solution set, z* C .

Indeed, if Az® = b with a;j,z;,b; € I(R) (i =1,n, j =1,n), then

b; = ai1x} + aipxG + -+ + GinTh.
It follows from the definitions of interval arithmetic operations for proper intervals that the
above equality implies
(Vz; €xi.5 = 1. n) (Va;; € ai,5 = ILn) agz+- 40,7, Ch
and for the whole system
(Vzez') (VA€ A) AzcCh

that is equivalent to
(Vzez®) (VAc A) (b eb) Ar=b.

Details of the tolerable solution set and on methods for finding its inner estimation appear in
papers of Shary (eg. [3, 6)).
An algebraic interval solution for a system with dual matrix

dual{A)z =b (26)

where dual(A);; := dual(ay;) = duallg;;, @;;] = [@;, a;;], will be denoted by z¢.

Details concerning aigebraic interval solutions are possible to see in papers of Zyuzin [12,
13]) and Zakharov [9—11] We wish to show that the algebraic interval solution of the system
(2.6) z¢ has some useful properties, formulated in the following theorems.
Theorem 2.1.  Any algebraic interval solution of the system (2.6) with proper components
(:rf el (R)) is included in the united solution set z* to Az = b, that is,

¢ C z*.
Proof. Let us consider the i-th row of the system (2.1)

(Az)i=a;y T+ 0 To+ - +a, 2, =0
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Let a; := (8;y,8;2, - - -+ @;,) be a row of the mauix 4, z = (zy,...,7,)7, and fi(a;,7) :=a;- 2.
Given a real function f;, intervals

dual(a;) = ( dual(an), ..., dual(a))

and

where dual(a) is an improper vector and z“ is proper, we shall consider the interval extension

=V A fila,z)=dual(an)z] + dual(ai2)zs + - - - + dual(ain)zs = b; 2.7)

z€xd g,€a;

where f is a row of the system (2.6), and, for f;, the functions f7 and f;* correspond to the
natural interval extension. Then according to Theorem 1.2 we have

(Vz € z%) (qu’keaik (k=L_")) G Ty G Tyt 0y T, €l

or
(Vz € 2%) (a‘hk €ay (k= T,—n')) (3, €b:) a7+ + 0 T =b

and for the whole system
(Vzez’) (3A€ A) (3beb) Az=b

Hence, every real vector z from z¢ is a solution of some real system, ie. we have proven

4 C z*. 0
To prove Theorem 2.3 below, an inner estimation property of z%, the properties in the

following lemmas are necessary.

Lemma 2.1. Leta,beI(R),de I'(R),andanb#0.

Ifa+deI(R) and d > w(a) + w(b) then (a+d)Nb=0.

(Let two proper intervals a and b intersect. Then the proper intervals a +d and b do not
intersect if the lower endpoint of d is greater than the sum of widths of intervals a and b).

Lemma 2.2. Leta,be I(R),de I'(R), and anb # 0.
Ifa+deI(R) and d < —w(a) — w(b) then (a +d)Nb=0.

(Let two proper intervals a and b intersect. Then the proper intervals a + d and b do not
intersect if the upper endpoint of d is less than the sum of widths of intervals a and b taken
with opposite sign).

The assertions of Lemmas 2.1 and 2.2 can be easily checked.

Lemma 2.3. Let a,x € I(R) be proper intervals. Let the real numbers =’,z" € z take values
of endpoints of the interval x depending in the following way on the signs of a and z:

1)ifa>0 then ' =z, " =7;
2)ifa<0thenz' =%, 2" =g;

3)ifa20& xz>0theny =1"=g;
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ifad0&x<0thena’ =2"=7

Then the equality ax” = ax’ + d is valid, where d € I'(R) and d = w(az’) + w(dual(a) . x)

Lemma 24. Let a,z € I(R) be proper intervals. Let the real numbers ©', z" € z take values
of endpoints of the interval r depending on the signs of a and x in the following way:

1)ifa>0thenr =T, 1" =z;
difa<Othenr’ =z, 2" =7%;
3)ifFa208& x>0 then £’ =2"=g;
4) ifad20& <0 thenx' =z"=T.

Then the equality ax” = ax’ +d is valid, where d € I'(R) and d = ~w(az’) - w(dual(a) . 1').
The validity of these Lemmas can be easily checked using the rules of multiplication 1)—10)
from Section 1.
Theorem 2.2 (Fundamental theorem on inner estimation).
An algebraic interval solution 1* of the system with dual matrix (2.6) , with =4 € I(R)
(3 = 1,n), is 2 maximum inner estimation for the united solution set of the system (2.1) in the
sense of inclusion. That is

(ca) & ((vida) i g ).

Proof. By Theorem 2.1 the interval vector r* satisfying the system dual(4) -z = b is included
in the united solution set z* of the systen Arx = b, where A € A, b € b, ie. it is an inner
estimation for z*. Now we wish to prove that this estimation is maximum in the sense of
inclusion, that is (VZ D z¢) T € z*.

In other words, we must show that any vector wider than z¢ includes points which do
not belong to z* and, hence, are solutions for no real system (2.1).

Let £ = (f,..., 29, [z, T +¢],24,,,.. ., 22) be an interval vector whose j-th coordinate
is greater by ¢ > 0 than z¢. It is necessary to show that I overflows the boundaries of z*, ie.

(3¢ei)(VAe A)(Vbeb) AL#b
or at least for some row

(Hez)(VAe A) (Vbeb) (AL #b.

Let us take a row such that 0 ¢ int(e;;). This is always possible to do. Indeed, if for all
i, a;; 3 0 were true, then A would contain a real matrix A with a zero column, but the
assumption is VA4 € Adet{A) #0.

I Assuming a;; > 0, we choose £ € £ so that

T, if (2 > 0)V ((ai 20) & (zf < 0)

fork#j & = ¢ zf  if (e <0)V ((aix 20) & (z¢ > 0)
0, if (e 20) & (2 20)

and fj = f_‘jl+6.
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Now for § we wish to show that ((VA € A)(¥b € b) (A£); # b)) & ((VA € A) (4¢); ¢
b.-) & ((A{)i N = 0), given that A is proper. Thus, it is necessary to verify that (A£); and
b; are disjoint. Let us choose T € ¥ so

¢, if (e >0)V (e 20) & (r:>0);

fork#j 2, = { =, if (ax <0)V ((ai 20) & (z£ < 0)
0, if (6 20) & (£ 20)
and I, = zj.

This choice of § and z ensures the conditions of Lemma 23 for all k£ # j, if we take ay, T,
T, and & as a, T, T, and x” respectively.
"Then Lemma 2.3 implies

Qi - & = @i - Ty + di, where di € I'(R) and d; = w(ay - 1) + w(dual(aﬂ,) . :z:,,). (2.8)

The case not treated by the Lemma, a;. 2 0, zf 2 0, is triviak: taking & = 0, 1, = 0 results
in gy & = aix - T, = 0 and d = [0, 0],

w(a - 7,) + w( dual(ea) - zf) = w([0,0]) + w([0,0]) = 0 = g,.
For k=3j
aij - & = @i - (Tf +¢).

Since a;; > 0 by awumption. the following cases are possible:
a) x >0= .’L' > :r: >0

a;-& = a;-(T]+e)=lay- (T +¢),a; - (T} +¢)|

lo;; - 25 + a5 (7 — 2§ +€).8; -z _3‘+EJ (75 -z + o)
= oi;-zf + g - (T - 2§ + €)@ - (T — zf + ¢)]

= 6;-T;+d;

[

where dj=g,-j-(:if—_z‘;)+g,~j-€

w(ai;z ) + w(dual(a,_,):z:,) = w([g-‘J-—J r“v—;]) + w([a,,,_u] [—J’ J])
= a'J—J a'J—J + w([a"J-'J’ —*) ]]
= ﬁind athJ +g—ux1 a‘J—J

= a,;(7] - -;‘)<41'

by <0=>zgi<Tl <0
Taking ¢ sufficiently small so that ¢ + ¢ < 0 (if for a small increment one can find a
point not belonging z* then the more so for a larger one), one can write

;& = ay- (a‘c“+e )= [a; - ( “‘+s),_., (77 +¢))

[ - 2f + ;- (TF - 2 +€), - _,+g;, (@ -z +¢)]
aij-zf+ (@ (3 —2f + )05+ (B — 2 + 2)]

a;j - q;]+d
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where4j=5,~_,- ( )+ﬁ,‘j'€

w([“"]-—-]’—u d] +w [a‘J7-—lJ] [-——J’ ])

= a;g; — 35z] +w(leyz], ay75)) =

w(a;x;) + w(dual(a.-j)xj)

— d __ e d
- Qijzj atJ.-'l:.j +a au-rj .a.:'jgj

= (i
= (7 - 7)) < 4,

a;-& = ay-(T+e) =g (T4 +¢),3;- (T +¢)]

[a'J l‘ +(a (-—-u au +g-q€) ;- .’t + (atJ ‘jl_';+ 6135)]
= aj;- q:J+d

i

where 4] = (Q,J:’]‘ - _a-lJ—x-:',‘) + g"j - €.

w(a;z;) + w(dualay)z;) = w(l@szd, el + wiiEy, 0 - [, 7))
= ng_it_? a,, +w([—u—1’941§d])
= a5z} — Gz + 0,7 - 0,
= (aTj — 852j) < d;

Thus, we see that d; = w(ay - z;) +w(dual(a,-k)a:‘,§) for kK # j,.and for k = j d, >
w(aw - 7,) + w( dual(ai)zf).
Let us denote d = L0, di. Then

n

d= i d > Z (w(aik cT.) + w(dual(a.*)mt))

k=1 k=1

= Y ules- 2+ 3 wdual(au)a)
k=1

k=1

= w (i aix. - :g:k) +w (Z": dual(a,-k)xﬁ)

k=1 k=1

w((A-’!-‘);) + w(( dual(A)::’,.‘))

w((A- 2):) +w(b).

(2.9)

i

1l

Given (2.8) and (2.9), it may be written for whole i-th row

(A¢); = za.k b= (o rotd) =S aw -z + 3 de = (Ag) +d
k=1 k=1 k=1
(A€): = (Ag); +d (2.10)
where d > w((Aq:).‘) + w(b;).

For intervals (Az); and b;, the conditions of Lemma 2.1 are as follows:

(Az);,b; € I(R), deI*(R) (Az)inb; #0.
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(The intervals intersect because 7 € 24 C ° belongs to the united solution set.)
(Az); +d = (AS): € I(R)
(because A is proper and £ is a real vector) and
d > w((Az):) + w(by)

so Lemma 2.3 implies ((A:t), +d) Nb; =0, ie. (Af); Nb; = 0, the intervals (A£); and b; are
disjoint. We see that (3£ € &) (A€);Nb; =@, i.e. £ doesn’t belong to the united solution set z°.
IL For a;; < O the proof is similar. We choose £ € £ and T € x4 so that the conditions of
Lemma 2.4 would hold

Z, if(ea>0)V (a.-kQO)&(:r‘,f<0)g

fork#j & = {2, if(ex<0)V((a20)& (zf>0)
0, if(ex20)&(zf{20)
and & = T +e,

75, if (e > 0)V ((aix 20) & (zf > 0)
fork#j 2. = { g, if (6 <0)V ((aix 20) & (z£ < 0)
0, if(ax20)&(z£20)
and z; = Z.

Then we will obtain (A€); = (Az); +d, where d < —w((A:g:)i) — w(b;), and conditions of
Lemma 22:

(Az)i,b; € I(R), deI'(R)
(Az);inb; #0

(Az) +d = (Ag): € I(R)
and d< -—w((A:g:),') —w(b;)

then Lemma 2.2 implies ((A.’L').' + d) Nnb; =49
The proof for Z = (zf,..., 24, [&f — €, 2], 24,1, ..., Z0) is similar. o

3. Finding algebraic interval solutions for interval linear
algebraic systems

As follows from the foregoing, a maximal inner estimation for the united solution set of an
interval linear algebraic system with the proper coefficients is an algebraic interval solution for
the system with dual matrix, i.e. for the system with improper matrix and proper right-hand
side. Besides, there are tasks that reduce to solving systems with both proper and improper
interval coefficients. Therefore, it is desirable to know how to find this solution in the most
general case when a;;,b;, 22 € I*(R)  =1,n, j =1,n).

In (12, 13] an iterative algorithm was proposed for finding an algebraic interval solution
z° provided that the elements of the matrix A , vector b and solution vector z° are proper
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intervals. However, the same scheme can be applied to system (2.6) and 10 systems of general
form without any assumptions on “properness” of intervals. We shall prove this here. To
construct and to substantiate the algorithm we use the general theory of solution of operator
equations [4].

Let us introduce a linear multiplication by real numbers on I*(R)

Aox = [Az, AF;
(-1)oz = [-z,-Z] = opp(z).

Evidently, I*(R) with the operations of addition and linear multiplication by real numbers
is a linear space. Analogously, the set

I'RY):={z=(x,...,2,)7 | T € I'(R), k = 1,1}

with the corresponding componentwise operations is also a linear space. It is easy to see that
I*(R™) with a norm, for example,

el += maxmax{zel, 172/}

is a complete linear normed space, ie. 2 Banach space.
For elements of I*(R") we assign a partial ordering with respect to inclusion C.
Definition 3.1. =,y € I*(R")

(rCy e yerekK)

where yor :=y+(-l)oz=y+opp(z), K:={zr € I'(R") |z, <0< T,k =1,n} is a
cone of Banach space [4].

{It is obvious that Definition 3.1 is consistent with Definition 14 for elements of I*(R)).
Definition -3.2. Let v,w € I'(R"). A set <v,w>:={z | v C = C w} will be called a conic
segment.

The following theorem is used for the construction of an iterative method.

Theorem 3.1. Let K be a regular cone, G a continuous antitone operator on the conic
segment <vp,wo>, and assume that G transforms <vy,wo> to itself. Then the operator G
has at least one fixed point on <vy, we>, and the sequences

Vi = ka-l, wg = G’Uk, k= 1, 2, .o
converge to fixed points v* and w* of G, and also
S C---CvCw C---Cuy Cwe.

The proof is analogous to similar theorem on isotone operators proposed in {4].
Now consider the interval system
Az =b (3.1)

without any assumption on “properness” of the intervals and only assuming that V4 €
pr(A) det(A) # 0. We transform (3.1) to the form

z= Bz (3.2)
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where

n
(Bz); := (b,- e Z aikzk)/.a,-;, i=1,n

(=
Without loss of generality we can assume 0 € a;;. Indeed, if YAdet(A) # 0 then by means
of a simple transposition of the rows we can always arrange it so that the intervals of the
main diagonal do not contain zeroes. Evidently, an algebraic interval solution of (3.2) is
simultaneously an algebraic interval solution of (3.1).
Theorem 3.2. If the operator B of (3.2) transforms the conic segment <vg, wo> to itself,
then B has at least one fixed point on <vp, wo> and the sequences

vk=Bwk_,, wk=ka, k=1,2...
converge to fixed points v* and w* of B. Also,
wCnC---CvCw C-.- Cw Cup.

Remark. In all cases, with proper or improper coefficients, each v is an inner estimation and
each w; is an outer estimation for the algebraic interval solution. For example, to find an inner
estimation to the tolerable solution set to Az = b, with A and b proper, we may take any vj.
Similarly, for an inner estimation to the united solution set to the proper system Cz = d, we
set A =dual(C), b =d, and ke any v. In other cases, depending on the original problem,
the v¢ or wi may be useful.

Proof. Kaucher [2] has proved the continuity of interval operations in his extended arithmetic.
The operator B can be written by interval arithmetic operations as

k=1

(Bz); = (bi +opp ( i%‘k-’%)) -(1/.a), i=T1n

But 0 ¢ pr(ai), so 31/.a;; € I*'(R). From continuity of the corresponding arithmetic operations
it follows that B is continuous.
Now we shall prove that the operation + opp or & is antitone:

frCythenaSzrdacoy.
eSr=[g-z,a-I), aCy=[a-ya-7
z&I<y e (-z<-y& -g<-T) &
L&a-g<a-T)e(aSxDasSy).
By virtue of antitonicity of ¢ © £ and of ivotonity of interval arithmetic operations 1.8 (see
the Theorem 1.3) B is an antitone operator. Thus B is a continuous antitone operator, and
Theorem 3.1 is valid for it ]

Choosing mitial approximation. If we succeed in finding vy C z° = Bz®, then because of antitonicity
of B: By 2 Bz* and hence vg C Bup. Furthermore, denoting wy = By, we have

1) vp C z* € wo there are two-sided initial approximation for z%;

2) (vp C wp) = (Bwp C Bup = wyp).
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We have
Vo g Bvo & Bwo g wo.

Thus if vg € Bug, then the conic segment <wp,wp> is transformed to itself, namely, the
left endpoint is transformed to right one and the right endpoint is transformed inside the
segment. If B is a contraction operator then vy C Bwyg always. But that is not true in general.
Specific rules for good choices of initial approximation have not yet been formuilated in general.
However, when inner estimation of the united solution set, the main topic of this paper, is
desired, the real solution of the system

mid(A) - £ = mid(b)

consisting of the midpoints of the interval coefficients of (24) can be taken as an initial
approximation.

4, Examples

Here, examples of inner estimation of the united solution set by means of computation of an
algebraic interval solution are presented.
Example 1 (see Figure 1).

= (5 e ({ :}) “ = (Ss.i/al)

4,2 1,-2
dual(4) = ( [é, -l] [[4 2]])

Example 2 (see Figure 2).

A= (B D) =) == (Gaod)

awiia) = (17 W) == (01)

Example 3 (see Figure 3).
(5 (3. - ()

st (24 i) - (53)

Example 4 (see Figure 4).

=5 e o= (0 = - (omt3a)
z°% doesn’t exist in the set of proper intervals,

dual(4) = ([{4'_?11 [%;,_2]1]), ¢ = (.[_1'2’1'5]).
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