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Inner estimation of the united solution set of 
interval linear algebraic system 
LUDMILA KUPRIYANOVA 

It is shown that an algebraic interval solution of interval linear algebraic systems with nmtrix COmlXF,~.'d 
o f  "reverse" interval elemeuts of the input matrix is a ii|axiifttlm inner estimation for the uniled so|ution 
set in the sense of" indushm. 

OtteHKa CHrt3y 061,eArtHerlHOr0 MI-IOXeCTBa 
peliierlm  mrrepsaal rll, iX amle rn,tx 
aare6pa ecKrix crtczera 
A. KYnPHaHOBA 

r ]oKa]axo ,  qTO a~:l l~pallqr IIHTCpISa.'ISII(g p i~ t lB l l l~  ISHTepBa:tbllol~ .IIIIieHI~)I-I 3.'IFC{'~IISlC'CK(II'I CX- 

CTCMM0 AlaTpxl la KOTOpOI~I C(~i'alc.'Ic11a 113 iHXI I~TI IpJ I~XI I IMX~ llXTC~Ba.li)If, - -  }.'Ir IICXO,'IH()I'I 

~laTpl l l lM, HILlXeTC.Sl l~lar OIICXKOl~l CHIIay ,'I,']H (~)lr ,~IXO~KCq~TIf~ p~lllr l i  C,MXC,*IC 
I~K.~III )qCXH, l i l .  

Introduction 
We will denote intervals and interval vectors by Latin letters a, b, e . . . .  (with or without index), 
interval matrices by capital Latin letters A, B,  C , . . .  Real vectors and matrices will be denoted 
by Latin letters with lower dots q, .b,e.,..., A., B., C . , . . .  Endpoints of  intervals and of interval 
vectors will be denoted by a_, ~ (lower and upper  endpoims, respectively), real n u m b e r s - - b y  
Greek letters c~,fl, % . . . ,  and also by small Latin letters with lower dots or with bars. 

Let us consider a real system of linear equations 

,3..~ =4  

where a.i j, b.i vary in intervals, that is, .aij E [_aij , aij] and b.i E [_hi, bi]. Also assume that for all 
a.i j the matrix A. is nonsingular. 

h is common knowledge that the set of  all solutions to real systems obtained by considering 
all possible values of  coefficients from the given intervals (the united solution set) is not an 
interval vector, and may have a complicated structure. The re  are many papers devoted to 
computing outer estimations for this set (see, e.g., [7, 9]). 

In this paper  a way of finding an interval vector that is an inner estimation for the united 
solution set is presented. 

@ L Kupriyanm'a, 1995 
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For this purpose an extended interval arithmetic of  Kaucher [2] is used whose objects are 
intervals x = [x, 3], the requirement x < 3  being unnecessary. The  intervals with x_ _< 3 (proper 
intervals) are in terpreted 'by us as the sets of points ~ on the real axis satisfying x < ~ < 3. 
The  intervals with _x > ~" (improper intervals) are u ~ d  by us for intermediate computations as 
auxiliary objects. For example, suppose we wish to. find an algebraic interval solution of the 
interval equation 

[ - i .  i] + x = [0, 3] 

that is, that interval x such that substitution of x into this equation renders it an identity. The  
interval [1 , -1 ] ,  additive inverse for [ -1 ,  1], is an improper interval and is not interpreted as 
set of real numbers, but it aids finding a solution 

x = [0, 3] + [1, -1 ]  = [1, 21. 

Substin,ting x into the equation, we obtain the identity 

[-1,1]  + [1, 2] = [0, a]. 

The  interval [1, 2] is proper  and has a real meaning. 

Thus, the extended interval set, compared to  the classical interval set, h/Is better pr0p6rties, 
namely, the existence of additive inverses (for all intervals) and the existence of multiplicative 
inverses (for intervals not containing zero). Besides, the arithmetic introduced in a suitable 
way allows us to obtain the result by effecting equivalent transformations. So, given an initial 
problem dealing with proper  intervals (with sets of real numbers) we use the objects of the 
extended interval set in the solution process. If the obtained solution is a proper  interval then 
the problem is considered to be solved. 

In Section 1, we cite the relevant elements of theory concerning the extended set of 
intervals and also a theorem needed for a proof that the resuhing interval vector is contained 
in the united solution set. 

In Section "2, properties of the algebraic interval solution for the system 'with the dual 
matrix and a fundamental theorem on maximum inner estimation for the united solution set 
are proposed. 

In Section 3, we present a way for finding an algebraic interval solution, proposed 
originally by Zyuzin [12, 13] for the systems with coefficients from I(R). It is shown that the 
algorithm also keeps its properties in more ,general cases and may have more general-purpose 
application than just the inner estimation problem. 

In Section 4, some examples illustrating the properties of algebraic interval solutions for 
the system with dual matrix are presented. 

1Q Some properties of an extended interval set 
An extended interval arithmetic was proposed by Kaucher [2]. We will use it in the form given 
by Gardenes, Trepat  [1]. 

Let [(R) := {x = [x, 3] [ x, 3 E R, x_ < 3} be a set of intervals with positive widths and 

r ( R )  := {2 = i z , 3  e R} 
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be a set that contains intervals both with positive width (proper) and with negative width 
(improper). The detailed presentation of properties of tile set [*(R) can be found ill [1, 2]. 
We cite only those that are necessary here. 
Definition 1.1. The  magnitude w(x)  = ~ - x  will be called the width o f  the interval 
x = [Z ,~ ]  E I*(R). 
Definition 1.2. We shall refer to an interval x E I*(R)  as a proper interval i f  x < ~: and as 
an improper interval i f  x_ > ~. 

Definition 1.a. ( o f  unary operations on /*(R)) 

dual(x) := [~,x_]; 

opp(x) := [-x,-~]; 
{[z_, ~] i f  x is proper,  

pr(x) := [5, z__] i f  x ;s imp,-oper. 

Definition 1.4. (o f  inclusion on I*( R) ) 

(z c_ y) ~ (~ < z ~ �9 <_ y )  

I f  one o f  inequalities is strong, i.e. (x C y) & (x  ~ y), then we shall write "x C y' .  

Definition 1 .5 .  

(x _< y) ~=~ ((Vx.~E pr(x))(Vy E pr(y)) x. >_ y.) 

(x < y) ~ ((Y.x E pr(x))(Vy E pr(y))x > y). 

The real numbers T E R are identified with intervals such that .x = [.x, x.] E I*(/~). Then 
the record "x > 0", given 0 = [0, 01, means "(Vx. E pr(x)) x. > 0". Similarly "0 C_ x" means 
" x < 0 < ~ "  and "x C O" means ~ < 0 < x ' .  

To define arithmetic operations over the elements of I* (R) ,  let us introduce a characteristic 
of interval direction which will be denoted by fL 
Definition 1.6. Let ai E I ' ( R ) .  Define the lattice operations 

V a i  := supcai  = [inf<_a_i,sup<_~,]; 
i i i 

A ai := infc_ ai = [sup< a_i, in  f<__ ~i] 
i i i 

on a bounded set o f  ai where i can run through a tinite set or a countable set or continuum. 

Definition 1.7. Characteristic o f  interval direction 

V ~f x is proper 
~ := A i f  x is improper. 

It follows from the definition that x = f~ x. 
zEpr  (x) " 

Definition 1.8. (of  arithmetic operations) 

a , b : =  ~ Qb a ,b . ,  * E {+, - ,  ', /}. 
a.epr(a) b.Epr(b) " 

According to this definition all operations can be described as operations with endpoints of 
intervals in the following way. 
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Add/6on 

a + b  

a - b  

MIdliplictaion 

1) if a _> 

2) if a _> 

3) if a > 

4) if a > 

5) if a _< 

6) if a _< 

7) if a <_ 

8) if a _D 

9) if a C_ 

10) if a C_ 

D/T~i/on (for 

l i b  = 

a/b  = 

= [~ + _b, u + ~); 

= h -  ~ ,~-_bl .  

0 & b > 0 then ab = [ab, "abe; 

0 & b < 0 then ab = [fib, fib-]; 

0 & b -'.'.'Q 0 then ab = [fib, ~] ;  

0 & b C_ 0 then ab = [ab, flb]; 

0 & b _< 0 then ab = [ ~ ,  ab]; 

0 & b _D 0 then ab = [fib, ab]; 

0 & b C_ 0 then ab = [~,  ~_b]; 

0 k: b _D 0 then ab = [min{ab, i~_},max{ab, ff~}]; 

0 & b C_ 0 then ab = [max{ab ,~} ,min{ab ,~_}] ;  

O & b : 3 0  then a b = O .  

0 ~ pr(b)) 

[l#, l/hi; 
a-(i/b). 

Algebraic d/z,/.~/on (solution of equation bx = a for 0 ~ pr(b)) 

l l . b  := [lib, l/b-I; 

al .b  = a .  (lib). 

L. KUPRIYANOVA 

A detailed presentation of properties of the operations introduced above can he found in [1]. 
Here the suhdistributivity property, some generalized concept of a united interval extension. 
and also the inclusion monotonicity property for the introduced operations will be necessary. 
Theorem 1.1. (on snbdistributivity) Let a, b, c E I* (  R). 

I f  a is a propcr interval then a(b + e) C_ ab + ac; 
i f  a is an improper interval then a(b + c) ~_ ab + ac. 

Definition 1.9. I f  f ( x, y. ) is a real function, 

x = ( x l , z 2 , . .  ,zp) r is a proper interval vector, 
Y = (Yl ,  Y2 . . . . .  yq)T i$ an improper interval vector, 
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we de/lne "/nterval extendons ~ of  f as 
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20 Algebraic interval solution for the system with dual 
matrix 

Let us consider the real linear algebraic system 

A.x = b (2.1) 

the coefficients of  which vary in intervals such that A. E A, b. E b, where A is a proper  interval 
n x n-matrix, b is a proper  interval n-vector, and (VA. E A) det(A.) ~ O. 

Definition 2.1. The united solution set (or a union o f  all solutions os the real system (2.1)) is 
that set of  real vectors 

x" := {x I A.x. = b., A e A, b. e b}. (2.2) 

It follows from the definition that 

(V.xex ~ (SA. eA)  (gb. eb) A x=b .  (2.3) 

In general, x* is not an interval vector. 

Problem. T o  find a maximal inner estimation for x ' ,  i.e. a maximal interval vector z satisfying 
the property (2.3) 

(Vx. e z )  (3A. c A )  (3b. e b )  A x. = b .  

T o  solve this problem, let us consider an interval system 

A x  = b. (2.4) 

:= V A f(~y.), 
{ e x  y epr(y) 

f*'(x,y) := A Vf(x.y.) �9 
yepr(y) x ea: 

Remark. In general these two functions can be distinct. However, we shall consider a function 
f ,  where each interval occurs only once, and for this function, f*  = f**, and both f* and f** 
coincide with the natural interval extension obtained when intervals replace the real variables 
and interval arithmetic operations replace corresponding real operations. 

T h e  following theorem from [1] will be needed later. 

Theorem 1.2. If f* (x, y) is proper then 

(Vx. e x)(:ly, e pr(y)) f(x.,y) e f '(x,y). 

It is not difficuh to show that inclusion monotonicity of  interval operations is valid for all 
elements of I*(R). 

Theorem 1.3. Interval operations introduced by Definition 1.7 are monotone with respect to 
inclusion, i.e. for a, b, x, y E P (  R) 

( a C _ b ~ z x C _ y ) = ~ ( a * x C _ b , y ) ,  w h e r e * E { + , - , . , ~ } .  
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Definit ion 2.2. An interval vector x a satist},ing the system (2.4), i.e. an interval vector which 
when substituted into (2.4) makes the equations o f  this system the true eqnalities, will be called 
an algebraic interval solution o f  this system. 

In general, algebraic interval solutions are not unique; additional investigation is necessary 
to determinate conditions for uniqueness. However, Shary [8] has given conditions that imply 
uniqueness for proper matrices. Uniqueness is not relevant to the properties studied here. 

Definit ion 2.3. A set o f  teal vectors [3, 5, 6] 

xc_:={x.  I A x C - b }  

will be called a tolerable solution set. 

It follows from the definition that 

( V x E x c ) ( V A .  e A )  (3b. E b )  A.x. =.b (2.5) 

xc  C_ x*, and also that xc  is not an interval vector in general. However, if the system (2.5) 
has the algebraic interval solution x a, all components of  which are proper, then x" is an inner 
estimation of the tolerable soh|tion set, x ~ C_ xg.  

Indeed, if A x  ~ = b with aij, xj, bj E I ( R )  (i = 1, n, j = 1, n), then 

bi = a a a (/.,/1.E 1 -~ a i 2 x  2 .4- . . . _{- ainXn. 

It follows from the definitions of  interval arithmetic operations for proper intervals that the 
above equality implies 

(V~j ~ .2:3, j ----- ~ .n)  (Vai j ~ a / j ,  j ~- 1, n )  a i 1 ~1 q- " " " -}- a.in .Xn ~ bi 

and for the whole system 

that is equivalent to 

(vz. e z") (VA. e A) A..z _c b 

( V . x E z  ") (VA. E A )  (3b. Eb )  A..x=b.. 

Details of  the tolerable solution set and on methods for finding its inner estimation appear in 
papers of  Shary (e.g. [5, 6]). 

An algebraic interval solution for a system with dual matrix 

dual (A)x = b (2.6) 

where dual(A)ij  := dual(aij) = dual[a_ij, ~ij] = [~ij, aij], will be denoted by x a. 

Details concerning algebraic interval solutions are possible to see in papers of Zyuzin [12, 
13] and Zakharov [9-11]. We wish to show that th.e algebraic interval solution of the system 
(2.6) x d has some useful properties, formulated in the following theorems. 

Theorem 2.1. Any  algebraic interval solution o f  the system (2.6) with proper components 

( z  d E I ( R ) )  is included in the united solution set x* to A z  = b, that is, 

:::gd C X*. 

Proof. Let us consider the i-th row of the system (2.1) 

(A. z. )~ = a.,il �9 z.l + qi2" x.2 + " "  + q~." z. = b. i. 
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Let a.i := (ail,a.i2,... , a.in) be a row of the matrix A., x.-- ( .xt , . . .  , x.n) T, and f i(a.i , x)  := a i . x  .. 
Given a real function f i ,  intervals 

dual(o~) = ( dual(a,, ) , . . . ,  dual( a,, )) 

and 
xd  ~d d 

= ( t . , . . . , X n )  

where dual (a)  is an improper  vector and x d is proper,  we shall consider the interval extension 

fi* := V A fi(a.,, x.) = dual (a i , )x  d + dual(ai2)x d + - - .  + dual(ai , , )z  d = bi (2.7) 

�9 . E ~  a i Eai 

where fi* is a row of  the system (2.6), and, for fi ,  the fimctions fi" and fi *~ correspond to the 
natural interval extension. Then  according to Theorem 1.2 we have 

(Vx. Z x d) (3qu, E ait: (k = 1---,-~)) a.i,- x., + a.i 2 �9 $2 + " "  + a.i,, " x.,, Z bl 

o r  

(V.x E xd) (3a.~ E aik (k = T-~)) (3b., E bi) % .  x. I + . . .  + q,~.  x.. = b.i 

and for the whole system 

(w. (3.4. A) (3b. b) A.x = .b. 

Hence, every real vector z. f rom z d is a solution of some real system, i.e. we have proven 
c:_ z'.  o 

T o  prove Theorem 2.3 below, an inner estimation property of  x d, the properties in the 
following lemmas are necessary. 

Lemma 2.1. Let a, b E I ( R ) ,  d E I*(R) ,  and a f l  b ~ 0. 

l f  a + d E I ( R )  a n d d > w ( a ) + w ( b )  then (a + d) N b =  O. 

(Let two proper intervals a and b intersect. Then  the proper intervals a + d and  b do not 
intersect i f  the lower endpoint o f  d is greater than the sum o f  widths of  intervals a and b). 

I , emma 2.2. Let a, b E I ( R ) ,  d E I*(R) ,  and a t3 b # 0. 

I f  a + d E I ( R )  and "d < - w ( a )  - w(b) then (a + d) fl b = 0. 

(Let two proper intervals a and b intersect. Then  the proper intervals a + d and b do not 
intersect i f  the upper endpoint o f  d is less than the sum of  widths of  intervals a and b taken 
with opposite sign). 

T h e  assertions of  Lemmas 2.1 and 22  can be easily checked. 

I , emma 2.3. Let a , x  E I ( R )  be proper intervals. Let the real numbers x ' , z "  E x take values 
o f  endpoints o f  the interval x depending in the following way on the signs of  a and  x: 

1) i f  a > 0 then x'  = x_, z"  = 5; 

2) i f  a < 0 then x'  = 5, z"  = x; 

3) i f  a ~_ 0 & x >_ 0 then z '  = z"  = x_; 
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4) i f  a ~_ 0 & x, <__ 0 then x '  = :r" = "~. 

~ e .  the .~ .~ l i t r  ~=" = ~ = ' +  d is ,,a,d. where d ~ r ( R )  , . d  _~ = ~ ( . ~ )  + w(d .~ t ( . ) -  =). 
L t m m a  2.4. Let a , x  E I ( R )  be proper intervals. Let the  real numbers x ' , x "  E x take values 

oF endpoints o f  the interval x depending on the signs of  a and .z in the following way: 

I) i f  a > 0 then x'  = "~, ;d' = :r; 

2) i f  a < O then x '  = ~, Z '  = ~,  

3) i f  a ~_ O & z > O then x '  = x" = z_; 

4) i f  a ~_ 0 & :r <_ 0 then x '  = x" = ~. 

Then the equality az/'  = ax' + d is valid, where d E I ' ( R )  and ~I = - w ( a x ' )  - w(dual(a), z). 
The  validity of  these Lemmas can be easily checked using the rules of  multiplication I)-10)  

from Section 1. 

Theorem 2.2 (Fundamental theorem on inner es~imat/on). 

An algebraic interval solution x u o f  the  system with dual matrix (2.6) , with ~ E I ( R )  

(2 = ~ , n ) ,  is a m a x i m u m  inner estimation for the  united solution set o f  the system (2.1) in the 
sense o f  inclusion. That  is 

(=, c =.) ~ ((w D =') ~ ~ ='). 

Proof By Theorem 2.1 the interval vector f f  satisfying the system dual(A) �9 x = b is included 
in the united solution set x" of  the system A.x. = b., where A E A, b. E b, i.e. it is an inner 
estimation for x ' .  Now we wish to prove that this estimation is max imum in the sense of  
inclusion, that is (V:~: D a: d) ~ ~ :r ~ 

In other words, we must show that any vector wider than :r d includes points which do 
not belong to x" and, hence, are solutions for no real system (2.1). 

Let~ ( ~ ,  ' , d  _-d . ----- "' x3d'-l, [ ~ '  =j -~-~1, ;L~j+I,""", =n) be an interval vector whose 2-th coordinate 
is greater  by e > 0" than x d. It is necessary to show that ~: overflows the boundaries of  z*, i.e. 

or at least for some row 

( ~  E :f:) (VA E A) (Vb. E b) (A~), # b. i. 

Let us take a row such that 0 r int(ao) .  This  is always possible to do. Indeed, if for all 
i, a O ~ 0 were true, then A would contain a real matrix A. with a zero column, but the 
assumption is VA. E Adet (A . )  ~ O. 

I. Assuming aij > 0, we choose ~ E ~: so that 

{ ~ ,  

f o r k # j  ~k = ~, 
O, 

and ~j = ~ + c .  

if ( ~  > o) v/(~,~ _D o) s~ (~  < o) / 
if (a~k < o) v ((~k _~ o) s~ ( ~  > o) ) 
if (a.~ 3 o) ~ (=~ _3 o) 
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Now for ~ we wish !o ~how thai ((VA. ~ A)(Vb ~ b) (J~), p b,) ~ ((VA. ~ ,4) (Ad,~)i 

bi) r ((A~)i n bl = 0), given that A is proper. Thus. it is necex~ary to verify that (A~)i and 
bi are disjoint. Let us choose x E x d so 

{~__~, i f ( a , , > 0 )  V/(o~,_D0 ) & ( ~ > 0 ) /  

for k ~ j x.e = ~"~, if (a ie< 0) V ((ai~ D 0) & (x~ < 0) 
0, if (a/e _D 0) & (x'~ _D 0) 

and x.~ = :r d. 

This choice of ~ and T ensures the conditions of Lemma 2.3 for all k ~ j ,  if we take a/~, x~, 
.x e. and F~ as a, x, x', and x" respectively. 

Then  Lemma 2.3 implies 

a i k - ~  = ai~.  x.e + de, where d~, ~ r ( R )  and d_~ = w(aa~, x.) + w(dual (a ie) -xe) .  (2.8) 

The case not treated by the Lemma, a~k _D O, ~ D 0, is trivial: taking ~ = O, x.e = 0 results 
in aa~- F~ = aik- .x~ = 0 and de = [0, 0], 

w(a,~ �9 =.e) + w ( d ~ ( ~ ) .  ~ )  = ~([0, o]) + ~([0, 0]) = 0 = ~ .  

For k =  j 
~ . ~ j  = ~ , . ( ~ + ~ ) .  

Since a 0 > 0 by assumption, the following cases are possible: 
a) x~ > 0 => x-~ > x_~ > 0 

a , ~ . ~  = ~ . ( ~ + ~ ) =  [ ~ j . ( ~ + ~ ) , ~ , . ( ~ + ~ ) ]  

= [_%.~_~ +~,. (~- ~_~' +~),~j.~_~ +~j. c~-~_~ +~)l. 
= ~, �9 ~ + [~  �9 c ~ -  ~ + ~),r~j �9 (~-_~,'  + ~)1 
= ~ �9 x.~ + d.~ 

where _dj = _aij. (z~j - x~) + ~ j . e .  

w(~jx.j) + w(dualCao)xj) d - -  d d _--d = ~([~:_~,~:_~]) + ,~([r~j,~j]. [~_~,~]) 

= r ~ :  d - ~,:_J + ~([~:_~, ~ j ~ ] )  
- d d+a~jx---~_-- d = a~:_~ - a~:~ a~jx_~ 

_---d d d j .  = ~ j ( ~ j  - x ~ )  < _ 

h ) ~ < o ~ 4 < ~ < O .  
Taking ~ sufficiently small so that ~ + e < 0 (if for a small increment one can find a 

point not belonging x* then the more so for a larger one), one can write 

a,j.,~., = a,j- ( ~  + ~) = [~.,. ( ~  + ~), ~, .  ( ~  + ~)] 

= [~,j.~ +r~.~- ( ~ -  ~ +~),~.,.~ + ~ j . ( ~ - ~  +~)1 
d d = ~.~.~ +[r~.~.(~-~ +~),~J'(~-~-~+~)t 

= a i ~ . x j + d j  
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w h ~  a, = ~,j.  ( ~  - ~ )  + r  

u)(aij~j) + 111( dual(aij)Irj) 

= r ~ j ( ~ -  4 )  < _d,. 

~) ~ _ ~ o ~  ~_~_< o__~. 

ai~ �9 ~j = , , j .  ( ~  +~)  = [~,j. ( ~  + , ) , ~ i j -  ( ~  +~)] 
= ['aij" ~..~.; "}- (aij~-ff -- d d - a~_z i + a.mj~), m+j - ~ j x  i + ~ j~) ]  
= o , ~ . ~ . ~ + a ,  

where  dj  = ((l i j~ j - -  ~ij;~ d) q" a_ij'~. 

W(a./jX.j) + w(dual(ai j )x j )  = w([~/jx_~,~jx~] ) q - , , , ( [ ~ , % l  a _-a �9 [~-~, ~ j l )  

- ( ~ j ~  - " _aj. - - a ~ )  < _ 

Thus, we see that d.~ = w(ai6, x.6) + w(dual(aik)x~) for k ~ j , .  and for k = j d_~ > 

Let us denote d = ~ = t  d6. Then  

6=I 6---! 

k = l  6=1 

= W a i 6 "  .z6 + w dual(a/6)x a 

= w((a . . x ) i )  +w(b , ) .  

(2.9) 

Given (2.8) and (2.9), it may be written for whole i-th row 

(A~)i = aik. ~k = Y:(ai6 �9 x.k + d6) = ~ ai6.  x6 + d6 = (A .x)i + d 
6-~1 k = l  6=1 k = l  

i.e. 

(A~), = (Ax)i  + d 

where a > w((A~.),) + w(bi). 

For intervals (Ax.)i and hi, the conditions of  Lemma 2.1 are as follows: 

( 2 . 1 o )  

(Ax.),, b, E I(R),  d E I*(R) (Ax),  N b~ # 0. 
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(The iatetvil~ iatersect heratee ~ E ~'~ C_ z ~ Ix.kings to the united solution set.) 

(A~)~ + d = (A~)~ ~ ~(a) 

(Ix, cause A is proper and ~ is a real vector) and 

> 0 + w(b ) 

25 

so Lemma 2.3 implies ((Az), + d)N b~ ---0, i.e. (A~), 13 b, = 0, the intervals (A~), and bi are 
disjoint. We see that ( ~  E ~) (A~)i13b~- 0, i.e. ~ doesn't belong to the united solution set ~:'. 
11. For a~j < 0 the proof is similar. We choose ~ E ~ and T ~ ~ so that the conditions of 
Lemma 2.4 would hold 

{ 4 ,  if (aa~ > O) V/(o,a _D O) & ( ~  < 0)) 
for k # j ~ ffi ~'~k, if (a~t < O) V ((a~t D O) & ( ~  > O) ) 

o, if (a~ _~ o) s~ ( ~  _~ o) 
and F~ ffi ~ + ~ ' ,  

{ ~, if (a~t > O) V I(a~ _~ O) & (z~t > 0)) 
for k ~ j Tk = 4 ,  if (air < 0) V (,(o~k _~ 0) & (Z'~t < 0)) 

0, if (a~ _D 0) & (z~t _~ 0) 

Then we will obtain (A~), = (A.z)i + d, where ~] < -w((Az.)O - w(b,), and conditions of 
Lemma 2.2: 

(Az)i, bi E I(R),  d E r ( R )  
(A~), n b~ # 0 
(Ax)~ + d = (AO~ e r(a) 

and d <  -w((Az . )O -w(b~) 

then Lemma 2.2 implies ((Ax)i + d) 13bi -- O. 

The proof for ~ = (~'~1 . . . .  ,x~j-t, [~'~j - e,l~l,=~j+t . . . .  ,~ , )  is similar. [3 

30 Finding algebraic interval solutions for interval linear 
algebraic systems 

As follows from the foregoing, a maximal inner estimation for the united solution set of an 
interval linear algebraic system with the proper coefficients is an algebraic interval solution for 
the system with dual matrix, i.e. for the system with improper matrix and proper right-hand 
side. Besides, there are tasks that reduce to solving systems with both proper and improper 
interval coefficients. Therefore, it is desirable to know how to find this solution in the most 
general case when o~.j, b~, z~ E I*(R) (i -- ~,n, j = ~,n). 

In [12, 13] an iterative algorithm was proposed for finding an algebraic interval solution 
z ~ provided that the elements of the matrix A , vector b and solution vector ~ are proper 
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intervals. However, the same scheme can be applied m system (2.6) and to systems of  general 
form without any assumptions on "properness" of  intervals. We shall prove this here. To  
construct and to su "bstantiate the algorithm we tLSe the general theory of solution of operator 
equations [4]. 

Let us introduce a linear muhiplic.ation by real numbers on [*(R)  

~ o x  := [,xz_.,,X~]; 

( -1)  ox  = [ 'x_,-3] =opp(x) .  

Evidently, I ' ( R )  with the operations of addition and linear muhiplication by real numbers 
is a linear space. Analogously, the set 

r ( n - )  := {~  = ( z , , . . . ,  z , )  T I x~ e r ( R ) ,  k = i--.-~} 

with the corresponding componentwise operations is also a linear space. It is easy to see that 
I ' ( R " )  with a norm, for example, 

llzlt := maxmax{t~] ,  t~,~t} 
k 

is a complete linear normed space, i.e. a Banach space. 

For elements of I*(R")  we assign a partial ordering with respect to inclusion C_. 

I l t f la l tkm 3.1. :r, y E I*(R")  

(z c_ y) r  (y e z ~ K)  

where y e x  := y +  ( - 1 )  o x  = y + opp(x),  K := {x E I ' ( R " )  I x_k < 0 < ~ k , k  = ~ , n }  is a 
cone of llanach space [41. 

(It is obviovs that Definition 3.1 is consistent with Definition 1.4 for elements of I*(R)) .  

D t f i ~ i c ,  a .8.2. Let v , w  E I*( R") .  A set < v , w >  := { x I v C_ x C_ w} will be called a conic 
segment. 

The following theorem is used for the construction of an iterative method. 

Th t ,~em 3.1. Let K be a regular cone, G a continuous antitone operator on the conic 
segment  <vo, wo>, and assume that G transforms <vo, wo> to itself. Then the operator G 
has at least one f ixed point on <v0, wo>, and the  sequences 

vk = Gw~- l ,  w~ = Gvk, k = 1 , 2  . . . .  

converge to fixed points v" and w" o f  G, and also 

voC_vl C_...C_v*C_w*C_...C_wl C_wo. 

The proof is analogous to similar theorem on isotone operators proposed in [4]. 

Now consider the interval system 
Ax = b (3.1) 

without any assumption on "propernessy of the intervals and only assuming that VA. E 
pr(A) det(A.) ~ 0. We transform (3.1) to the form 

x = B ~  (3.2) 
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where ( 's )/ (Bx) i  := b iO  aikxk .aii, i = 1,n. 
k = l  k#! 

Without loss of  generality we can assume 0 ~ aii. Indeed, if VA. det(A.) # 0 then by means 
of  a simple transposition of the rows we can always ar range it so that the intervals of  the 
main diagonal do not contain zeroes. Eyidently, an  algebraic interval solution of (3.2) is 
simultaneously an algebraic interval solution of  (3.1). 

Theorem 8.~. I f  the operator B o f  (3.2) transforms the conic segment <v0, w0> to itself, 
then B has at least one fixed po/nt on <v0, w0> and the sequences 

v ~ =  Bw~_i ,  wk = Bvk,  k = 1 , 2 . . .  

converge to f ixed points v* and w* o f  B.  Also, 

vo c vl c . . .  c v" c_ w '  c . . .  c w l  c_ wo. 

Rmnark. in all cases, with proper or  improper  coefficients, each vk is an imler estimation and 
each wt  is an outer estimation for the algebraic interval solution. For example, to find an inner 
estimation to the tolerable "solution set to A x  = b, with A and b proper,  we may take any v/~. 
Similarly, for an inner estimation m the united solution set to the proper system C x  = d, we 
set A = dua l (C) ,  b = d, and take any v~. In other cases, depending on the original problem, 
the vt  or  wt  may be useful. 

Proof. Kaucher [2] has proved the continuity of  interval operations in his extended arithmetic. 
T h e  operator  B can be written by interval arithmetic operations as 

( B x ) i  : =  bi + opp aikxk  �9 (1 / .a l i ) ,  i = 1 ,n .  

But 0 ~ pr(ai/) ,  so 31/.aii E I*(R).  From continuity of  the corresponding arithmetic operations 
it follows that B is continuous. 

Now we shall prove that the operation + opp or e is antitone: 

i f x C _ y  then a e x D a e y .  

a e z  = [a_-_=.,~-~] ,  a e y =  [ a_ -_y ,~ -~ ]  
(x c_ y) **. (_~ < = & �9 < ~) .~ (-=_ < -_y & - ~ < - ~ )  

(a_-x < a - y  ,k a - ~  < ~ - ~ )  ~ ( ae=  ~_aey). 

By virtue of  antitonicity of a e x and of isotonity of  interval arithmetic operations 1.8 (see 
the Theorem 1.3) B is an antitone operator. Thus  B is a continuous antitone operator,  and 
Theorem 3.1 is valid for it. E] 

Choosing htititd approxinmtion. If we succeed in finding Vo C x a = B x  a, then because of  antitonicity 
of  B: Bvo D B x  a and hence Vo C_ Bvo. Furthermore,  denoting w0 = Bvo, we have 

1) v0 C_ x a C w0 there are two-sided initial approximation for x~; 

2) (vo c wo) ~ (Bwo C_ Bvo = wo). 
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We have 
vo C_ Bvo & Bwo C_ Wo. 

Thus if Vo C BWo, then the conic segment <v0, w0> is transformed to itself, namely, the 
left endpoint is transformed to right one and the right endpoint is transformed inside the 
segment. If B is a contraction operator then Vo C BWo always. Bnt that is not true in general. 
Specific rules for good choices of initial al~proximation have not yet beeh formulated in general. 
However, when inner estimation of the  united solution set, the main topic of this paper, is 
desired, the real solution of the system 

mid(A) .x. = mid(b) 

consisting of the midpoints of the interval coefficients of (2.4) can be taken as an initial 
approximation. 

4. E x a m p l e s  

Here, examples of: inner estimation of the united' solution set by means of computation of an 
algebraic interval solution are presented. 
Example I (see Figure 1). 

([2,4] [-2,11 [-2,21~ [-1/3,1/31'~ 
A = ~,[-1,2] [2,41 ) b-- ( , x" ' [-2,  2]]  = ( [ - I / 3 ,  I /3] )  ' 

[4,2] [1, -2]'~ xd {'[--1, I] 
d.al(a) = ([2,-11 [4,2] J' = 

Example 2 (see Figure 2). 

{'[2,4] [-1, 1]) ([0,2]) x, = ([0.2,0.4]~ 
A =  ~,[-1,1] [2,4] , b--" [0,2] ' [0.2,0.4])' 

[4,2] [1,-1]'~ xd {[0, 1] 
dual(A) = ([1,-11 [4,2] ) '  = \ [0 ,1])"  

Example 3 (see Figure 3). 

) ( ) /'[1,2] [ -2 , -1]  [1,2] x " =  [li 'i 'lg]'~ 
A =  \[0,1] [3,41 , b =  [1,3] ' fl "1 1 '  ~, ~J - 

([2,1] [-1, -2]~ xd { [1,2]~ 
dual(a) = [1,0] [4,3] ) '  = \ [0, 1])" 

Example 4 (see Figure 4). 

A =  ( [2 ,4]  [-1,1]'~ ( [ - 3 , 3 ] )  x " =  ([-3/4,3/4] '~ 
[-1,1] [2,4] ) '  b-- 0 ' [3/8,-3/S]1 

x ~ doesn't exist in the set of proper intervals, 

{ [4,2] [1, -1]'~ xd ([--1.~, 1.5]) 
dual(A) = ~, [1, -1] [4, 2] ) '  -- 
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