
R e l i a b l e  C o m p u t i n g  1 (1) 1995 .  pp .  3 3 - 4 0  

Why intervals? 
A simple limit theorem that is similar 
to limit theorems from statistics 
VLADIK KREINOVICH 

What is the set of  p~, ib le s'aines ~d" a n~asnremem error? In the majority of  practical applications, an 
error is caused m~ 1~, a single cause; it is camaL.d by. a large mtmber of inclependent causes, each of 
which adds a small O.nlxment to the t(aal error. This fact is widely used in v, atistics: Namely, since it 
is known that the distlilxltitm ~d" the snm o( many independent stnali random variables is close to one 
of the s/~called intinitely divisible arars (a class that includes the wen-known Gaussian distriixlthm), we 
can safely a~s,nne that the distrii~,tlon of  the tmal error is infinitely divisible. This asa~mlxion is reed 
in the maj.ri ty of the statislicai appGcations. 

In this paper, we prove a similar resuk for the set (g possible vah~es of an error. Namely. if an 
error equals the stun ,d" many an.all independent ctnnponents, then its se~ at" lxmiide vahg.s is close to 
an interval; the smaller the omqxments,  the ckmer this set m an interval. 

This res~ih provides ~me im~re jnslifmation for ~ n g  intervals in data pn,cessing. 

I[oneMy ~mTepBaabz? 
I]pocTaa npeAeAbH~ TeopeMa, aHaAoranHa,q 
npeaeAbm, ZM TeopeMaM CTaTnCT.XI4 
B.  KPEI~HOBHH 

I-~TO Ilpe,lCTaB.1111eT COI'M)i'I MHI)~ICCCTBI) )Hacl~flnl'l nOl~lllXOCTel[I H3M~XIFII~I? S ('io.lbUlllXCTISe IIpaKTII- 

�9 IeCKXX |lplI.I()~iKi_-HIII'I l~ )3 f l l l [HOl~X~ l |o fp~l ln l )cTel l  (~)vc,1()l~IX~l~) He e,IXl l~ 'Tl~l lOl l  IIpHHXHO~I, a ~')o.lb- 

l lnlM KO,111Sl~Tm)kt X~3,1NICIIMIdX ,'|pyr aT : lpyra l lpl lqHH, K~L~,IaH H3 KOTO~I4X I~(XnT Cl501~1 xa.lexb~n~l 

ISg.~l,1 B (~lltVl() l lOl~lllXi~--Ti~ ~TOT I ~ K T  lllXpOgO IIalO.IB3~eTCA is CTaTIHCTXKe: llOCKO,IbKy X 3 ~ T X O ,  

s~Irl) pac|l~e.le.leHlle cyMMx (N),IBIIlOIO qnc,la ~Q,1o31~qalllnX c . l y ~ l ' i x H x  | le~MeXHblX ~,I|13KO K o,Ixo = 

My 113 TaK Xa3hIBaeMi4X ~'ML~l&OlleqlkD ,le.111MuX pacllpe.~e.letlx~l (K gOTOpXM l lpxxa,~le;gXT X IUXpOKO 

l l 3 l ~ x r  HopMa{|IdHK)e pacllpe:le;l~xlie), MO~XO C yBe~XXOCTblO CqXTaTb, qTO ~Cllpe. le. lenlf~ cv&iMap- 

x ( ~  IlOl]~nlHOCTII {')~CKOHeLIHO ,Ir [~kroT BIdBO,~ l~CllO,lh3yeTC~4 B {')O~II~IIIFIHCTI~ CTaTHcTnqc*CKIIX 

llpil.10~eXlll ' l . 

HaCTOMIIICI~I paC~)Te ,1oKa3xaaeTcx ana.lOr$lqnl41% pe3~,IbTaT .qblA MIK)~eCT P-~ IAO3MO;4&HMX 3xa- 

sleHlll'l nOfDelIIXi)CTIL A IIMCXHO, ec.Ix 3HaqexHe llOrpelllXOCTx paBl~) C~MMe ~)o.]MllOrO lr 

xe~GIBIIClIMIdX KOMIIOIICHT MO,]O~I ISe;lllH|IXld, TO MXO~KeCTBO ee BO3MO~Xh/X 3xaqexx~l ~,~IX3KO K llYTep- 

Isa.]y, t lpl lqeM tl{fM MCXhille ]xaqxMocTb (isK.la,~) KoMnOHeXTOB, TeM 6,1X~ge 3To MXO~I~es K xnTepua.~y. 

~ H H l ~ i l  ~3~;lhTaT HI~I]ReTC,g enle (I~IXXM apI~MelHTOM B HO,~b3y llpXMeIReXXJl IfXTepisa~OiS [IpX 

~ 14~k~(~IT K ~ ,~aXnhlX. 

(~ V Krei.ovich. 1995 
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1. 

V. KREINOVICH 

Formulation of a real-life problem: What is the set of 
all possible values of an error? Is it necessarily an 
interval? 

Main question: are  all v a l u e s  o f  error  possible? Suppose that we have a measuring device 
that measures a physical quantity z (e.g., mass or voltage) with a guaranteed precision e. This 
precision is usually supplied by the manufacturer of  this device. The word "guaranteed" means 
that if the measurement result is ~:, then we are sure that the actual value x satisfies the 
inequality lY: - zl _< 6. 

In other words, possible values of  an error e = ~ - z belong to all interval [--& 6], and 
possible values of  :r belong to an interval [Y:- G :~ + 6]. 

If  this estimate is an "overshoot" in the sense that in practice the errors are always smaller, 
then we are not using this device at its best: its results are more precise and thus more reliable 
than we think. So, it is important to get this ~ as small as possible. 

Now, suppose that this ~. is indeed the smallest possible in the sense that: 

�9 no errors are greater than ~ but 

�9 there have been cases (during the testing) with the errors pretty close to e and to - 6 .  

In other words, both endpoints of  the interval [ - G  6] are possible values of  the error. 

The  next qnestion is: are all intemud poinL~ of lhla inler~trd pox6ble ~,d~s of  the error? 

In some exotic cases, the answer is "no". We can imagine realistic situations when both 
values - 6  and e are possible values of  the error, while some values inside an intervai [ - r  6] 
cannot occur as the values of  the error. For example, suppose that we are measuring the 
electromagnetic field in the close vicinity of  a computer memory element. In this situation, the 
external field caused by this element is the main source of  error. This element can be in two 
possible states (depending on whether it represents bit "1 ~ or bit ~0"), so we have two possible 
values of  an error. Crudely speaking, for this situation, the set of  possible values of  e consists 
of  only two points { - ~ ,  6}, and does not contain any internal values at all. 

If in addition to this main source of error, we take into consideration other possible 
sources of  error, then the resulting set of  possible values of  total error becomes a union of  two 
small intervals: one close to - e ,  and a one close to 6. 

In the majori ty of  the cases, all interior values are possible. The  case when we have 
one prevailing cause of  error is really exotic. In the majority of  cases, an error is arising from 
the cumulative effect of  a large number of  independent factors. In these cases, experiments 
usually show that all the interior values are possible (see, e.g., a survey monograph [5] and 
references therein). In other words, the set of  all possible values of  the error forms an interval 
[ - G  ~]. 

A question. WI 9" ~ the wl of : d l / ~ 6 b t e  ~r of e an ilUer~r Is it an empirical fitct or a 
theoretictdly jtt~tifeed law? 

What we are planning to do. In this paper, we prove the fact that all values from 
an interval are possible can be theoretically justified (in the same manner as the normal 
distribution is). 

From the mathematical viewpoint, this result is extremely simple to prove. However, we 
believe that our result is worth writing down, because it provides one more explanation of  why 
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intervals are so widely used in data processing (there are lots of examples starting from the 
pioneer paper [4]; for a latest survey, see, e.g., [1D. 

@ How to explain why the set of all possible values of 
an error is an interval: the main idea 

An analogy with limit theorems of  mathematical statistics. A similar situation is analyzed 
in statistics: We have a random error that is caused by a large number of  different factors. 
Therefore, this error is a sum of the large number n o f  small independent component random 
variables. It is known that when n ---, cx3, the distribution law for such a sum tends to one 
of  the so-called infiniMy divisible distributions (see, e.g., [3]; for more recent results see, e.g., [2]). 
This class includes the well-known Gaussian (= normal) distribution. 

Therefore,  for sufficiently big n, we can use infinitely divisible distributions as a perfect 
approximation for the error distribution. 

Comment. Traditionally, in statistics, mainly Gaussian distribution is used (see, e.g., [8], pp. 2.17, 
6.5, 9.8, and references therein). However, other distributions are also necessary because error 
distribution is often non-Gaussian (see, e.g., [5, 6]). 

How we are going to use this analogy. We consider the case when the error e is equal to 
the sum of  small independent components: e = et +e2 + - . .  +en .  To  make this a mathematical 
statement, we must somehow explain what "small" means, and what "independenC means. 

Cmmnent. In this section, we will try net only to give the definitions, but to provide mot/zca/om 
for these definitions.. The resulting definitions will be then formally stated (or repeated) in 
Section 3 (so, a reader who is interested in the mathematical result only, can skip this section, 
and go to Section 3). 

Let us denote the set of  all possible values of  a component ei by Ei. 
What does "small" mean? If a number ~i > 0 is fixed, we say that a component is ii-s~udl 

if all its possible values do not exceed /i, i.e., if lal _</f for all a E E i .  

What does "independent" mean? This is easy to explain. For example, let's consider the 
case when the components ei and ej are not independent; e.g., they are mainly caused by the 
same factor and must therefore be a-close for some small c~. Then, for a given value of  ei, 
the corresponding set of possible values of  ej is equal to [ei - a ,  ei + a], and is thus different 
for different el. 

Components ei and ej are independent if the set of  possible values of  ei does not depend 
on the value of  ej. 

In other words, this means that all pairs (ei, ej), where ei E Ei and ej E Ej ,  are 
possible. Therefore,  the set of  all possible values of  the sum ei + ej coincides with the set 
{ei + ej : ei EEi ,  ej E Ej}, i.e., with the sum Ei + Ej of  the two sets Ei and Ej.  

Before we turn to formal definitions, we need to make one more remark. 

We will consider closed sets of  possible values. Our  point is that if the set of all possible 
values of  an error is not closed, we will never be able to find that out. Indeed, suppose that 
E is not closed..This means that there exists a value e that belongs to the closu.re of  E, but 
does not belong to E itself. 

Let us show that in every test measurement, we could get this value e as the measured 
value of  error. Indeed, in every test measurement, we measure error with some accuracy 6. 
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Since e belongs lo the closure of  E, there exists a value c' ~_ E such that le' - e t <_ 6. ~ ,  if 
the actual error  is ~" (and e' E E. and is thus a p,~ssihle value c~f a~ error), we can get e as 
a result o f  measuring that error. ~ ,  no matter how precisely we ille~lStll-e error.s, r is always 
possible. Therefore,  we will never be able to experimentally distinguish between the cases when 
e is possible and when it is not. 

In view of  that, to add e to E or not to add is purely a matter of  convenience. Usually, 
the border values are added. For example, we usually consider closed intervals [ -~ .e]  as sets 
of possible Values. Following this usual agreement, we will assume that the sets E and Ei are 
cto.~d. 

Now, we are ready for formal definitions. 

3. Main result 
Let us give some (more or less) sumdard definitions and denotations. 

R~nark. In this section, we will ctmsider only 1-dimensional case (i.e~, all our  sets will be subsets 
of a real line R). 

Dcfinitlons and denmatimug Bv a ~mn A + B Of two sets A, B _C R, we understand the 
set { a + b :  a E A ,  b E B } .  For a g i v e n b > 0 ,  a set A is ca l l ed6 - s .ud i i f l a l_<6  for a l i a E A .  
By a distance p(A. B) between sets A and B. we will imderstand Hausdorff  distance (so. for 
sets. terms like "/~<lose" will mean b<lose in the sense of  p). 
Comment. For reader's convenience, let us reproduce the definitimi o f  Hausdorff  distance: 
p(A, B) is the smallest real nmnber /~ for which the following two statements are true: 

�9 for every a E A, there exists a b E B such that la - b I _< 6; 

�9 for every b E B, there exists an a E A Such that ja - b! _< 6. 

Plropoaition 1. It E = E1 + ""  + E,, is a sum o f  ~.-small closed sqts ti'om R. then E is b-close 

to an imervai. 

Cam merits. 

1. This result pr, wes that if e is a sum of a large number of independent small c o i n p o n e n t s ,  

then the set of  all possible values of  e is close to an interval. 

2. All the proofs are given in Section 5. 

Proposition 2. I f  g C_ R is a bout)tied sel. and for every 6 > O, E can be represented as a 

tinile sum o f  6-small clo:.~d setS. then E is an interval. 

Comment. Proposition 2 is similar to the description of  infinitely divisible distributions. Namely, 
it gives the following description of  infinitely dK~sible sets: if a bounded set is infinitely divisible 
(i.e., representable as a sum of arbitrarily small terms), then this set is an interval. 

41 An auxiliary result for a multi-dimensi0nal case 

Ill mnhi-dimensional case (i.e., for subsets of R ~ for k > 1), no final resuh similar to Proposi- 
tions 1 and 2 is known. What we can prove is the following: 

Proimdtlon 3. I f  E = Ez + . . .  + E ,  is a sum o f  6-small closed sets from R k (k >_ 1), then E 

is 6-close to a connected set. 
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Prolmdaiaa 4. I f  F~ C_ R k is a btnmded set, and for every/ i  > O, E can be represented as a 
finite sum of/i.small closed sets, then E is connected. 

Com,zenls. 

1. The  formulations of  these resuhs emerged from the suggestion of  Sergey P. Shary. 

2. These results are not final, because not all connected sets can be thus represented. Our  
hypothesis is that under  the conditions of  Proposition 4, E is a convex compact set. 

5. Proofs 
Proof of  Proposition 1. Since each set Ei is /i-small, it is bounded. Since Ei is also closed, 
it conLains its least upper bound sup Ei, and its greatest lower bound i n f  Ei (see, e.g., [7]). 
Let us denote supE~ by e +, and i n fE~  by e~-. Then, {e~-,e~'} C_ E~ C_ [e~',e~']. Therefore, 
1/7 C E _C E ,  where we denoted //7 = {e~',e~'} + {e/ ,e~ '}  + . . .  + {en,en} ,  -E [e~-,e~'] + 
[ei, e~'] + - . .  + [e:: e:] = [e-, e+]. 

N 

e-  = E e ~ -  
i = 1  

and 
n 

i = 1  

Let us show that E is /i-close to the interval E.  Since E C_ E ,  every element, a E E 
belongs to ~ .  So, it is sufficient to prove that if b E E ,  then b is/i-dose to some a E E.  

We will show that b is /i-close to some a from the set E (which belongs to E because 
E _C E). Indeed, by definition of  the sum of the sets, the set E contains, in particular, the 
following points: 

~ 0  

Q 2  ~--" 

~ 1 7 6 1 7 6  

~  

e~ +e~ + . - .  +e~, 
~ § e~ §  + e;, 
e~ + e~" + e~ §  § ~,  

ei ~ + e~" + . - .  + e~" + q-+~ + . . -  + e~, 

+ ei~ +e~" + . . .  + e n .  

Notice that the values a0 and an coincide with the endpoints e- ,  e + of  the interval E.  

Each value al is obtained from the previous one by changing one term in the sum (namely, 
e~-) to another term that is not smaller than e~-, namely, to e +. Therefore, a0 _< al _< a2 _< 
�9 . .  ~__O,n .  

The difference between two consequent terms in this sequence is equal to a / -  a/-1 = 
e + - e~-. Since each Ei is /f-small, we have le~l <_/i, leF[ _</i, and therefore, [o~ - a~_~[ = 
le~ - e~-I _< [e+[ + Je~-I _< 2/i. So, the distance between any two consequent numbers in a 
sequence a0 _< al _< . . .  _< a,, is _< 2/i. 

Now, suppose that we are given a number b E E = [a0, an]. If  b = a/ for some i, then we 
can take a = al = b. So, it is sufficient to consider the case when b ~ a/ for all i. In particular, 
in this case, a0 < b < a,,. The  value a0 - b is negative, the value a,~ - b is positive, so the sign 
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of ai - b must change from - to + somewhere. Let us denote by i the value where it changes, 
i.e., the value for which ai - -  b < 0 and t/i+l - -  b > 0. For this i, ai < b < ai+i. Therefore, 

lai  - bl + ia i+t  - bt = (b - a i )  + ( a i + l  - b )  = a i + l  - a i  _< 26.  

The  sum of two positive numbers fai.-b[ and la,+~ - h i  does not exceed 2~. Hence, the smallest 
of  these two nmnbers cannot exceed the half of  26, i.e., cannot exceed & So, either for a = ai, 
or for a = ai+t, we get ]a - b t _< 6. Hence, E is b-close to the interval E.  D 

Proof of  Proposition 2. Let E be a set that satisfies the condition of  this proposition. Since E is 
a sum of  finitely many closed sets, it is itself closed. Since E is bounded and close, it contains 
i n f  E and supE .  So, E C [inf  E, supE]. Let us prove that E = [inf  E:supE] .  

Indeed, let e be an arbitrary point from, all interval [inf  E, sup E]. Let us prove that 
e E E.  Indeed, for every natural k, we can take /5~: = 2 -k. Since 6tr > 0, E is a sum of 
closed 6~-small sets. Therefore, according to Proposition I, there exists a e~: E E such that 
]ek - e[ < ~k = 2 ='k. So, e = lira eb where ek E E ,  and e is thus a limit point for E. Since 1/7 
is closed, e E E. D 

Proof of  Proposition 3. Let's denote the Euclidean norm on / ~  by I[ " ]1. 

l ~ Let us first prove that for every two points e ,e  t E E,  there exists a finite sequence 
e (~ = e, e(1) , . . . ,  e ~') = e' of  eletnents of  E for which lie (i) - e(i-l)]l < 6 for all i. 

Indeed, since E = El + - ' -  + En, we have e = et + . . .  + e,~ for some ei E E i .  Similarly, 
we h a v e e ' =  ' . - .+e~,  for e i e l +  some ' E E ,  i. Let us t a k e e  ( i ) = ( e ~ + - . . + e ~ ) + ( e i + l + . . . + e n ) .  
Then,  by definition, e (~ = e, e (") = e'. Now, e ( i )  - -  e ( i - l )  = e i ei. Since both elements ei 
and e~ belong to Ei, and Ei is tS-small, we i:onclude that [leit[ <_ 6, [le~ll _< 6, and therefore, 
Ile~ - e~ll < Iledl + Ile~ll < 2,5. So, tl e") - e"-~)ll _< 25. 
2 ~ Let us now construct the following set C: we take all pairs (e, 6) of 26-close points from E,  
and connect each pair bv a straight line segment [e, ~] (in particular, we allow the degenerate 
pairs (e, e) for which 6 = e; for snch pairs, the connecting segment consists of  this very point 
e). T he  union of  all these segments is our (7. 

3 ~ Let us show that C' is a connected set. 

Indeed, assume that c E C and r E C. By definition of  C, this means that c E [e, ~] C_ C. 
and c' ~ [e', ~'] C_ 6' for some e, e', ~. ~' ~ E.  In particular, the segments [e, el and [c r e'] (that 
are subsegments of  [e, 6] and [e', 6']) are subsets o f  C. 

Due to 1 ~ there exists a sequence e (~ = e , e  O) . . . . .  e (n) = e' for which e (i) E E and 
He (i) - e ( / - t ) [ I  _< 2~5. By constrnction of  C,  it means that the segment [e(i),e (i-l)] belongs 
to C'. So, the points c and e' can be connected by a finite sequence of  adjacent segments: 
[c, el = [c, e(~ [e (~ e ( ' ) ] , . . . ,  [e (n- ' ,  e (n)] = [e (n- ' ) ,  e'l, [e', cr Therefore, C is connected. 

4 ~ To  complete the proof, let us show that p(E,  C)  < 6. 

Indeed, by definition of  G', every point e E E belongs to C (because it belongs to a 
degenerate segment [e, el). So, we can take c = e and thus guarantee that IIc - eli = 0 _< ~5. 

Now, if c E C', this means that c E [e, e'] for some e, e'  E E for which lie - e'll < 2& The  
point c is either closer to e, or it is closer to c', or  it 'exactly in the middle between e and e'. 
Let's consider all three cases. 

�9 If  e is closer to e, then the distance [le - ell is not greater than half of  the segment's 
length (hence, not greater than 6). 

�9 if  e is closer to e', then similarly, [Jc - e'[I _< ~. 
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�9 I f  c is in the middle, then l i e  - e l l  = l t c  - e ' I t  < 6 .  

39 

In all three cases, there exists an e E E for which lie - eft ~< 6. so, p(C, E)  < 6 [] 
Comments. 

1. This proof  is similar to the proof  of  Proposition 1. 

2. For k = 1, intervals are the only bounded conected closed sets. So, Proposition 1 
follows from PrOposition 3. 

Proof of  Proposition 4. Similarly to the proof  of  Proposition 2, one can prove that E is hounded 
and close and therefore, E is compact. Let's prove by reduction to a contradiction that G' 
cannot be disconnected. Indeed, if E is disconnected, this means that it can be represented 
as a union of two disjoint closed subsets E '  and E".  Since E is hounded, both E '  and E "  
are compact sets. Therefore,  there exists points e' E E '  and e" E E"  for which the distance 
l i e ' - e " l l  .is the smallest possible. This smallest distance cannot be ecltmi to 0, because then 
e' = e" would be a common point of  disjoint sets. Therefore; this distance is positive. 

Let's take 1/3 of  ibis distance as /~. According to the condition Of the proposition, E 
can be represented as a finite sum of/~-small sets. Therefore,  due to statement 1 ~ from the 
proof  of  Proposition 3, we call conclude that there exists a seqnence e 10) = e~e (l) . . . . .  e ( ')  = e '  
of  elements of  E for which e (~ = e', e (n) = e ~', and lie (i) - e(i-l)ll < 6 ifor all i. T h e  first 
elements o f  this sequence belongs to E ' ,  the last one belongs to ~" .  if  by i we denote the 
index of  the first element of  this sequence that belongs to E t~. then e ( i - l )  E ~ t  eli) E 2~ It, and 
l ie( i ) -  eti-~)ll < 2/5 = ( 2 / 3 ) l i e ' - e " l l  < l i e ' - e " l l .  This inequality contradicts to mlr choice of  
e '  and e" as the pair with the smallest possible distance. This contradiction shows that our 
assumption is false, and E cannot be disconnected. So, E is connected. E3 

6. Conclusions 
We prove that if an error  e is a sum of a large number  of  independent small component  
errors, then the set E of its possible values is close to an interval. The  smaller the components, 
the closer E to an interval. This result justifies the use of  intervals in data processing. 

This limit theorem is similar to limit theorems of mathematical statistics that justify (in a 
similar manner) the use of  infinitely divisible distribntions (in particular, the use of  the Gaussian 
distrihution). 
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