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Why intervals?
A simple limit theorem that is similar
to limit theorems from statistics

Viabik Kremvovich

What is the set of pussible values of a imeasurement error? In the majority of practical applications. an
error is caused not by a single cause; it is caused by a large number of independent causes, each of
which adds a small component to the total error. This fact is widely used in statistics: Namely, since it
is known that the distibution of the sum of many independent smali random variables is close to one
of the so-called infinitely divisible ones (a class that includes the well-known Gaussian distribution), we
can safely assine that the distribution of the total error is infinitely divisible. This assumption is used
in the majority of the statistical applications.

In this paper, we prove a similar result for the set of possible values of an error. Namely, if an
error equals the sum of many small independent components, then its set of possible values is close to
an interval; the smaller the components, the closer this set to an interval.

This resudt provides one more justification for using intervals in data processing.

[loueMy uHTEpBaAbI?
[Ipoctas mpeAeAbHas TeopeMa, aHAAOTMYHAs
MpeACAbHBIM TeOpeMaM CTaTUCTUKK

B. Kremnosuu

HYTo upeactasaser cofoil MHOKECTBO JHANCHINE 101D DCTER HIMeEL i B Goasmmmcrae npakTH-
HECKHX NIPIIOAKCHINT HOTHUKHOBCHIC HOTPENIHOCTEN O0YCIORICHO HE EANHCTBCHHON TIPHYMHON, 3 6oab-
WM KOJHHECTBOM HEIAHCHMIIX JIPYT OT JIPYIa IIPHYHH, KAKI28 H3 KOTOPHIX BHOCHT CBOR MAICHLKHNA
BKIA B ODHIVIO HOTPEIHOCTE. ITOT (PAKT HIMPOKO HCHOABLIYETCH B CTATHCTHKE: HOCKOIBKY H3BCCTHO,
4TO pactpencIcnie CYMMB GOIbINOIo YHCIA MAJIO3HAYNAMHX CTYHINHLIX UEPEMEHHEX 6.1H3K0 K O/1HO-
MY 93 TAK HAJLIBIEMBIX GCCKOHEUHO IEBIMEIX PACHPENCIeHHR (K KOTOPHIM NPHHALACANHT W WHPOKO
HIBECTHOE HOPMATHHOC PACHPEILICHHC), MOKHO C YBEPEHHOCTHIO CHHTaTh, YTO DAaClipeleeHue Cymmap-
HOR  TIOFPEHIHOCTIE. GECKOHEMHO 1. 1IMO. - DTOT BRIBOT UCHOIBIYETCH B DOABIMHHCTBE CTATHCTHHECKHX
BPHIOKEHHIL.

B MacTosmeit padoTe I0KAIHBAETCH AHAJOMMMHLN DEIYALTAT 18 MHOKECTED BOIMOKHBIX 3Ha-
HENNIA NOTPEIIHOCTIL A 1IMEHHO, €CTH JHAMEHUE NOTPENTHOCTH PaBsKo CyMae GOBIOTO KOIMYMeCTsa
HESABHCHMBIX  KOMUOHCHT MAJOR BETHMHHEL, TO MHOKECTBO €€ BOIMOXKHLIX 3HaYeHni 0IMIKO K HHTep-
BAY, HUPHUEM HCM MEHBINC HAYHMOCTE (BKJIQT) KOMIIOHCHTOB, TeM GIHKE 3TO MHOKECTEO K WHTEpHATY.

JauHBl PEIYVIRTAT ABIACTCA €HIE OHHM APIVMEHTOM B 10163V [PHMEHEHHS HHTEPHAIOB HDH
0OpaBATRE TaHHNX.
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Formulation of a real-life problem: What is the set of
all possible values of an error? Is it necessarily an
interval?

[N
L]

Main question: are all values of error possible? Suppose that we have a measuring device
that measures a physical quantity T (e.g., mass or voltage) with a guaranteed precision . This
precision is usually supplied by the manufacturer of this device. The word “guaranteed” means
that if the measurement result is I, then we are sure that the actual value z satisfies the
inequality |Z — z| < e.

In other words, possible values of an error e = & — z belong to an interval [—¢.¢], and
possible values of z belong to an interval [Z — ¢, % + ¢].

If this estimate is an “overshoot” in the sense that in practice the errors are always smaller,
then we are not using this device at its best: its results are more precise and thus more reliable
than we think. So, it is important to get this £ as small as possible.

Now, suppose that this ¢ is indeed the smallest possible in the sense that:

® no errors are greater than € but
o there have been cases (during the testing) with the errors pretty close to € and to —¢.

In other words, both endpoints of the interval [—¢, <] are possible values of the error.

The next question is: are all internal poinis of that interval possible wilues of the error?

In some exotic cases, the answer is “no”. We can imagine realistic situations when both
values —¢ and ¢ are possible values of the error, while some values inside an interval [—¢,¢]
cannot occur as the values of the error. For example, suppose that we are measuring the
electromagnetic field in the close vicinity of a computer memory element. In this situation, the
external field caused by this element is the main source of error. This element can be in two
possible states (depending on whether it represents bit “1” or bit “0”), so we have two possible
values of an error. Crudely speaking, for this situation, the set of possible values of e consists
of only two points {~¢<,¢}, and does not contain any internal values at all.

If in addition to this main source of error, we take into consideration other possible
sources of error, then the resulting set of possible values of total error becomes a union of two
small intervals: one close to —¢, and a one close to €.

In the majority of the cases, all interior values are possible. The case when we have
one prevailing cause of error is really exotic. In the majority of cases, an error is arising from
the cumulative effect of a large number of independent factors. In these cases, experiments
usually show that all the interior values are possible (see, e.g., a survey monograph [3] and
references therein). In other words, the set of all possible values of the error forms an interval
[—e, €]

A question. Why is the set of all passible values of € an interval? Is it an empirical foct or a
theoretically justified law?

What we are planning to do. In this paper, we prove the fact that all values from
an interval are possible can be theoretically justified (in the same manner as the normal
distribution is).

From the mathematical viewpoint, this result is extremely simple to prove. However, we
believe that our result is worth writing down, because it provides one more explanation of why
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intervals are so widely used in data processing (there are lots of examples starting from the
pioneer paper [4]; for a latest survey, see, eg., [1]).

2. How to explain why the set of all possible values of
an error is an interval: the main idea

An analogy with limit theorems of mathematical statistics. A similar situation is analyzed
in statistics. We have a random error that is caused by a large number of different factors.
Therefore, this error is a sum of the large number n of small independent component random
variables. It is known that when n — oo, the distribution law for such a sum tends to one
of the so-called infinitely divisible distributions (see, e.g., {3} for more recent results see, e.g., [2]).
This class includes the well-known Gaussian (= normal) distribution.

Therefore, for sufficiently big n, we can use infinitely divisible distributions as a perfect
approximation for the error distribution.

Comment. Traditionally, in statistics, mainly Gaussian distribution is used (see, eg., [8], pp. 2.17,
6.5, 9.8, and references therein). However, other distributions are also necessary because error
distribution is often non-Gaussian (see, e.g., [5, 6]).

How we are going to use this analogy. We consider the case when the error e is equal to
the sum of small independent components: e = e; +ez+: -+ +€,. To make this a mathematical
statement, we must somehow explain what “small” means, and what “independent” means.
Comment. In this section, we will try not only to give the definitions, but to provide motivations
for these definitions.. The resulting definitions will be then formally stated (or repeated) in
Section 3 (so, a reader who is interested in the mathematical result only, can skip this section,
and go to Section 3).

Let us denote the set of all possible values of a component e; by E;.

What does “small” mean? If a number § > 0 is fixed, we say that a component is é-small
if all its possible values do not exceed 4, ie., if [a| < 6§ for all ¢ € E;.

What does “independent” mean? This is easy to explain. For example, let’s consider the
case when the components e; and e; are not independent; e.g., they are mainly caused by the
same factor and must therefore be a-close for some small a. Then, for a given value of e;,
the corresponding set of possible values of ¢; is equal to [e; — a, e; + a], and is thus different
for different e;.

Components ¢; and e; are independent if the set of possible values of e; does not depend
on the value of e;.

In other words, this means that all pairs (e;,e;), where e; € E; and e; € E;, are
possible. Therefore, the set of all possible values of the sum e; + e; coincides with the set
{ei +€j: e € E;,ej € Ej}, ie, with the sum E; + E; of the two sets E; and Ej.

Before we turn to formal definitions, we need to make one more remark.

We will consider closed sets of possible values. Our point is that if the set of all possible
values of an error is not closed, we will never be able to find that out. Indeed, suppose that
E is not closed. This means that there exisis a value e that belongs to the closure of E, but
does not belong to E itself.

Let us show that in every test measurement, we could get this value e as the measured
value of error. Indeed, in every test measurement, we measure error with some accuracy 6.
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Since € belongs to the dosure of E, there exists o value ¢ € E such that Je' —ef < 4. So, if
the actual error is ¢ fand ¢ € E. and is thus a possible vaiue of an error), we can get € as
a result of measuring that error. So, no matter how precisely we measure errors, ¢ is always
possible. Therefore, we will never be able to experimentally distinguish between the cases when
e is possible and when it is not.

In view of that, 10 add ¢ 10 E or not o add is purely a matter of convenience. Usually,
the border values are added. For example, we usually consider closed intervals [—z.¢] as sets
of possible values. Following this usual agreement, we will assume that the sets £ and E; are
closed. '

Now, we are ready for formal definitions.

3. Main result

Let us give some (more or less) standard definitions and denotations.
Remark. In this section, we will consider only l-dimensional case (i.e.. all our sets will be subsets
of a real line R).

Definitions and denotations. By a sum A + B of two sets A, B C I}, we understand the
set {a+b: a€ A be B}. For a given § >0, a set A is called 8-small if Ja| < & for all a € A.
By a distance p(A. B) between sets A and B, we will inderstand Hausdorff distance (so, for
sets, terms like “6-close” will mean d-close in the sense of p).
Comment. For reader’s convenience, let us reproduce the definition of Hausdorff distance:
p{A. B) is the smallest real mimber § for which the following 1wo statements are true:

o for every a € A, there cxists a b € B such that ja — b} < §;
e for everv b € B, there exists an a € A such that je ~ b < 4.

Propasition 1. If E = E| +---+ E, is a sum of é-small closed sets from R. then E is b-close
to an interval.
Comments.

1. This result proves that if e is a sum of a large number of independent small components,
then the set of all possible values of € is close to an interval.

2. All the proofs are given in Section 3.
Proposition 2. If E C R is a bounded set. and for every é > 0, E can be represented as a
finite sum of §-small closed sets. then E is an interval.
Comment. Proposition 2 is similar to the description of infinitely divisible distributions. Namely,
it gives the following description of infinitely difisible sets: If a bounded set is infinitely divisible
(i.e., representable as a sum of arbitrarily small terms), then this set is an interval.

4, An auxiliary result for a multi-dimensional case

In multi-dimensional case (i.e., for subsets of R* for k& > 1), no final result similar to Proposi-
tions 1 and 2 is known. What we can prove is the following:

Proposition 3. If £ = E, +--- + E, is a sum of é-small closed sets from R¥ (k> 1), then E
is 8-close to a connected set.
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Proposition 4. If E C R* is a bounded set, and for every 6 > 0, E can be represented as a
finite sum of 8-small closed sets, then E is connected.
Comments.

1. The formulations of these results emerged from the suggestion of Sergey P. Shary.

2. These results are not final, because not all connected sets can be thus represented. Our
hypothesis is that under the conditions of Proposition 4, E is a convex compact set.

5. Proofs

Proof of Proposition 1. Since each set E; is é-small, it is bounded. Since E; is also closed,
it contains its least upper bound sup E;, and its greatest lower bound inf E; (see, eg., [7)).
Let us denote sup E; by e, and inf E; by e;. Then, {¢;,ef} C E; C [e],e]]. Therefore,
E C E C F, where we denoted E = {e7,ef} + {e5,e5} +--- + {e;,e}}, E = [e], ef] +
65,651+ + ez ef] = [e™, €71,

€
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Let us show that E is é-close to the interval E. Since E C E, every element a € E
belongs to E. So, it is sufficient to prove that if b € E, then b is 6-close to some a € E.

We will show that b is d<close to some a from the set E (which belongs to E because
E C E). Indeed, by definition of the sum of the sets, the set E contains, in particular, the
following points:

a = e +e +---+e,,

ay = ef+e;+---+e,,

a; = € +e;+e3+---+ep,

;i = ef+ey+---+ef +e,+-+ep,
an = e +ef+---+el.

Notice that the values ag and a, coincide with the endpoints e~, e* of the interval E.

Each value g; is obtained from the previous one by changing one term in the sum (namely,
e; ) to another term that is not smaller than e;, namely, to e,?L . Therefore, ay < a1 < ay <
e S an. ‘

The difference between two consequent terms in this sequence is equal to @; —a;_; =
el —e;. Since each E; is §-small, we have |ef| < 6, |e;| < 8, and therefore, |a; — a;—1] =
le; —e;| < lef|+1le;| < 25. So, the distance between any two consequent numbers in a
sequence ap < @1 < -+ <@, is <26,

Now, suppose that we are given a number b € E = [ag, an). If b = a; for some i, then we
can take a = a; = b. So, it is sufficient to consider the case when b # a; for all . In particular,
in this case, ap < b < a,. The value a9 — b is negative, the value a, — b is positive, so the sign
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of a; — b must change from — 10 + somewhere. Let us denote by i the value where it changes,
i.e., the value for which a; — b < 0 and ¢;.; — b > 0. For this i, a; < b < a;,;. Therefore,

la; = b + {ais1 — bl = (b - @) + (aiyy = b) = aiyy — a; < 26.

The sum of two positive munbers |a; —b| and [a.,1 — b does not exceed 26. Hence, the smallest
of these two numbers cannot exceed the half of 26, i.e., cannot exceed 8. So, either for a = a;,
or for a = a;y,, we get ja — b] < 8. Hence, E is b-close to the interval E. 0
Proof of Proposition 2. Let E be a set that satisfies the condition of this proposition. Since E is
a sum of finitely many closed sets, it is itself closed. Since E is bounded and close, it contains
inf E and supE. So, E C [inf E,supE]. Let us prove that E = [inf E, sup E].

Indeed, let e be an arbitrary point from an interval [inf E,supE]. Let us prove that
e € E. Indeed, for every natural k, we can take & = 27%. Since & > 0, E is a sum of
closed éx-small sets. Therefore, according to Proposition 1, there exists a e € E such that
lex — €] < 6 =27%. So, e = limey, where e € E, and e is thus a limit point for E. Since E
is closed, e € E. m]
Proof of Proposition 3. Let’s denote the Euclidean norm on R* by |} - |I.
1°. Let us first prove that for every two points e,e’ € E, there exists a finite sequence
e® =¢, eV, ... e =¢ of elements of E for which |le!) — ¢V} < § for all i.

Indeed, since £ = E, +--- + E,, we have e = ¢; + - - - + ¢, for some ¢; € E;. Similarly,
we have €’ = €} +---+¢€,, for some €} € E;. Let us take el) = (e} +---+¢&!) + (eis1+- - +6€5).
Then, by definition, e = ¢, e(™ = ¢'. Now, e} — eli"1) = ¢! — ¢;. Since both elements e;
and e} belong 10 E;, and E; is é-small, we conclude that [le;]] < 4, [le}]] < &, and therefore,
lles — exll < llesl] + lleill < 26. So, fle — e~V < 26.
2°. Let us now construct the following set C: we take all pairs (e, é) of 26-close points from E,
and connect each pair by a straight line segment [e, €] (in particular, we allow the degenerate
pairs (e, e) for which & = e; for such pairs, the connecting segment consists of this very point
e). The union of all these segments is our C.
3°. Let us show that C is a connected set.

Indeed, assume that ¢ € C and ¢’ € C. By definition of C, this means that ¢ € [e, €] C C.
and ¢ € [¢/,€'] C C for some e, e, €.¢' € E. In particular, the segments [e, c] and [, ¢'] (that
are subsegments of [e.€] and [¢’, €']) are subsets of C.

Due to 1°, there exists a sequence e® = e e® . e = ¢ for which e € E and
le®) — e=D|| < 26. By construction of C, it means that the segment [/, e~1)] belongs
to C. So, the points ¢ and ¢’ can be connected by a finite sequence of adjacent segments:
[c,e] = [c, 9], [e®,eV)],....[e"" 1, eM™] = [eln=1) ¢'], [¢!, ]. Therefore, C is connected.
4°. To complete the proof, let us show that p(E,C) < 4.

Indeed, by definition of C, every point e € E belongs to C (because it belongs to a
degenerate segment [e, e]). So, we can take ¢ = e and thus guarantee that |jc — el = 0 < 6.

Now, if ¢ € C, this means that ¢ € [e, €'} for some e,e’ € E for which |je — €'} < 28. The
point ¢ is either closer to e, or it is closer to ¢, or it exactly in the middle between e and ¢'.

Let’s consider all three cases.

e If ¢ is closer to e, then the distance [{c — e]| is not greater than half of the segment’s
length (hence, not greater than §).

e If ¢ is closer to €, then similarly, {lc — €/l] < 6.
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e If ¢ is in the middle, then Jjc —¢]| = lc —¢'] < 8.
In all three cases, there exists an € € E for which Jlc — eff < 8. So, p(C, E) < 6. ]
Comments.

1. This proof is similar to the proof of Proposition 1.

2. For k = 1, intervals are the only bounded conected closed sets. So, Proposition 1

follows from Proposition 3.
Proof of Proposition 4. Similarly to the proof of Proposition 2, one can prove that E is bounded
and close and therefore, E is compact. Let’s prove by reduction to a contradiction that C
cannot be disconnected. Indeed, if F is disconnected, this means that it can be represented
as a union of two disjoint closed subsets £’ and E”. Since E is bounded, both E' and E”
are compact sets. Therefore, there exists points ¢ € E’ and €” € E” for which the distance
lle" — e”]| is the smallest possible. This smallest distance cannot be equal to 0, because then
¢ = ¢” would be a common point of disjoint sets. Therefore; this distance is positive.

Let’s take 1/3 of this distance as 8. According to the condition of the proposition, E
can be represented as a finite sum of 6-small sets. Therefore, due to statement 1° from the
proof of Proposition 3, we can conclude that there exists a sequence e = e, eV, ... e = ¢
of elements of E for which @ = ¢, e = ¢”, and ||e® — (" V|| < § for all i. The first
elements of this sequence belongs to E’, the last one belongs 10 E”. If by i we denote the
index of the first element of this sequence that belongs to E”, then et'"V € E’, e} € E”, and
lle® — eV < 26 = (2/3)]le' — €"]] < |le’ — €”||. This inequality contradicts to our choice of
e and €” as the pair with the smallest possible distance. This coniradiction shows that our
assumption is false, and E cannot be disconnected. So, E is connected. 8]

6. Conclusions

We prove that if an error e is a sum of a large number of independent small component
errors, then the set E of its possible values is close to an interval. The smaller the components,
the closer E to an interval. This result justifies the use of intervals in data processing.

This limit theorem is similar to limit theorems of mathematical statistics that justify (in a
similar manner) the use of infinitely divisible distributions (in particular, the use of the Gaussian
distribution).
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