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A combined method for enclosing all 
solutions of nonlinear systems of polynomial 
equations 
CHRISTINE J;~GER a n d  D ~ M a R :  R~TZ 

We consider the problem of finding interval enclosures ot all zeros of a nonlinear system of polynomial 
equations. We presen~ a method which combines th e meth(g! of Grfibner: bases (used as a preprocessing 
step), some techniques frmn interval analysis, and a special version of the algorithm of E. Hansen for 
s~lving nonlinear equations in i~ne variable. The  latter is applied to a tri.qngular fi)rm of the system 
~d" eqnations, which is generated by. the preprocessing step: ~ Our" method is able to check if the given 
system has a finite mnnher of zeros and to r verifg'd enclosures for all these zeros. Several test 
resnhs detn~mstrate that ,our t n e t h ~  is mpch faster than the application of Hansen's multidimensional 
algorithm (or similar methods) to the original nonlinear systems of polyt~nmial eqnations. 

KOM6HHI4pOBaHHblfl MeTOA BbIqaCaeHH.q 
060AOqeK Bcex pemeHrlfl HeAI4HeflHbIX CHCTeM 
IIOAHHOMHaAbHbIX ypaBHeHHH 

K .  l~IErEr', A .  PAU 

I'~cCMaTpnHaeTCH 3a,,laqa Haxo~, ' leml~l  HnTepBa,'lbnblg (l(*Y~,ll)qeK I~ex KOpHel'| ne.lllHel~lHOl'l CI'ICTeMEI 

iIo.lma~ma.lbnb/x ~ ypa'dnenufi.: I'Ipe:tC"i'atcleXa npoue:typa, (~'hC,~lnnHIonta~l MeTO,~I (~31tCOB ~ Flc~3nepa 
(nCllO,'Ib'lve~.lla~il Ha ilp~,al~aplzTe.'mHo~i ,:~Tane ummnc.'zennfi). HeKorophae ~te'roamcn HHTepBa,lbnoro ana- 
.'ln3~ n IX:E~IVIO pa3Ho~n,'IflOCTb ,anropnT~la IL X a n c e u a  ,'l.l~ p~llleHini He;IHn~flHblX yl)allHeHnlTi c OIIHOIZl 

nep~MenHol'l ,  l](g:,'le,lHIll'l IlpilMefllleTC~l g. Tp~yrO+lbH()My np~,'lcTaB;leHnN) jCI-ICTeMbl ypaHHeXllfl,  COt~IOpMH- 

IM)BaHHOMy Ha i lpe,lBapnTe. ' ibnoM 3Tane.  OllllCMElaeMhlfl Me'TO+rl Ci iocol~n IIpOld~pllTb, nMeeT , in a a n n a m  

CnCTe~,~a KOH~"qH(~:~ '..nlC:IO XopHeft, n ~,b,'ntc.'L~Xb nepnqbmmlCX)UanHrae (x'~o:m,ncn ,a.lza ucex Icopaefi. He- 
CKO;IbKO tnlc.lenHla4X ilpnMel.xn~ noKa3u~IOT, ~ITO Haiti Mffro,'l HB,'IlleTC~I HaMfloro (x~.aer 6blCTpbiM, qeM 
MHOrOMepHI.Ifl a.lropnTM XaHcena (n,an a x a , l o r H q x b l e  MeTo.a~) n npllMexexnil  K IICXO,aHhIM He,lnHelTInl~l 
cncTe,~laM IIO.]nlI()MII~I.~bHI~X ypallHeHIn~. 

1. Introduction 
T l l e  g e n e r a l  p r o b l e m  we  a d d r e s s  is: 

F i n d ,  w i th  c e r t a i n t y ,  all s o l u t i o n s  in  ~ o f  t h e  n o n l i n e a r  sys tem 

f k ( X l , X 2 , . . . , X n ) = 0  fo r  k = l , . . . , m  

o f  m p o l y n o m i a l s  f ~  : #Z ~ - + / R ,  

(~) Ch. J~ger, D. Ratz. 1995 
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Successfnl approaclms to the corresponding botmd constrait~d problem (i.e. lower and 
upper bounds for the variables :ci are known) are interval Newton methods in conjunction 
with generalized bisection. These methods are also important tools for nonlinear-optimization 
methods, since they can be used to compt|te all critical Points of the objective function by 
applying the methods to its gradient. Such interval Newton methods are described for example 
in [1, 10, 12, 13, 16, 17]. 

In this paper, we present a method which combines the method of Grfbner bases, some 
techniques from interval analysis, and a special version of the algorithm of E. Hansen for 
solving nonlinear equations in one variable The method is able to check if the given problem 
has a finite nl.llnber of zeros and to compute verified enclosures of r these zeros in  a-t n wilho, l  

any constraints. 

The idea of our combined method is to first generate a triangular form of the system of 
equations and to call Hansen's algorithm recursively lot the reduced polynomials. 

We first describe some details of the two algorithms combined in our method, and we 
discuss special techniqnes to overcome problems occurring due to the interval arithmetical 
modification of the method of Gr/~lmer bases, We give a detailed overview of the steps of our 
algorithm, and we introduce some strategies to accelerate the computations. 

Finally, we give some notes about the Portable implementation in PASCAL-XSC, and 
we detnonstrate by several test results that our method is much faster than the applicatio n 
of multi-dimensional interval Newton methods to: the original nonlinear system of polynomi.'q 
equations. 

2D The method of Gr'dbner bases 
Our method uses the method of Gr'obner bases as a preprocessing step, so we first give 
some details of this method. To make understanding easier, we start with some remarks 
on Polynomials. Afterwards, the essential parts of the theoretical background are explained. 
Beginning with the most simple form of the algorithm of Buchberger using polynomials 
with coefficients in ~t', we mention some criteria from the literature in order to present a 
more comfortable and structured version of the algorithm. Then we develop the method for 
polynomials with interval coefficients and discuss some improvements. 

2.1. Basic properties of polynomials and polynomial equations 
Tile set of polynomials 

{f (x)=~- ' : ap -x ' l ap~ .n .  #=0 ,1 ,2  . . . .  } 

forms the ring R[x] with x E ~'(, [19]. We can also form a ring for the polynomials in several 
variables, the ring R[x,, x2 , . . .  ,x .]  = R[xt][x2]... [x.] (xi E JIR, i = 1 , . . . ,  n)with the elements 

,x.) =  ap, 

where %1 ..p,, E ~r~ and p~ = 0, 1, 2 , . . .  for i = 1 , . . . ,  n. 

Now, we interpret the Polynomials (the left-hand sides of our Polynomial system of equa- 
tions) as a basis B (a system of generators), and we consider the set of all linear combinations 
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(with polynomial coefficients) of  these generators ,  which is called a n / d ~ d  [8 i. That  is, our  prob- 

lem is specified by B = ( f l ,  fz . . . . .  jr,,,) and  the etittatlons ft: = 0 with ft- E R[xt ,  x 2 , . . . ,  x,,] 
for k = 1 , . . . . m .  

Two polynomials f and  g are  equhvdent with respect to an ideal, if  their difference belongs 
to the ideal. We can always add any linear combinatioq of  the generators  of  the ideal to the 
basis or  we can discard one of  the generators  if it is a linear combination of the others. Now. 
our  aim is to produce a %imple ~ badzs. 

The  product  of  powers of  variables x i , . . . ,  x,, is called monomkd (short form: MON). That  
is, a monomial is given lay 

,L~I ! - .P- �9 " " [  ; 'e  

where Pl E {0, 112, . . .}  for i = 1, . . . .  n. Each polynomial consists of  such monomials. In 
representing a polynomial, we can order  the monomials differently, and we can also o rde r  the 
variables inside a nmnomial differently. For example, we can write xl  + z'2 + x3 instead of 
x2 + x3 + x,  or x~x2 + x~ + x~ instead of  :r3 2 + x~ + X~ -x2. Therefore ,  it would be ,,ice to have 
a canonical representation. So, we have to fix some order ing  that describes which monomials  
should be placed first in the canonkal  representation of  a polynomial. 

In the following, let >.- be an o rde r  over the inonomials that satisfies the following 
conditions: 

�9 If M2 >- M],  then for every monomial  Ma, we have M2Ata >- MtMa. 

�9 For all monomials Mz and M2 with At2 ~ 1, we have MzM.z >- Ml. 

For our  purpose, we choose a lexicographic o rder  with respect to the names of  the variables. 
That  is we fix 

x I >.- x 2 >.- x 3 ~ . . .  >.. x n 

and 

~ ' . . . : ~ , .  >- ~ ? . . . ~ , , . ,  ,. (p, > q,) v ((~;, = q,, i = 1 , . . . , s ) ^  (p~_, > q,+,))  

where ~ < ~ (e.g. we have x~ >- x , .  ~ ~nd ~ , . . ~  >- ~,~. x~). 
Given such an order,  we are  now able to transform a polynomial into an exactly deter-  

mined form, where all monomials are  wriuen in decreasing order.  We write 

f = a0- MON0 + - - .  + a t .  MONt 

where MON0 >- MONI >'- - . .  >- MONt and  I is the number of  terms in the polynomial  f .  We 
call the polynomial nonmdized, if  ao = 1. 

The  monomial PMON := MON0 we call the princilxd monomud, and PMON together  with 
the corresponding coefficient a0 we call the principtd term. So, within an ideal basis B,  A is 
given by 

A = ak0- MON~r + . - -  + a~t- MONk~ 

or  by 

fk = aM �9 PMON~ + a~l �9 MONkl + - - .  + a l l  �9 MONkt 

for k =  1 . . . .  ,m .  
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I ~  3.1. Using the order  x t  >- x2 ~" xa, we have that 

f l  = 3 �9 :ra �9 x2 + xl is an invalid tbrm, 
.]'2 = 5 . x ~ + x 2 . x a + 3 , x a + 3  i s a  valid form, and 
f3 = x i  . x2 § 2 .  x~ is a valid normalized form. 

in the following, we assume the polynomials to he normalized, i.e. we always assume the 
coefficient of  the principal monomiai to he 1. 

Deflnltion 2.1. A monomia l  MONp = '.r~;' . . -  x~" is called a , ,dliple of  the  monomia i  MON, = 
x~ . ,  -'x.q", i f  Pi >_ qi for  MI i, = 1 . . . . .  ~ n.  We  also say, tha~ MONq divide.~ MON,. 

E x a m p l e  9..2. x 4 x25. xa2 is a multiple of  x~ .x~.  Xa2,: but x 4 .x,~. x~ is ,,~ a muhiple of  x~ �9 X~" xa 2. 

Defiutitioo 9..9.. The  lelLr commmt mWti/de: (short Form; LCM) "of two monomia ls  MONp = 
x~l ~ . : -  x~ '  and  MONq = :c~n ~ . . .  x ~  is d e f i n e d  by 

LCM(MONp, MONq) := x ~ " ' . .  : X:'" 

with m i  := m a x ( p i , r  for  all i = ' 1  . . . . .  n, 

X6' ' 

21. Buchberger's algorithm 

21.1. Construction of S-polynomials and M-reductions 

The  reader should keep in mind that arithmetical operations within a given ideal of  nonlinear 
polynomials are possible and lead back to elements of  the same ideal. For this reason we are 
allowed to make tile following definitions. 

Definition 2.3. Let f i  and  f j  be two non-zero polynomials  in normal ized  form,  and  let PMON, 
and  PMONj, be their  principal monomials .  Then  the  po lynomia l  

LCM(PMON,: PMONj) LCM(PMON~, PMONj) 
S ( f , ,  Yj) = PMONi "f l  - PMONj " f~ ~" " 

is called S-pai)~omkd o f  f i and  f j .  

Due to the muhiplicaiions of  the Iwo polynom!als by the special factors and the sncceeding 
subtraction, the resulting S-polynomial has a principal monomial  that is less than tile LCM of 
both principal monomials of  the given polynomials fi and f j .  

Example 2.4. Let the polynomials A = 2 2 2 x L �9 x 2 + x 2 and f~ = x~ + x v  x~ he given in the order  
x,  ~- x2.  Then  we get 

LCm(rMOn,, rmonj) = ~?. ~] 

s(f,,h) 

and 

= x l  (~, ~. 4 + xl) - 4 .  (x?+ ~ ,  ~I/ 

= (~?. ~ + ~ l - 4 )  - (x?" ~ + ~ , .  4 )  
= -~ ,"  4 + ~," ~ .  
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Re,,,ark: Obviously, S(I ,  f )  = 0 and S ( f  , g) = - S ( g ,  f ) .  
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A reduction of a polynomial can be done by a special form of an S-polynomial construction. 

Definition 2.4. Let fi and f j  be two given polynomials in normalized form, and let PMONi 
and PMONj be their principal monomials, respectively. I f  PMONI is a multiple of PMONj, 
then we define a simplified version of  an S-polynomial construction by 

P M O N i  
M ( f , ,  f j )  = f ,  - ~ .  f j .  

PMON~ 

The replacement of  fi by M(f i ,  f j )  we call M-reduction of  fi, and we say "fl was red,wed by f j  ". 
I f  Al(fi ,  fj) = 0 after performing the M-reduction, we call fi reduced to zero. 

Example 2.5. Let the polynomials fi = X w  x ~  - x ~  and f j  = x 1 �9 -~2 - -  2C2 b e  given in the order 
xl >- x2. Then a single M-reduction is given by 

A := (~,. ~.~ - ~ , ~ )  - ~"" ~'~. (x~ - ~  - ~,) 
2~ 1 �9 2:2 

= ( x ~  x~ - x~) - ~ r ~ 2  - x~) 

= ~ - ~ .  

222. Theoretical background 

For a polynomial system of equations, i.e. a set (~ of polynomials generating an ideal, let us 
give some relevant definitions and theorems from [8]. 

Definition 2.5. A polynomial f is re&teed with respect to G, if  no principal monomial of  an 
element of G divides the principal monomial of  f .  

Definition 2.6. A system of  generators (or a basis) G of  an ideal I is called a standard ba, ds 
or Grbbner basis (with respect to the order >.-), i f  every reduction of  an f of  I to a reduced 
polynomial (with respect to G) always gives zero. 

Theorem 2.1. Every ideal has a GrSbner basis with respect to the lexicographic order. 

Theorem 2.2. Two ideals are equal i f  and only i f  they have the' same reduced standard basis 
with respect to the lexicographic order. 

These theorems can be generalized to  other orders than the lexicographic one if the 
chosen order fulfills the criteria mentioned above. The proofs can be found in the publications 
of Buchberger [2-7]. 



46 

223.  Notation 

In the description of the algorithms, we use the following notations: 

We use 
cases.  

CH. J~GERt D. RATZ 

G 

F 

f~.gj 
s( , . )  
B 

Lv 

Lc  

h 

basis of an ideal (i.e. the given system of equations) 

triangular form of the basis after termination of the algorithm 

polynomials of F and G 

S-polynomial constructioll 

set of all combinations of S-polynomial constructions to be performed 

index of the last polynomial in F 

index of the last polynomial in G 

polynomial 

indentation to mark compound statements and to avoid "begin~end  ~ notation in some 

2.2.4. The algorithm in JR 

The algorithm of Buchberger is based on the theory of Gr6bner bases and transforms an 
arbitrary polynomial system of equations into a triangular form. By triangular form in this 
context, we mean a system of polynomial equations 

where 

A ( z t , : r ~ , . . . , x . )  = o ,  k = 1 . . . . .  l 

f l  = f t ( x l ~ x 2 , . . . ; : r t - l . . x l , . . . : . r n ) ,  

f 2  : f 2 ( .T2  . . . .  : :E l - I ,  Xl  . . . . . .  En), 

f l - I  "~" 

ft = 

f l _ l ( X l _ l ,  Xl  . . . .  : .l=n) , 

f t ( x , . ,  z.). 
The translbrmation to triangular form is done by using constrnctions of S-polynomials and 
M-reductions. The triangular system then has the same zeros as the original system. For the 
final nmnerical part of our combined method, we are interested in a perfect triangular form 
where l = n. 

Theorem 2.3. A basis G is a standard basis if and only if, for every pair o f  polynomials f and 
9 of  G, S ( f ,  9) reduces to zero with respect to G. 

A basic version of the algorithm was given by Buchberger in [5]. 

Algorithm 1 performs the construction of S-polynomials for all possible combinations of 
polynomials of G (including those coming up during the computation of new polynomials). For 
each S-polynomial which is not equal to zero, the following steps have to be done: 

�9 "['he new polynomial has to be added to the ideal. 

�9 The set B of pairs of polynomials which still have to be used for a construction of an 
S-polynomial has to be updated, that means 
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[ Algo,ithm i:] 

input a polynomial system of equations G 

F : = G ;  Lv := Lc,; B : = { ( i , j ) ] l < i < j < L c } ;  
while exists (i, 3) 6 B do 
begin 

h := 8(fi, f./); 
if h # 0 then 
begin 

LF := LF + 1; 
B : = B U { ( k ,  L r )  t l  < k < L r } ;  
F := FLJ  {h}; 

end; 
B := B - ( i , j ) ;  

end; 

output a GrSbner basis F with ideal(F) = ideal(G) 

{ h. is added to the I~sis F } 

- ( i ,3)  has to be removed as it was already performed,  and 

- all new pairs that can be buih from the new polynomial and the existing polynomials 
in F have to be added to B. 

in [2], Buchberger gives some criteria for superfluous steps: 

�9 if  the LCM of the principal monomials of  two polynomials is the product of  the principal 
monomials, then their S-polynomial can always be rednced to zero. Therefore  those 
combination can be left out. 

�9 If the LCM of  the principal monomials of two polynomials is equal to one of these 
principal monomials, then the corresponding polynomial can be removed from the ideal 
basis after the S-polynomial is buih and all possible M-reductions are done. 

The  following algorithm incorporates these two criteria, and it gives a more structured 
form of the method of Gr6hner bases. 

In Algorithm I1, similarities to the Gaussian algorithm are noticeable. In general, we 
can say it is a generalization of the Gaussian algorithm for systems of nonlinear polynomials. 
Therefore,  there are two cases: 

1. Linem" poly~omkd.c in this case, the algorithm is close to the Gaussian algorithm except for 
the order  of the reductions. All constrnctions of S-polynomials are also M-reductions. 

2 Nonli~war pdynomials: in this case, the desired tr iangnlar form of  the given system can 
only be achieved by adding new polynomials to the basis. With the help of  the new 
polynomials, it is possible to perform the necessary rednctions. This change in the 
nonlinear case is due to the fact that no limits (depending on the dimension of  the 
system) for the occurring monomiais can be given. Thus, not all monomials ileeded for 
the reductions are necessarily in the given system. 
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[Algorithm Ii:1 

input a polynomial system of equations G 

F := G; LF := Lc; i := 1; 
while ( i  <_ LF - 1) do 

j : = i + l ;  
while (3 < LF) d o  

bt~in 
if LCM(PMON(/i), PMON(fj)) ~ PMON(/i) �9 PMON(/j) then 

h := S(.5, fj)', 
while (M-reduction of h by fk from F is possible) do 

h := M(h, fk); 
if: (h is not redta:ed to 0) tlit~ 

F:=FU{h} ;  LF:=LF+I;  { h isadded t o F  } 
if PMON(fj) -- LCM(PMON(fi), PMON(fj))  then 

F := F - fj;  LF := L~ - 1; { Remove h from F } 
Renumber the polynomials in F;  

e l ~  if PMON(f,) = LCM(PMON(f,), PMON(fj))  then 
F := F - ' f i ;  Lr := LF -- 1; { Remove fi from F } 
Renumber the polynomials in F;  
i : = i - 1 ;  j : = L F + I ;  

e l ~  
j : = j + l :  

end 
else 

j : = j + l ;  
end 
i : = i + 1 ;  

end 

output a Gr6bner basis F with ideal(F) = ideal(G) 

{ Exit j-loop } 

Example 2.6. We apply Algorithm 11 to the system 

f l  ----- x2t --  x 3  = 0 

A = z~  - x ~  = 0 .  

For the first S-polynomial construction with LCM = xt 2, we obtain 

~2 ~2 
h : = S ( f l , f 2 ) -  t ~ .A Z_x~)=x~_x3 .  - ~ ( x ~ -  ~ ) -  ~(~ 
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The M-reduction with fa resuhs in 

,C2 
/,.~ : M ( h , ,  f ~ )  = : ~  - ~ - ~ ( x ~  - ~ )  = . ~  - x~. 

X2 

A flwther M-reduction with ]'3 gives 

X2X3 2 / 

I~ : M(h~,/3) : ~ - ~ - ~ - ~ )  : ~ - ~ 
X2 
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and thus, ha is added to rite basis, and f2 is removed. No more constructions of S-polynomials 
have to be done subsequently, and the resuhing system is given by 

fl = :1:12 - X 3 = 0 

1"2 = z~ - x~ = 0 

h = ~ - x a  = O. 

Due to the simplifications, Algorithm II might result in a system that is not totally reduced 
to triangular form. We correct this "mistake" by starting the algorithm "again and again as long 
as there are possible S-polynomial constructions and M-reductions that still alter the system. In 
most cases, about three calls of the algorithm are sufficient. 

225. Termination and solution set criteria 

In [2], Buchberger proofs that Algorithm 11 terminates after a finite nnmber of steps for any 
given ideal: He also gives two criteria for the set of solutions [8]: 

I. A system of  polynomial equations is inconsistent (it cannot be satisEed, even i f  we add 
polynomial extensions) if  and only i f  the corresponding standard basis contains a constant. 

2. The system o f  polynomial equations has a finite number of'solutions i f  and only i f  each 
i,ariable appears alone (such as z n) in one of  the principal terms of  the corresponding 
standard basis. 

We will use this second criterion in our combined method to check whether it makes sense to 
Call our one-dimensional solver or not (see Algorithm IV). 

2.3. A n  i n t e r v a l  v e r s i o n  o f  B u c h b e r g e r ' s  a l g o r i t h m  

Applying infinite precision arithmetic, Algorithm II leads to sufficient results. It is also possible 
to implement the algorithm on a computer'using rational numbers instead of real ones (that is 
what Computer-Algebra-Systems normally do) to guarantee exact mathematical operations on 
the machine if enough storage capacity is available. The price we must pay for the ~exactness" 
is a great amonnt of compnting time. 

In a similar way as for linear systems of equations, we might implement Buchberger's 
algorithm with ordinary floating-point arithmetic. Additionally, this enables a very simple 
"communication" for Buchberger's method .with other numerical procedures. Due to the fact 
tl~at, in general, no exact computations are possible in floating-point arithmetic, we have to 
deal with the errors produced by rounding operations. 
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2.3.1. Some aspects of computer arithmetic 

In our ge,leral definition of S-polynomials and M-reductions, we used normalized polynomials. 
For this purpose, it was necessary to divide all polynomials by the real coefficient of the principal 
monomial. Using floating-point operations, even the normalization alone may p r ~ u c e  rounding 
errors. 

Example 9..7. Consider the polynomial p = 30z~2:r2.rs 2 + lO:r2x 2 + 3x3, the real coefficients of 
which are exactly representable on the computer. In order to normalize it, we must divide 
the principal coefficient of p by 30. On the computer, where our real coefficients of the 
polynomial p are represented with a finite number of mantissa digits we get the "normalized" 
Z p  ~ x~2x2:t 2 + 0.333. 3x2:r23 + O.lxa, which is only an approximation of the ,~ormalized p 
3 0  ' " �9 

(in decimal arithmetic as well as in binary arithmetic). 

Thus, the normalized polynomial may only be an approximation of the original polynomial 
and the probability for the successive arithmetical operations leading to another error (for 
example a cancellation error) is close to 1. So, we decided to avoid every division during 
the algorithm and to give up the claim of normalized polynomials and rewrite our formulas 
for S-polynomials and M-reductions. We remark, that divisions by powers of the basis of the 
floating-point system are an exception to this rule due to the fact that they will not make 
harm to the mantissa. In our implementation, we use them to prevent the coefficients from 
overflow or underflow. 

Further numerical difficuhies arise, if the given input system contains coefficients like 
I o r  just seemingly unsuspicious numbers like 0.1 which are not exactly representable on a 
binary floating-point system. In such cases, we may multiply the eqnations before entering 
them to prevent the conversion error during input. But for coefficients like v/5 or V/7, the 
muhiplication will not help, rounding errors will occur anyway. 

We developed an interval version of Buchberger's algorithm to co, trol the rounding errors. 
That is, we use an algorithm which computes a triangular system with interval coefficients. This 
interval triangular system is an enclosure of the exact triangular system. So, when entering the 
sysaem, the coefficients of the polynomials are enclosed in intervals of best possible accuracy. 
and all operations in our algorithm are performed in interval arithmetic. 

Remark: On a computer, a guaranteed and optimal enclosure of the real triangular form of the 
polynomial system can be obtained by using an exact machine interval arithmetic with optimal 
outwardly-directed rounding (see [10, 14, 15] for details). 

2.32. Interval versions of S-polynomial construction and M-reduction 

Now we develop an interval version of Buchberger's algorith,n in order to get a guaranteed 
enclosure of the exact triangular system and later guaranteed enclosures of all zeros of the 
system. We use the same approach and ideas that were employed when transforming the 
Gaussian algorithm into an interval version (cf. [1, 16, 17]). For an introduction to the 
underlying interval arithmetic, see [1, 10, 17]. 

Due to the fact that the expression I x ] -  [x] does not resuh in the value zero for an 
interval [:r] with positive diameter (e.g. [1, 2 ] -  [1, 2] = [-1, 1]), the algorithm will not produce 
the desired triangular form, if the original rules for construction of S-polynomials and M- 
reductions are performed simply with interval coefficient instead of real coefficients. The 
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dimination of the principal inonomial of the new polynomial would not take place in general 
using interval arithmetic. 

Thus, we explicitly set the coefficient of the principal term of the new polynomial to zero, 
if necessary. We are allowed to alter the algorithm in stmh a way for the same reasons as in 
the Gaussian algorithm. The interval system is a set of real systems. Hence, each polynomial 
in I$~  represents a set of polynomials with real coefficients. But every construction of an 
S-polynomial and every M-reduction performed with two polynomials within the sets, leads to 
a new polynomial, where the LCM of the two principal monomiais is eliminated. The inclusion 
isotonicity of interval arithmetic operations guarantees that these polynotnials are still enclosed 
in the resulting set after the elimination of the principal term. 

Now we use new rules for the construction of S-polynomials and for the M-reduction as 
explained in the following. 

S-polynomial construction in t ~ :  Let two polynomials 

fi  = [ a l ] .  PMONi + - . -  and f j  = [aT]-PMONj + - - .  

be given. We first compute 

fs := A-  LCM(PMON~, PMON~) 
PMONi 

with 

and 

where 

Then we set 

hs 
S(A,  h) := fs 

�9 f~ + B .  LCM(PMON, PMONj). . t ' j  
PMONj 

A:{ 1 if [a,] = [,,1 
1 if [~,] = - [ , j ]  

[at] otherwise 

,={. -1  if Jail = [aj] 
1 ir [ a , l = - [ , j ]  

-[ai] otherwise 

fs = [as]" PMONs + hs. 

if PMONs = LCM(PMON~, PMONj) 
otherwise 

~ m i f l e  2.8. Let the polynomials f i  := [2, 3]- x~ + x~ and f j  := [1, 2]- x , .  x2 + xa be given 
in the order xl ~- x2. Then, we get LCM(PMONi, PMONj) = x~. x2 Thus. we compute 

:=  [1,2]. ='_;----~ . - ~ ' ~  ([2,3]. =,~ + =~') - [2,3].  =~"=----~. ([1,2].  =, .=2 + =3) 
~1  " X 2  

= [2, 6].  =,~ .=2 + [1, 2]. =~ - [2, 6].  =,~. =2 - [2, 3]. = , .  =3 
= [ -4 ,  4]. =,~. == - [2, 3]. =, .=3 + It, 2]. =~ 

and the principal term has to be eliminated. The result is 

s(i , ,  h )  = - [2 ,  3] �9 =, �9 =3 + [t, 2]. =~. 
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M-redactlm ia l l-I :  Let two polynomials 

fi = [ai]-PMONi + . . .  and f j  = [aj]. PMONj + . . .  

be given: We first set PMON ~ := PMONi and fi ~ := fi, and we compute 

with 

and 

fi := A : .f~u + B:. PMONi . f j  
PMON~ 

A =  ' 1 if [a i ]=-[a j ]  
[~A else 

- 1  if [ail= [ajl 
B =  1 ~f [ . , ] = - [ . j ]  

where 

Then,  if P M O N ~  = PMONi,. we get 

fi = [ai]. PMONi + hi. 

fi  := hi. 

Example  2.9. Let the polynomials fi :=  [ -3 ,  -'3] . x , .  x2 + za and f j  := [I, 2]. z l  + z~ he given 
in the order  xl  >- x2. Then  we compute 

f~ := [I, 2].  ( [ - 3 ,  - 2 ] .  x , .  x2 + x3) - [ - 3 ,  - 2 ] .  ~' :~-----/~. ([i, 2].  ~, + ~ )  
x, 

= [ - 6 ,  - 2 ] . x , . x 2  + [1, 2 ] . x a -  [ - 6 , - 2 ] . : r l . x 2 -  [ - 3 , - 2 ] - x ~  
= [ - 4 ,  4] : :r, �9 x2 + [ - 3 ,  - 2 ]  �9 a:a + [1, 2] �9 :ca 

and the principal term has to he eliminated. T h e  resuh is 

f ,  = [-3, -2 ] .  x~ + [1, 2]. x3. 

The  differences between the version of  Buchherger's algorithm in ~ and the interval ver- 
sion are the constructions of  the S.polynomials and the M-reductions. Moreover, the additional 
criteria for the set o f  "solutions m t m  be modified for the interval case. We cannot use the 
first criterion directly, because we m t m  distinguish between constant interval polynomials which 
contain the value zero and constant interval polynomials which do not contain zero. 

T h e  latter can he treated in the same way as 'hefore,  but those constant polynomials which 
contain zero, but are unequal to zero, do not lead to an elimination. We cannot decide whether 
this polynomial is reduced to zero or not. 

Example 2.110. Let the following system he given: 

/I  = v % ,  ; -  v ~ x 2  = 0 
/~ = - ~ 2  - v ~  = o 
f~ = - 3 v % 2  - 3 v ~  = o. 
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This system has near ly  t r i angu la r  form. A constntction of an S-poly~lomial for f'2 and fa and 
succeeding M-reductions assmning exact arithmetic deliver 

S(f2, f3) = O, 

Furthermore, Our algorithm removes f3 and the system has an exact solmion with 

and z 2 =  r  

if we appl~ interval arithmetic with four significant mantissa digits, we start with the polynomials 

f,  = [2.645,2.646]x, - [2.236,2.237]x2 
A = - [2.236,2.237]x2 - [1.732, 1.733] 
f3 = - 312.236,2,237]x2 - 311.732,1.7331. 

A construction of the S-polynomial f4 = S(f2, fa) and succeeding M-reductions for f4 deliver 

h = [-0.015, o.o151. 

Keeping in mind tha t this interval (as a constant polynomial) encloses zero, the equation 0 = 0 
is enclosed, and we get:a solutio,~ with 

x t= - [0 .653 ,0 .6571  and x2=-[0 .774,0 .7761 

enclosing the exact solution. 

We have .seen that there can be solvable systems, despite the validity of the first criterion in its 
original form. Consequently, we 

�9 stop our algorithm, if the constant polynomial "does ,0t contain zero, because the system 
has nO solution then, and we 

�9 store the constant polynomial for later im, estigations if it contains zero, and we go on 
with the constant polynomial set to zero. 

We give some further notes on the implementation of our interval version of Buchberger's 
algorithm at the end of the article. 

2.4. S o m e  i m p r o v e m e n t s  

Practical experience and another criterion of Buchberger lead to filrther ideas for improvements 
of Algorithm II. 

2.4.1. Change of order 

A great improvement in computing time can be achieved by using the optimal order for the 
variables i,1 the given system. Practical experience shows that it is |avorable to choose an order 
that puts variables with Small power~ and seldom appearance in front and variables that appear 
in inany polynomials or that have large powers in the back. 
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Example 2.11. For the order (xl >- x2 >" :r3). let tile system 

Xl + 4:c2 + 3x3 = 
--4XlX~ -- Xl = 

J:31 .= 
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be given. If  we change the order to (x3 >'- x2 >'- x l ) ,  then we get the system 

3x3 + 4x2 + :el = 0 
-- 4X2Xl -- x! = 0 

.c~ = 0. 

For the first order, Algorithm I1 performs 7 S-polynomial constructions and 19 M-reductions. 
For the second order, only I S-polynomial construction and 1 M-reduction are necessary. 

For increasing dimensions and powers, the differences between the orders can be even 
bigger. Our  experiences led to some criteria for choosing the preferable order: 

1. Number of  polynomials which contain xi 

2. Largest power of  each variable in the whole system 

3. Number of  summands in the whole system that contain xi 

4. Length of  the largest polynomial containing xi. 

This heuristic cannot guarantee an improvement of  computing time. but practical experiences 
show that it leads to a respectable improvement in many cases. The success depends also on 
the inner structures of  the system. 

2.42. Special way 0f pivoting 

A special strategy for changing the order in which the polynomials are treated in Algorithm II, 
we call pi~vting. There  are two cases for the choice of  polynomials during, the algorithm: 

�9 in search of  polynomials for the next constrnction of  an S-polynomial and 

�9 in search of  the next polynomial for another M-reduction. 

We give our special way of pivoting that accelerated our algorithm for a large number of 
systems: 

1. For S-polynomials, we prefer those combinations of  polynomials which lead to the least 
LCM. 

2. For M-reductions, we prefer "short" polynomials. 

Example 2.12. For tile system 

5X 9 5 2 X lX  4 2xlx3 0 
- 6 x t x  2 + + = 
- 2x~x2 + 2x~x~ + 2x2x3 = 0 

x~ + x 2 - 0.265625 = 0 

the following table shows some comparisons between the number of  S-polynomials and 
M-reductions performed when using different orders and pivoting. 
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Order  Number of S-polylmmials 
without pivoling [ w/th pivoting 

(1, 2, 3) 108 30 
(1 ,3 ,2)  14 10 
(3, 2, 1) 25 14 

Number  of  M'redl~tions 
without ~vot ing  u,~h pivoting 

566 133 
49 27 

144 106 
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Again we cannot give a guarantee for an improvement.  The  success of this method depends 
on the properties of the used polynomials. Additionally, we must modify our pivoting strategy 
if we want to avoid special combinations of  interval coefficients resuhing in intervals containing 
zero which possibly lead to a termination of our method. 

In the current  version of our  algorithm, the strategies mentioned above are implemented. 
But those strategies are too static. T o  achieve a greater improvement,  we should be able to 
influence the algorithm at the beginning and also during the computation. Then  the order 
and the pivoting should also fit to each new sittmtion as for example high powers or long 
polynomials upcoming. We are still working on fi~rther improvements.  

3Q Hansen's algorithm for nonlinear equations in one 
variable 

Now we turn to the second part  of  our combined method,  Hansen's method for finding cdl 
zeros of  a nonlinear continuously differentiable fimction .f : JR ---* JR, which we will apply to a 
polynomial with interval coefficients. We combine this method with the theorem of  Gershgorin 
[18] in order  to get an algorithm independent of  a starting interval entered by the user. 
Hansen's method is an extension of the inlea~r Newton melhod which applies extended interval 
operations (see [10] and [12] for details), 

3.1. Theoretical background 
We address the problem of finding all solutions of the one-dimensional equation 

f ( x )  = 0 

for a continuously differentiable function f : ~/ --* B and a: E [x]. T h e  interval Newton 
method fo," solving this equation can easily be derived from the mean value form 

:(m(:x])) - :(,.)= (m(Ix])- x.) 

where x*.~ E [x] and m([x]) denotes the ,nidpoint of  Ix]. If we assume x* to be a zero of f ,  
we get 

:(m(i.])) 
�9 - = :,(ix]) 

=: d([~]) 

Hence. every zero of f in Ix] also lies in N([x]), and therefore it, N(fx])n [:r]. Using 
standard interval arithmetic, the interval Newton method starts with an interval [x] (~ satisfying 
0 ~ f'([x](~ and iterates according to 

[x] <~+t) := [x] <k) A N(fxl(k)), k = 0, 1, 2 , . . .  
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The method canllOt diverge due to the intersection, i f  the intersection is empty, we know that 
there is no root of  f in [x] (*). 

Using extended interval arithmetic, as defined in [I0] and [12], we are able to treat tile 
case 0 E f'([:r] (~ that occurs if there are several zeros in the starting interval [x] ~~ in this 
case, N([:r] (k)) is given by one or two extended intervals resuhing from the interval division. 
Even though N([a:] tk)) is infinite, the intersection [z] Ik+l) = N(Ix]tk) ) A [x] Ik) is finite and ,nay" 
be a single interval, the union of two intervals, or the empty set. Then. the next step of the 
interval Newton iteration must be applied to each of the resuhing intervals. In this way it is 
possible to enclose all zeros of f in the starting interval [x] t~ 

Tile following theorem smmnarizes the most important properties of the interval Newton 
method. 

Theorem 3.1, Lct f : D C_ ~ -* nT be a continuously differemiable fimction, and let [.r~], E If? ,  
[:r] C D be an inlerval. ]TJen 

has the Tollowing properties: 

e. tr n = r a,en there exists no zero or / i ,  Ix]. 

3. I f  N([x]) C Ix]. :then there exists a unique zero , , f  f in [.z] and hence in N([x]).  

The  pnxffs appear in [12. I6, 17]: 

3 2 .  A l g o r i t h m i c  d e s c r i p t i o n  

In tile fi~llowing, we give a simplified version ~i" ore" Hansen-like algorithm. We use the 
following notations: 

f nonlinear fimction of one variable 

[ : r ]  slarting interval for the search 

desired relative diameter for the final intervals 

[y] vector (list) of intervals that still have to be examined 

[.~] vector (pair) of  two possibly infinite intervals 

[:p] vecti3r (pair) of  two tinite intervals 

[Zero] final vector (list) of all enclosures for zeros 

N final number of  enclosures 

The  input fi~r Algorithm II1 is a one-dimensional rime,ion, a starting interval, and a 
desired relative accuracy. The  given starting interval is split into smaller intervals by the 
,v~,,to. ~,.p or by biwai,,,,. These intervals [y]~ are stored as components of the interval [y] if 
0 E f([y]~) (.so they ,nay cbntain a zero) and if the relative diameter of [y], is greater  than the 
desired accuracy s. Otherwise, if the relative diameter is small enough, the interval is Stored 
m tile list of candidates for zeros, i la,ned [Zero]. if  0 r f([Y]i), then [?/]i is discarded. 

The  process terminates when the list of intervals [y] i s e,npty, i.e. all subintervals [.7/]~ could 
either be discarded due to the condition 0 r f([~/]i) or because their relative diameter is less 
than ~ and they are stored in the list of  zeros [Zero]. For further descriptions see [10] and [11]. 



A COMBINED METt iOD FOR NONLINEAR SYSTFAtS OF EQUATIONS 57 

[ Algorithm IH:[ 

input fimction f ,  starting interval [x], desired accuracy 

N : = O ;  i : = l ;  [y], :=[x]; 
repeat  

if 0 ~. f([Y]i) then 
i : = i - 1  

else 
:=  m([yl , ) ;  

[z=] := e .  f(c)/f'([Y]i); { Extended interval Newton step } 
[zp] := [g]i n [Zor { Intersection [Y]i f') [zoo] = [zp]l D [zp]2 } 
if [:.l' = [Y]i then 

[~d, := [y,c]: [~p]~ :=  [c,~]; 
i := i - 1; 
for k : = l  t o 2  do 
begin 

if [z/,]t = 0 then nextk; 
if d,d([zp]k) < e then { Store enclosure of  zero } 

h~in 
if  0 E f([Zp]k) then 

N := N + 1; [Zero~ := [zp]tr 
end 

else 
begin { Store'[zp]k in [y] } 

i : =  i + 1: [u], :=  [~.]~; 
end; 

end; 
until i = 0 
Sort all intervals in list [Zero]; 
Eliminate muhiple intervals enclosing the same uniqne zero; 

output  the vector of enclosures of  all zeros [Zero] and the number of  zeros N 

{ Initializations } 

{ Bisection } 

4g The combined method 
Now we combine Buchberger's algorithm and Hansen's algorithm. 

Algorithm IV has some advantages profounded in the theory of  the Gr6bner bases and 
in the fact that the muhi-dimensiona! problem is reduced to a sequence of one-dimensional 
problems. Between parts A and B of the' algorithm, the criteria for the solvability can be 
applied. Thus, we are able to decide whether the system is not solvable at all and whether 
the system has an infinite number of solutions. In both cases, it makes no sense to start 
Algorithm I11, a~ad the computing can he terminated. 

Moreover, we do not need to enter starting intervals for the computations, in fact, we use 
the theorem of Gershgorin [18] to compute an interval that contains all zeros of the polynomial 
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Algorithm ! V: t 

input functions f l , . . - ,  f , .  representing a polynomial system of equations G 

step A Apply Algorithm 11 on G resulting in triangular System F 

cheek finite solvability of the System F = ( f l , - . . ,  J'~,) and exit if necessary 

step R Set k := n and call RecursiveHa~n(k) defined bv 

Compute starting interval for fk in Algorithm tli 

Apply Algorithm III on ft(xk) to compute enclosures [Yk]l, [Uk]2 . . . . .  [Y~-]N~. 

if k = 1 then 
return 

else 
f o r i : = l  t o N ~  do 

Replace :r~ by [y~]i in polynomials, f t : - - . ,  f~=-t; 
Call Recurs iveHansen(k-  1); 

output a list of enclosures for all zeros of the given system 

in one variable (to be treated by Algorithm III). 

5. Implementation 
We developed a l~rtable implementation of Algorithm 1V in PASCAL-XSC [14]. The sohware 
package is divided in three independent parts: 

1. Arithmeticrd operators, functiol~, atut procedures to hmtdle tile nmdiner l~y,omilds amt .9"~ems. 
In this part, we implemented an arithmetic for nonlinear polynomials including addition, 
stibtraction, mnhiplication, and division of polynomials (also with mixed operands, terms. 
and monomials). Due to the fact that nonlinear polynomials are not limited in their 
length, we made great efforts to control the storage space (garbage collection). 

2. inlenvd zr, ~ion of B,chberger~ algorithm. 
Algorithm 11 was implemented in its interval version including the improvements in 
ordering and pivoting. 

3. Specicd lrimlgular i~'l.qon of HmL~en~ cdgorilhm with a controlling environment. 
The environ,nent program prepares all the data necessary for the rectlrsive calls of 
Hansen's algorithm in one variable (e.g. computing the starting intervals). 

Each of these parts can al~o be applied on its own to an appropriate problem. 
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6. N u m e r i c a l  e x a m p l e s  

Now we give some examples to demonstrate the performance of our combined meth~xi. The 
listed computing times are those from a HP 9000/720 e~fipped with PASCAL-XSC Version 
2.03. The times for Algorithm IV include the time for order changing and pivoting, the time 
for computing all starting intervals for Algorithm ill. and the time for producing a file with 
the results. All results are given for a desired relative accuracy of e = l0 -12. 

We give the resuhs of three different algorithms for comparison: 

I. Our combined method (BB+NLTSS: BB = Buchberger's algorithm + NLTSS = Nonlinear 
Triangular System Solver). 

2. The Hansen-like algorithm which is a part of the PXSCDEMO program of the PASCAL- 
XSC system (I~DEMO). 

3. The nonlinear system solver as described in [10] (TBNLS$). 

The  starting inten, als necessary for input in NLSSDEMO and TBNLSS are those ccanputed by 
BB+NLTSS. 

Example  6.1. Compute the intersection points of two circles: 

x~ 

The numerical resuhs are 

Zero No. I : 

x[1] = [ 

x[2] = [ 

- 20xl  + x~ 
- 22xt + x~ 

1.050000000000000E+001, 

1.866025403784438E+000, 

- 2x2 + 100 = 0 
- 2x2 + 121 = O. 

1.050000000000000E+001] 

1.866025403784439E+000] 

Zero No: 2 : 
x[l] = [ 1.050000000000000E+001, 
x[2] = [ 1.339745962155613E-O01, 

1.050000000000000E+O01] 
1.339745962155614E-001] 

Statistic for Buchberger's algorithm: 

Number of S-polynomials : 2 

Number of M-reducEions : I 

If we compare the computing times for the three different methods we get 

Method Time 

BB+NLTSS 0:00:00,020 
NLSSDEMO 0:00:02,580 

TBNLSS 0:00:00,270 

Example 6.2. Compute the intersection of three spheres: 

�9 ~ - 2~, + 4 + ~ = o 
4 + x~ + ~ - 2..~ = o 
�9 ~, + .~  + .~  - 1 = o. 

The numerical results are 
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Zero No. I : 
x [ 1 ]  = [ 5.000000000000000E-001, 5.000000000000000E-001] 
x [ 2 ]  = [ 7.071067811865474E-001, 7.071067811865476E-001] 
x [ 3 ]  = [ 5.000000000000000E-001, 5.000000000000000E-001] 
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Zero No. 2 : 
x[1] = [ 5.000000000000000E-001, 5.000000000000000E-001] 

x[2] = [ -7,071067811865476E-001, -7.071067811865474E-001] 

x[3] = [ 5.000000000000000E-001, 5.000000000000000E-001] 

Statisr for Buchberger's algorithm: 

Number of S-polynonials : 2 

Number of M-reductions : 0 

If we compare  the computing times for the three different methods we get 

Method T i m e  

" BB+NLTSS 0:00:00;020 

NLSSDEMO 0:00:05,110 

TBNLSS 0:00:00,880 

Example  6.3. Brown's almost linear system (5-dimensional) is given by 

2xl + x2 + xa + x4 + x5 - 6 = 0 

xl + 2x2 + x3 + x4 + x5 - 6 = 0 

xl  + x~ + 2x3 + x4 + x5 - 6 = 0 

xl  + :c2 + x3 + 2x~ + x5 - 6 = O 

:rl :C2 Z3 .~4 Z5 -- 1 = 0. 

The  numerical resuhs are 

Zero No. I : 
x[1] = [ -5.790430884942E-001, -5.790430884940E-001] 
x[2] = [ -5.79043088494121E-001, -5.79043088494113E-001] 

x[3] = [ -5.79043088494121E-001, -5.79043088494113E-001] 
x[4] = [ -5.79043088494121E-001, -5.79043088494113E-001] 
x[5] = [ 8.89521544247056E+000, 8.89521544247061E+000] 

Zero No. 2 : 
x [ 1 ]  = [ 9.1635458253384E-001, 
x [ 2 ]  = [ 9.16354582533848E-001, 
x [ 3 ]  = [ 9.16354582533848E'001, 
x [ 4 ]  = [ 9.16354582533848E-001, 
x [ 5 ]  = [ 1.41822708733075E+000, 

9..1635458253386E-001] 
9.16354582533851E-001] 
9.16354582533851E-001] 
9.16354582533851E-001] 
1.41822708733076E+000] 

Zero No. 3 : 
x [ 1 ]  = [ 9.99999999999997E-001, 1.00000000000001E+000] 
x [ 2 ]  = [ 9 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9 7 E - 0 0 1 ,  1 .000000000000001E+000 ]  
x [ 3 ]  = [ 9.999999999999997E-001, 1.000000000000001E+000] 
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x [ 4 ]  = [ 9 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9 7 E - 0 0 1 ,  1.000000000000001E+000] 
x [ 5 ]  = [ 9 . 9 9 9 9 9 9 9 9 9 9 9 9 9 9 5 E - 0 0 1 ,  1 .000000000000001E+000]  
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Statistic for Buchberger ' s  algorithm: 

Number of S-polynomials : 4 

Number of M-reductions : 24 

If we compare the computing times for the three different methods we get 

[ Method Time 

t BB+NLTSS 0:00:00,150 
NI_SSDEMO > 1:00:00,000 

TBNI_.SS > 1:00:00,000 

Example 6.4. A polynomial system of higher degree is: 

5x? 6x~x~ + xtx~ + 2x, . s  = 0 
-2x~x2 + 2x~x~ + 2x2xs = 0 

x~ + x~ - 0.265625 = O. 

We skip the numerical resuhs for the 12 solutions and list tile statistics: 

Statistic for Buchberger's algorithm: 

Number of S-polynomials : 14 

Number of M-reductions : 106 

If we compare the computing times for the three different methods we get 

Meth,~ Time 

BB+NLTSS 0:00:00,3902 
NLSSDEMO 0:03:19,2101 

TBNI.SS 0:00:07,4908 

Example 6.5. Feigenbaum example (3-dimensional) is: 

-3.84x~ + 3.84x~ - x2 = 0 
-3.84x~ + 3.84X2 - x.~ = 0 
-3.84:1a 2 + 3.84xa - xt = O. 

We skip the numerical results for the 8 solutions and list the statistics: 

S t a t i s t i c  f o r  Buchbs rge r ' s  a lgor i thm:  
Number of S-polynomials : 2 

Number of M-reductions : 8 

If we compare the computing times for the three different methods we get 

Method Time 

BB+NLTSS 0:00:01,110 
NLSSDEMO 0:00:11,450 

TBNLSS 0:00:02,820 
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Example  6.6. A variant of  Powell's singtdar fimctiou: 

xl + lOx2 = 0 

vq-6x3 - vq-&4 = o 
�9 ~ - 4x2x3 + x~ = 0 

- 2v i-6 tx, + ei-6   = 0. 

"I'he numerical results are 
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Zero No. I : 

x[l] = [ O.O00000000000000E+O00, 

x[2] = [ O.O00000000000000E+O00, 

x[3] = [ O.O00000000000000E+O00, 

x[4]  = [ 0 .000000000000000E+000,  

O.O00000000000000E+O00] 
O.O00000000000000E+O00] 
O.O00000000000000E+O00] 
O.O00000000000000E+O00] 

Statistic for Buchberger's algorithm: 

Humber of S-polynomial : 5 

Number of M-reductions : 21 

If we compare  the co,nputing times for the three different methods we get 

Method Time 

BB+NLTSS 0:00:00,050 
NLSSDEMO 0:08:33,370 

TBNLSS 0:00:53,580 

7. Summary and future work 
l;! general, the probleJ.n of solving a system of polynomial equations is NP-hard (cf. [9,]), and 
therefore, there is no chance to get a fit~t algorithm that would always find all the solutions. 
For unbounded systems, the situation is even worse: there exists an example  (xl = 2; x2 = 
x ~ , . . . , x , + t  = x2,) of a system whose only sohttion is hyperexponential  .and therefore, not 
computable in any reasonable time because simply to produce the resuh digit after digit will 
take too long. 

We have been studying a combined method for finding interval enclosures of  all zeros 
of  a no,tlinear system of polynomial equatio,ls. Significant improvement  can be obtained in 
interval Newton ,nethods if this method is u'~n:t instead of a usual interval Newton method. 
T h e  reason for this is that the preprocessing step based on an interval version of  Buchberger's 
Algorithm reduces the original problem to a "~xluence of simpler problems, i.e. to a special 
tr iangular system of polynomial equations which c a ,  be solved by recursively calling a special 
Hansen-like o,e-dimensionai solver. We have shown with our examples, that our method 
is in many cases much faster than the application of Hansen's multi-dimensional algorithm 
(or similar methods) to the original nonlinear systems of polynomial equations. Even for the 
hyperexponentiai  example above for dimensions up to n = 10. our solver is able to compute 
the solution in less than one second. 

There  are, of  course, examples where the combined method fails because the degrees of  
the polynomials generated by Algorithm 11 are too high and demand to much storage capacity 
for executing Algorithm II1. Additionally, there are cases where coefficients of  some monomials 
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canm)t be eliminated in interval arithmetic (due to inflation effects described in Section 2.3.2) 
ahhough they would be zero assnming infinite precision arithmetic. Here. we have to deal with 
similar problems as in the interval Gauss algorithm. 

Possible filture work will investigate the application of special subtraction techniques (cf. 
[13]) for handling "eqnar coefficients. Significant work can aig) be done to develop a strategy 
for deciding when to use the combined method and when to use a ,sual method. Furthermore, 
filture research should include application of the combined method to the specific problems of 
computer graphics (e.g. ray tracing). 
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