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A combined method for enclosing all
solutions of nonlinear systems of polynomial
equations

CurisTine JAcer and Drérmar -Ratz

We consider the problem of finding interval enclosures of all zeros of a nonlinear system of polynomial
equations. We present a method which combines the method of Grobner, bases (used as a preprocessing
step), some techniques from mlcrval analysis, and a special version of the algorithm of E. Hansen for
solving nonlinear equations in one variable. The latter is applied to a triangular form of the system
of equations, which is generated by the preprocessing step: : Our method is able to check if the given
system has a finite number of zeros and to coimpute verified enclosures for all these zeros. Several test
results demonstrate that pur method is much faster than the application of Hansen's multidimensional
algorithmn (or similar methods) to the original nonlinear systems of polynomial equations.

KoMOuHMpOBaHHBIT METOA BBIYMCACHIAL
000AOYEK BCeX pellleHi HEeAVHENHBIX CUCTeM
TIOAMHOMMAABHBIX YPaBHEHUN
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PaccMATPHBAECTCH 321242 HAXOXKAEHHA HHTEPBAIBHBIX OOPAOMEK BCEX KOPHER HETHHENHON CHCTEMb
NOMHOMHAILHBIX Vpatinenwit. [peinctaniesa npouenypa, ofkeauusomas mefon Sasvcos’ Ipéduepa
(HCHOBIYEMBIT HA NPEBAPHTEILHOM ITANE BHIYHCIEHHI), HEKOTOPHIE METOMNKH MHTEPBAIBHONO aHa-
NI W OCOBYI PASHOBIAHOCTE .aITopHTMa E. XaHCEHa 11 PEIEHNs HETHHENHBIX YPABHEHUA C OIHOM
fiepemennoi. [locientnit HPHMEHSETCA X TPEYTOALHOMY NPEICTABICHHID CHCTEMBL ypaBHeHuil, copmu-
POBAHHOMY HA HPEBAPHTEILHOM Tane. ONHCHIBACMBIT METON CHOCODEH NPOBEPSITH, HMEET M ANHASA
CHCTEMA KOHEMHOE YHMCIO KOPHEN, W BLIMHCIATE BePU(HIIMPOBAHHKIE 050I0UKH 1R Beex Kopueir. He-
CROIBKO YHCTEHHLIX NIPHMEPOB HOKAJBIBAIT, YTO HAUD METO ABIAETCA HAMHOTO Goiee ()NCTpuM 4em
MHOTOMEPHHIT 2. 1ropHTAM XaHceHa (HIN AHAIOFHMHEIE METOMIN) B IIPHN K HCXOQHHM He; M
CHCTEMAM TIOBHOMHAILHAIX YPABHEHH.

Introduction

The general problem we address is:

Find, with certainty, all solutions in IR™ of the nonlinear system

felzyzo, ., 2) =0 for k=1,...,m

of m polynomials fi : R* — IR.
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Successful approaches to the corresponding bound constrained problem (ie. lower and
upper bounds for the variables r; are known) are interval Newton methods in conjunction
with generalized bisection. These methods are also important tools for nonlinear optimization
methods, since they can be used to compute all critical points of the objective function by
applying the methods to its gradient. Such interval Newton methods are described for example
in {1, 10, 12, 13, 16, 17}

In this paper, we present a method which combines the method of Grobner bases, some
techniques from interval analysis, and a special version of the algorithm of E. Hansen for
solving nonlinear equations in one variable: The method is able to check if the given problem
has a finite number of zeros and 0 compute verified enclosures of @l these zeros in IR" withowt
any constraints.

The idea of our combined method is to first generate a triangular form of the system of
equations and to call Hansen’s algorithm recursively for the reduced polynomials.

We first describe some details of the two algorithms combined in our method, and we
discuss special techniques to overcome problems occurring due to the interval arithmetical
modification of the method of Gribner bases. We give a detailed overview of the steps of our
algorithm, and we introduce some strategies to accelerate the computations.

Finally, we give some notes about the portable implementation in PASCAL—XSC, and
we demonstrate by several test results that our method is much faster than the application
of multi-dimensional interval Newton methods to the original nonlinear system of polynomial
equations.

2. The method of Grobner bases

Our method uses the method of Grobner bases as a preprocessing step, so we first give
some details of this method. To make understanding easier, we start with some remarks
on polynomials. Afterwards, the essential parts of the theoretical background are explained.
Beginning with the most simple form of the algorithm of Buchberger using polynomials
with coefficients in IR, we mention some criteria from the literature in order to present a
more comfortable and structured version of the algorithm. Then we develop the method for
polynomials with interval coefficients and discuss some improvements.

21. Basic properties of polynomials and polynomial equations

The set of polynomials

{f(I)‘—‘Zap-I"Ia,,G_R. p=0,1,2,...}

forms the ring R[z] with z € R, [19] We can also form a ring for the polynomials in several
variables, the ring R[z\,Z3,...,x,) = Rlzi][z]. .. [z,] (x:i € R, i =1,...,n) with the elements

fley,xg,. . x0) = Zam---nu N RRE

where ap, p, € R and p; =0,1,2,... fori=1,...,n.
Now, we interpret the polynomials (the lefi-hand sides of our polynomial system of equa-
tions) as a basis B (a system of generators), and we consider the set of all linear combinations
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(with polynomial coefficients) of these generators, which is called an idea/ [8). Tha is, our prob-
lem is specified by B = (fi, f2...., fiu) and the equations fi = 0 with fi € Rlz;,xy,....1,)]
for k=1,....m.

Two polynomials f and g are equirwlent with respect to an ideal, if their difference belongs
to the ideal. We can always add any linear combination of the generators of the ideal to the
basis or we can discard one of the generators if it is a linear combination of the others. Now.
our aim is to produce a “simple” basis.

The product of powers of variables T, ..., x, is called monomial (short form: MON). That
is, a monomial is given by

t P
_L'}l) v .I."‘

where p; € {0,1,2,...} for i = 1,...,n. Each polynomial consists of such monomials. In
representing a polynomial, we can order the monomials differently, and we can also order the
variables inside a monomial differentdy. For example. we can write &) + 2o + 23 instead of
T2+ T3+ 2y or Tiry + o3 +z} instead of x3 + 22 + 13 - T;. Therefore, it would be nice to have
a canonical representation. So, we have to fix some ordering that describes which monomials
should be placed first in the canonical representation of a' polynomial.

In the following, let > be an order over the monomials that satisfies the following
conditions:

o If Ay > M, then for every monomial M, we have MaM; > M M;.
e For all monomials M} and M; with M, # 1, we have M AL > M,.

For our purpose, we choose a lexicographic order with respect to the names of the variables.
That is we fix
Iy Ty Ty = - > Ty

and
it eeabr -2l xS (> @)V ((Pi =q, i=1...,8A(psr1> q.m))

where s < n (e.g. we have z} > z; - 1§ and z? - 23 > 1 - 3).
Given such an order, we are now able to transform a polynomial into an exactly deter-
mined form, where all monomials are written in decreasing order. We write

f =00 MONg +--- +a; - MON,

where MONp > MON,; > --- > MON; and [ is the number of terms in the polynomial f. We
call the polynomial nermalized, if ag = 1.

The monomial PMON := MON, we call the principal monomial, and PMON together with
the corresponding coefficient ag we call the principal term. So, within an ideal basis B, f is
given by

S = aro - MONyo + - - - + @y - MONy

or by
Ji = aro - PMON; + g,y - MON“ + .-+ ay - MONy

for k=1.....m.
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Example 2.1. Using the order ix; > z; > x3, we have that

i = 3a3-10+ 1 is an invalid form,
fo = 5-ri+xp-23+3:23+3 is a valid form, and
fs = T -T2+2- a:% is a valid normalized form.

In the following, we assume the polynomials to be normalized, i.e. we always assume the
coefficient of the principal monomial to be 1.

Definition 2.1. A monomial MON,, = 1}* - - -8 is called a mudliple of the monomial MON, =
-z i p; > q foralli=1,...,n. We also say that MON, divides MON,,.
Example 2.2. r} - z3-13 is a multiple of z?-23-23, but z-z,-2% is nat a multiple of 2% - 23 - 22

Definition 2.2. The lenst common multiple (short form: LCM) of two monomials MON, =
Zh - xPr and MON, = ' - - - 2% is defined by

LCM(MON,, MON,) := 2™ -+ 27"
with m; := mex(p;, q;) for all i ='1,... n. '

Example 2.3- LCM(.L"; ~T9 - .'l‘g, III% . _’L'% . .L‘g) = .’L"} . xg . Ig

22. Buchberger's algorithm
221 Construction of S-polynomials and M-reductions

The reader should keep in mind that arithmetical operations within a given ideal of nonlinear
polynomials are possible and lead back to elements of thé same ideal. For this reason we are
allowed to make the following definitions.

Definition 2.3, Let f; and f; be two non-zero polynomials in normalized form, and let PMON;

dind PMON; be their principal monomials. Then the polynomial

SUfor f) = LCM(PMON;, PMON;) LCM(PMON;, PMON;)
e PMON; PMON;

is called S-polynomial of f; and f;.

- fi —

: fj )

Due to the multiplications of the two polynomials by the special factors and the succeeding
subtraction, the resulting S-polynomial has a principal monomial that is less than the LCM of
both principal monomials of the given polynomials f; and f;.

Example 2.4. Let the polynomials f; = 2323 + 23 and f; = 2} + 1, - 23 be given in the order
z1 > 2. Then we get
LCM(PMON;, PMON;) = 3 - 1}

and
3 .2 3.2
.z I3-T \ .
SUnf) = S5=-(a -2 +23) - =52 - (af 4+ 7y - )
Ty-13 Ty

o - (22 22+ ad) - 23 (2¥ + 2, - 2d)
(a3 23+ xy-23) — (23 -2} + 2, 1))

-I) -xg +I -a:g.
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Remark: Qbviously, S(f, f}) = 0 and S{f,g) = —-S(g, f).
A reduction of a polynomial can be done by a special form of an S-polynomial construction.

Definition 2.4. Let f; and f; be two given polynomials in normalized form, and let PMON;
and PMON; be their principal monomials, respectively. If PMON; is a multiple of PMON;,
then we define a simplified version of an S-polynomial construction by

PMON;

A/I(fiafj)':fi‘m'

i
The replacement of f; by M(f;, f;) we call M-reduction of f;, and we say “f; was reduced by f;”.
If M(f;, f;) =0 after performing the M-reduction, we call f; reduced to zero.

Example 2.5. Let the polynomials f; = z;-23 — 23 and f; = z, - 23 — x2 be given in the order
z1 > 2. Then a single M-reduction is given by

Ty xh
T X2
(z1- 23— 22) — 23 - (21 - T2 — T2)

. (11 ~Iy — 1‘2)

fi = (1 23 ~13) -

(x1 23 — 23) = (21 73 — 79)

2l - 2.

222. Theoretical background

For a polynomial system of equations, i.e. a set G of polynomials generating an ideal, let us
give some relevant definitions and theorems from [8].

Definition 2.5. A polynomial f is reduced with respect to G, if no principal monomial of an
element of G divides the principal monomial of f.

Definition 2.6. A system of generators (or a basis) G of an ideal I is called a standard basis
or Grobner basis (with respect to the order »), if every reduction of an f of I to a reduced
polynomial (with respect to G) always gives zero.

Theorem 2.1. Every ideal has a Grobner basis with respect to the lexicographic order.

Theorem 2.2. Two ideals are equal if and only if they have the same reduced standard basis
with respect to the lexicographic order.

These theorems can be generalized to. other orders than the lexicographic one if the
chosen order fulfills the criteria mentioned above. The proofs can be found in the publications
of Buchberger {2-7].



46 CH. JAGER, D. RATZ

223. Notation

In the description of the algorithms, we use the following notations:

G basis of an ideal (i.e. the given system of equations)

F triangular form of the basis after termination of the algorithm
fi» g; polynomials of F and G

S(.,.) S-polynomial construction

B set of all combinations of S-polynomial constructions 1o be performed
Lg index of the last polynomial in F

Le index of the last polynomial in G

h polynomial

We use indentation to mark compound statements and to avoid “begin—end” notation in some
cases.
224. The algorithm in IR

The algorithm of Buchberger is based on the theory of Grobner bases and transforms an
arbitrary polynomial system of equations into a triangular form. By triangular form in this
context, we mean a system of polynomial equations

fk(Il,:EQ,...,fU"):O, k=1,l

where
fl = fx(l‘l,.'tz,...,;l‘[_l,.‘ltl,...,.l‘,,),
f2 = fz(.'L‘2.,.....l‘1_1,1'1 ...... L‘,,)
fl—l = ﬁ_x(Il_x..’L‘(....,.L'n).
fl = f[(.'l.‘l, Ces ;l‘,,).

The transformation to triangular form is done by using constructions of S-polynomials and
M-reductions. The triangular system then has the same zeros as the original system. For the
final numerical part of our combined method. we are interested in a perfect triangular form
where | = n.

Theorem 2.3. A basis G is a standard basis if and only if, for every pair of polynomials f and
g of G, S{f.g) reduces to zero with respect to G.

A basic version of the algorithm was given by Buchberger in [5).

Algorithm 1 performs the construction of S-polynomials for all possible combinations of
polynomials of G (including those coming up during the computation of new polynomials). For
each S-polynomial which is not equal to zero, the following steps have to be done:

o The new polynomial has to be added to the ideal.

o The set B of pairs of polynomials which still have to be used for a construction of an
S-polynomial has to be updated, that means
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AMgorithm | ‘]

input a polynomial system of equations G

F:=G; Lr:=Lg B:={(#j)|1<i<j< ek
while exists (i,j) € B do

begin
hi=S(fi. )
if h # 0 then
begin
Le:=Lp+1;
B:=BU{(k.LF) |1 <k < L¢};
F.=Fu{h} { h is added to the basis F }
end;
B:=B-(i.j};
end;

output a Grobner basis F' with ideal(F} = ideal(G)

= (4,7) has to be removed as it was already performed, and

— all new pairs that can be built from the new polynomial and the existing polynomials
in F have 10 be added t0 B.

In [2], Buchberger gives some criteria for superfluous steps:

o If the LCM of the principal monomials of two polynomials is the product of the principal
monomials, then their S-polynomial can always be reduced to zero. Therefore those
combination can be left out.

e If the LCM of the principal monomials of two polynomials is equal to one of these
principal monomials, then the corresponding polynomial can be removed from the ideal
basis after the S-polynomial is built and ali possible M-reductions are done.

The following algorithm incorporates these two criteria, and it gives a more structured
form of the method of Grébner bases.

In Algorithm 1I, similarities to the Gaussian algorithm are noticeable. In general, we
can say it is a generalization of the Gaussian algorithm for systems of nonlinear polynomials.
Therefore, there are two cases:

1. Linear polynomials: in this case, the algorithm is close to the Gaussian algorithm except for
the order of the reductions. All constructions of S-polynomials are also M-reductions.

2 Nonlinear polynomials: in this case, the desired triangular form of the given system can
only be achieved by adding new polynomials to the basis. With the help of the new
polynomials, it is possible to perform the necessary reductions. This change in the
nonlinear case is due to the fact that no limits (depending on the dimension of the
system) for the occurring monomials can be given. Thus, not all monomials needed for
the reductions are necessarily in the given system.
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input a polynomial system of equations G

F:=G, Lp =Lg i:=1
while (i < Lr — 1) do
begin
jr=1i+1
while (j < Lg) do
begin
if LCM(PMON(fi), PMON(fj)) # PMON(f;) - PMON(f;) then

h:= S(fi,fj);
while (M-reduction of h by f; from F is possible) do

h = M(h, fu);
if (h is not reduced to 0) then

F=Fulhl; Lr:=Lfr+1; { h is added to0 F }
if PMON(f;) = LCM(PMON(f;), PMON(f;)) then

F=F-~f; Lp:=Lr-1; { Remove f; from F }

Renumber the polynomials in F;
else if PMON(f;) = LCM(PMON(f;), PMON({;)) then

F:=F-~-f; Lp:=Lf~-1; { Remove f; from F }
Renumber the polynomials in F;
i=i~1 ji=Lr+1; { Exit j-loop }
else
j =74+ 1;
end
else
Jj=j+1
end
ir=1+1;

end
output a Grobner basis F with ideal(F) = ideal(G)

Example 2.8. We apply Algorithm II to the system

H = - z3 =0
fo = 13 ~- i =0
f3 = Iy - .'l‘g = 0.

For the first S-polynomial construction with LCM = 2%, we obtain

1'% 2 1'% 2 2 2
hy = S(f1, f2) =':‘L§(1‘x - I3) - ;;5(1‘1 - T3) =13 — I3.
1 i
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The M-reduction with f3 results in

2
T
hy = M(hy, f3) =22 — 23— ;"—2(1'2 - 22) = 7973 — 3.
2
A further M-reduction with f3 gives
2 7273 2 4
hy = M(ha, fa) = 205 — 13 — T(zg —x5) =3 — 13
2

and thus, k3 is added to the basis, and f; is removed. No more constructions of S-polynomials
have to be done subsequently, and the resulting system is given by

h = 17"21') - T3 = 0

f2 = Iy - IL‘2 = 0
3

f3 = Ti—-13 = 0.

Due to the simplifications, Algorithm II might result in a system that is not totally reduced
to triangular form. We correct this “mistake” by starting the algorithm "again and again as long
as there are possible S-polynomial constructions and M-reductions that still alter the system. In
most cases, about three calls of the algorithm are sufficient. '

225. Termination and solution set criteria

In [2], Buchberger proofs that Algorithm Il terminates after a finite number of steps for any
given ideal. He also gives two criteria for the set of solutions [8}:

1. A system of polynomial equations is inconsistent (it cannot be satisfied, even if we add
polynomial extensions) if and only if the corresponding standard basis contains a constant.

2. The system of polynomial equations has a finite number of ‘solutions if and only if each
variable appears alone (such as z") in one of the principal terms of the corresponding
standard basis.

We will use this second criterion in our combined method to check whether it makes sense to
call our one-dimensional solver or not (see Algorithm IV).

2.3. An interval version of Buchberger's algorithm

Applying infinite precision arithmetic, Algorithm I leads to sufficient results. It is also possible
to implement the algorithm on a computer ‘using rational numbers instead of real ones (that is
what Computer-Algebra-Systems normally do) to guarantee exact mathematical operations on
the machine if enough storage capacity is available. The price we must pay for the *exactness”
is a great amount of computing time.

In a similar way as for linear systems of equations, we might implement Buchberger’s
algorithm with ordinary floating-point arithmetic. Additionally, this enables a very simple
“communication” for Buchberger’s method with other numerical procedures. Due to the fact
that, in general, no exact computations are possible in floating-point arithmetic, we have to
deal with the errors produced by rounding operations.
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231 Some aspects of computer arithmetic

In our general definition of S-polynomials and M-reductions, we used normalized polynomials.
For this purpose, it was necessary to divide all polynomials by the real coefficient of the principal
monomial. Using floating-point operations, even the normalization alone mav produce rounding
errors.

Example 2.7. Consider the polynomial p = 30232203 + 102223 + 3x3, the real coefficients of
which are exactly representable on the computer. In order to normalize it, we must divide
the principal coefficient of p by 30. On the computer, where our real coefficients of the
polynomial p are represented with a finite number of mantissa digits we get the “normalized”
+=p & riryx} + 0.333...3x,73 + 0.1x3, which is only an approximation of the normalized p
{(in decimal arithmetic as well as in binary arithmetic).

Thus, the normalized polynomial may only be an approximation of the original polynomial
and the probability for the successive arithmetical operations leading to another error (for
example a cancellation error) is close 10 1. So, we decided to avoid every division during
the algorithm and to give up the claim of normalized polynomials and rewrite our formulas
for S-polynomials and M-reductions. We remark, that divisions by powers of the basis of the
floating-point system are an exception to this rule due to the fact that they will not make
harm to the mantissa. In our implementation, we use them to prevent the coefficients from
overflow or underflow.

Further numerical difficulties arise, if the given input svstem contains coefficients like
% or just seemingly unsuspicious numbers like 0.1 which are not exactly representable on a
binary floating-point system. In such cases, we may multiply the equations before entering
them to prevent the conversion error during input. But for coefficients like v5 or /7, the
multiplication will not help, rounding errors will occur anyway.

We developed an interval version of Buchberger’s algorithm to control the rounding errors.
That is, we use an algorithin which computes a triangular system with interval coefficients. This
interval triangular system is an enclosure of the exact triangular system. So. when entering the
system, the coefficients of the polynomials are enclosed in intervals of best possible accuracy.
and all operations in our algorithm are performed in interval arithmetic.

Remark: On a computer, a guaranteed and optimal enclosure of the real triangular form of the
polynomial systemn can be obtained by using an exact machine interval arithmetic with optimal
outwardly-directed rounding (see [10, 14, 15] for details).

232. Interval versions of S-polynomial construction and M-reduction

Now we develop an interval version of Buchberger’s algorithm in order to get a guaranteed
enclosure of the exact triangular system and later guaranteed enclosures of all zeros of the
system. We use the same approach and ideas that were employed when transforming the
Gaussian algorithm into an interval version (cf. [1, 16, 17]). For an introduction to the
underlying interval arithmetic, see [1, 10, 17]

Due to the fact that the expression [z] — [z] does not result in the value zero for an
interval [z] with positive diameter (eg. [1,2] — [1,2] = [-1, 1]), the algorithm will not produce
the desired triangular form, if the original rules for construction of S-polynomials and M-
reductions are performed simply with interval coefficient instead of real coefficients. The
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elimination of the principal monomial of the new polynomial would not take place in general
using interval arithmetic.

Thus, we explicity set the coefficient of the principal term of the new polynomial 10 zero,
if necessary. We are allowed to alter the algorithm in such a way for the same reasons as in
the Gaussian algorithm. The interval system is a set of real systems. Hence, each polynomial
in JIR represents a set of polynomials with real coefficients. But every construction of an
S-polynomial and every M-reduction performed with two polynomials within the sets, leads to
a new polynomial, where the LCM of the two principal monomials is eliminated. The inclusion
isotonicity of interval arithmetic operations guarantees that these polynomials are still enclosed
in the resulting set after the elimination of the principal term.

Now we use new rules for the construction of S-polynomials and for the M-reduction as
explained in the following.

S-polynomial construction in [IR: Let two polynomials
fi=[a;] -PMON; +--- and f; =[a;] - PMON; +---
be given. We first compute

_ LCM(PMON;, PMON;) _ LCM(PMON;, PMON;)

fs=4 PMON, i+ B PMON, i
with
1 if [a] = [aj]
A= 1 if [a)] = —[aj]
[a;]  otherwise
and
=1 if [a] =aj]
B= { 1 if [ﬂ,‘] = —[aj]
—~[a;]  otherwise
where

fs = [as] - PMONs + hs.
Then we set
S(fir ;) = hs if PMONg = LCM(PMON;, PMON;)
P2 fs otherwise

Example 2.8. Let the polynomials f; := [2,3] -z + 22 and f; := [1,2] -z, - x2 + 73 be given
in the order x; > 2. Then, we get LCM(PMON;, PMON;) = 2% - z; Thus, we compute

2, 2,
fs = [1,2] 3 23:2 ’([273]"5%"’23)‘ [2,3]‘51"12'([1,2]'1'1 - Ty + x3)
ry Iy - Ta

[2,6]- 2% 22 +[1,2]- 23 - [2,6] - 22 - 73 - (23] - 73 - x3
= [-4,4]-2% 2, -[2,3] -3 - 23 +(1,2] - 23

and the principal term has to be eliminated. The result is

S(fifi) =-[2,3) -2y - 23+ [1,2]- .’L‘g.
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M-reduction in /R: Let two polynomials
fi=[ai]-PMON; +--- and f; =[a;]- PMON; +---
be given. We first set PMON? := PMON; and f? := f;, and we compute
. PMON;

fir=A4A :fiold +B PMON; - Ji
with _ _ )
| Ui fa) = [a]
A= ;. 1 if [a,'] = —[a}'}
[a;] else
and
-1 if [a] =[aj]
B= 1 if [a] = —[a,-]
—[a;] else
where

fi= [a,~] - PMON; + h;.
Then, if PMONZ4 = PMON;, we set
Ji = hy.

Example 2.9. Let the polynomials f; := [-3, =3]-z,-z2 + 23 and f; := [1,2] -z, + 2% be given
in the order z; > r3. Then we compute

2 (1,2 3+ 7))

fi = 1,2 ([-3,-2)- 2y - 22 + x3) - [-3, -2} - fL‘n

= [~6,-2]-x; 23+ [1,2] - 73 = [-6,~2] - 7y - 73 — -3, ~2] - 23
(~4,4] x) - 22+ [-3,-2] - 23 + [1,2] - 3

and the principal term has to be eliminated. The result is
fi=[-3,-2]- 53+ 1,2] - zs.

The differences between the version of Buchberger’s algorithm in IR and the interval ver-
sion are the constructions of the S-polynomials and the M-reductions. Moreover, the additional
criteria for the set of solutions must be modified for the interval case. We cannot use the
first criterion directly, because we must distinguish between constant interval polynomials which
contain the value zero and constant interval polynomials which do not contain zero.

The latter can be treated in the same way as before, but those constant polynomials which
contain zero, but are unequal to zero, do not lead to an elimination. We cannot decide whether
this polynomial is reduced to zero or not.

Example 2.10. Let the following system be given:

H = VI - 5, = 0
fa = - Vbz;, - V3 =0
fi = - 3\/5-'1-‘2 - 3\/5 = 0.
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This system has nearly triangular form. A construction of an S-polynomial for f; and fa and
succeeding M-reductions assuming exact arithmetic deliver

S(f2. f3) = 0.
Furthermore, our algorithm removes f; and the system has an exact solution with

z ——\—/-—§ and T ———\{—5
1= 2=

If we apply interval arithmetic with four significant mantissa digits, we start with the polynomials

fi = [2645,2.646)r, — [2.236,2.237)z,
h o= - [2236,2.237}x, - [1.732,1.733]
fi = ~ 3[2.236,2.237)r, - 3(1.732,1.733].

A construction of the S-polvnomial f; = S(fa, f3) and succeeding M-reductions for f; deliver
fa = [~0.015,0.015].

Keeping in mind that this interval (as a constant polynomial) encloses zero, the equation 0 = 0
is enclosed, and we get ‘a solution with

1y = —[0.653,0.657] and 1z = —[0.774,0.776]

enclosing the exact solution.

We have seen that there can be solvable systems, despite the validity of the first criterion in its
original form. Consequently, we

o stop our algorithm, if the constant polynomial ‘does nét comain zero, because the system
has no solution then, and we

e store the constant polynomial for later investigations if it contains zero, and we go on
with the constant polynomial set to zero.

We give some further notes on the implementation of our interval version of Buchberger's
algorithm at the end of the article.

24. Some improvements

Practical experience and another criterion of Buchberger lead to further ideas for improvements
of Algorithm 1L

241 Change of order

A great improvement in computing time can be achieved by using the optimal order for the
variables in the given system. Practical experience shows that it is favorable to choose an order
that puts variables with small powers and seldom appearance in front and variables that appear
in many polynomials or that have large powers in the back.
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Example 2.11. For the order (i; > iy > 3). let the system

Iy + 4w + 3xz3 = 0
_41') :L‘% bt I = (
3 =0

be given. If we change the order o (3 > I > 1), then we get the system

3r; + drg + x; = 0
- driz, - 0
o= 0

For the first order, Algorithm II performs 7 S-polynomial constructions and 19 M-reductions.
For the second order, only 1 S-polynomial construction and 1 M-reduction are necessary.

For increasing dimensions and powers, the differences between the orders can be even
bigger. Our experiences led to some criteria for choosing the preferable order:

1. Number of polynomials which contain ;

2. Largest power of each variable in the whole system

3. Number of summands in the whole system that contain z;
4. Length of the largest polynomial containing z;.

This heuristic cannot guarantee an improvement of computing time. but practical experiences
show that it leads to a respectable improvement in many cases. The success depends also on
the inner structures of the system.

242. Special way of pivoting

A special strategy for changing the order in which the polynomials are treated in Algorithm II,
we call pivoting. There are two cases for the choice of polynomials during, the algorithm:

¢ in search of polynomials for the next construction of an S-polynomial and
e in search of the next polynomial for another M-reduction.

We give our special way of pivoting that accelerated our algorithm for a large number of
systems:

1. For S-polynomials, we prefer those combinations of polynomials which lead to the least
LCM.

2. For M-reductions, we prefer “short” polynomials.
Example 2.12. For the system

529 — 6alxi + mazd + 2r173 = 0
- 28z, + 2713 + 2z913
2 + 12 — 0.265625

(|
oo

the following table shows some comparisons between the number of S-polynomials and
M-reductions performed when using different orders and pivoting.
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Order Number of S-polynomials Number of M-reductions
without pivoting | with pivoting || without pivoting | with pivoting
(1,2,3) 108 30 566 133
(1,3.2) 14 10 49 27
3,2,1) 25 14 144 106

Again we cannot give a guarantee for an improvement. The success of this method depends
on the properties of the used polynomials. Additionally, we must modify our pivoting strategy
if we want to avoid special combinations of interval coefficients resulting in intervals containing
zero which possibly lead to a termination of our method.

In the current version of our algorithm, the strategies mentioned above are implemented.
But those strategies are too static. To achieve a greater improvement, we should be able to
influence the algorithm at the beginning and also during the compwtation. Then the order
and the pivoting should also fit to each new situation as for example high powers or long
polynomials upcoming. We are still working on further improvements.

3. Hansen's algorithm for nonlinear equations in one
variable

Now we turn to the second part of our combined method, Hansen’s method for finding all
zeros of a nonlinear continuously differentiable function f: R — IR, which we will apply to a
polynomial with interval coefficients. We combine this method with the theorem of Gershgorin
{18] in order to get an algorithm independent of a starting interval entered by the user.
Hansen’s method is an extension of the interval Newton method which applies extended interval
operations (see [10] and [12] for details).

31 Theoretical background
We address the problem of finding all solutions of the one-dimensional equation
f(z)=0

for a continuously differentiable function f : IR — IR and r € [z]. The interval Newton
method for solving this equation can easily be derived from the mean value form

f(m(ia) - £(=*) = £(€) - (m([]) - =)

where z*. £ € [z] and m([z]) denotes the midpoint of [z]. If we assume z* to be a zero of f,

we get .
._ f(m([=)) f(m((=))
i e T I £ T
=: N([a])

Hence. every zero of f in [z] also lies in N{[z]), and therefore in N([z]) N [z]. Using
standard interval arithmetic, the interval Newton method starts with an interval [z]® satisfying
0 ¢ f'([x]'”) and iterates according to

(£ = @Y NN (). k=0.12....
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The method cannot diverge due to the intersection. If the intersection is empty, we know that
there is no root of f in [z]*).

Using extended interval arithmetic, as defined in [10] and {12], we are able to treat the
case 0 € f'([z])'@) that occurs if there are several zeros in the starting interval [z}'®. In this
case, N([z]®)) is given by one or two extended intervals resulting from the interval division.
Even though N([z]®)) is infinite, the intersection [z]**! = N([z]*)) N [z]**) is finite and may
be a single interval, the union of two intervals. or the empty set. Then. the next step of the
interval Newton iteration must be applied to each of the resulting intervals. In this way it is
possible to enclose all zeros of f in the starting interval [z](@.

The following theorem summarizes the most important properties of the interval Newton
method.

Theorem 3.1, Let f: D C IR — IR be a continuously differentiable function. and let [z].€ IR,
{x] € D be an imterval. Then

. (m(iz)
)
has the following properties:

L. Every zero x* € [z} of f satisfies * € N([z]).

2. If N([z]) N [z] = @, then there exists no zero of f in [z].

3. If N([x]) € [z], then there exists a unique zero of f in [z} and hence in N([z]).

The proofs appear in [12, 16, 17].

32. Algorithmic description

In the following, we give a simplified version of our Hansen-ike algorithm. We use the
following notations:

f nonlinear function of one variable

] starting interval for the search

g desired relative diameter for the final intervals

[y vector (list) of intervals that still have (o be examined

[7]  vector (pair) of two possibly infinite intervals

[zp] vector (pair) of two finite intervals

[Zero] final vector (list) of all enclosures for zeros

N final number of enclosures

The input for Algorithm I is a one-dimensional function, a starting interval, and a
desired relative accuracy. The given starting interval is split into smaller intervals by the
Newton step or by bisection. These intervals [y; are stored as components of the interval [y] if
0 € f([y]:) (so they may contain a zero) and if the relative diameter of [y}; is greater than the
desired accuracy . Otherwise, if the relative diameter is small enough, the interval is siored
in the list of candidates for zeros, named [Zero). If 0 & f([y):). then [y]: is discarded.

The process terminates when the list of intervals [y] is empty, i.e. all subintervals [y]; could
either be discarded due to the condition 0 ¢ f([y;) or because their relative diameter is less
than < and they are stored. in the list of zeros {Zero]l. For further descriptions see {10] and [11].
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Algorithm 111

input function f, starting interval [x], desired accuracy ¢

N:=0;, i:=1; [yh =[xk { Initializations }
repeat
if 0¢ f([yl;) then
1:=1-—1
else
c:= m([yl);
[z := ¢ = f(e)/ f'(lyli)s { Extended interval Newton step }
[zp] = [gi N [2); { Intersection [y}i N {za0] = [25]1 U [3p]2 }
if [:Pll = [y], then
[zl i={wcs [l =le ) { Bisection }
ir=1i~1;
for k:=11t0 2 do
in
if [zp]x = 0 then nexty;
if dre([zp)k) < € then { Store enclosure. of zero }
begin

if 0 € f([zp]x) then
N:=N+1; (Zeroly := [zp)is
end '
else
begin { Store-[z]x in [y] }
i=i+1l [yli:= [ZP]L.;
end;
end;
until i =0
Sort all intervals in list {Zero};
Eliminate multiple intervals enclosing the same unique zero;

output the vector of enclosures of all zeros {Zero] and the number of zeros N

4. The combined method

Now we combine Buchberger’s algorithm and Hansen's algorithm.

Algorithm IV has some advantages profounded in the theory of the Grobner bases and
in the fact that the multi-dimensional problem is reduced to a sequence of one-dimensional
problems. Between parts A and B of the algorithm, the criteria for the solvability can be
applied. Thus, we are able to decide whether the system is not solvable at all and whether
the system has an infinite number of solutions. In both cases, it makes no sense to start
Algorithm 111, and the computing can be terminated.

Moreover, we do not need to enter starting intervals for the computations. in fact, we use
the theorem of Gershgorin [18] to compute an interval that contains all zeros of the polynomial
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input functions fi..... fu representing a polynomial system of equations G

step A Apply Algorithm II on G resulting in triangular system F

check finite solvability of the System F = (f...., f,) and exit if necessary

step B Set &£ :=n and call RecursiveHansen(k) defined by

Compute starting interval for fi in Algorithm 111
Apply Algorithm Il on fi(zi) to compute enclosures (yii. [yxl2. . - .. [yx]n,

if k=1 then
return
else
for i :=1 to Ny do
Replace z; by [y:]; in polynomials. f. ..., fi-p;
Call RecursiveHansen{(k — 1};

output a'list of enclosures for ail zeros of the given system

in one variable (to be treated by Algorithm HI).

5. Implementation

We developed a portable impleﬁnemation of Algorithm 1V in PASCAL-XSC [14] The software
package is divided in three independent parts:

1. Arithmetical operators, functions, and procedures lo handle the nonlinear polynomials and systems.

In this part, we implemented an arithmetic for nonlinear polynémials including addition,
subtraction, multiplication, and division of polynomials (also with mixed operands, terms,
and monomials). Due to the fact that nonlinear polynomials are not limited in their
length, we made great efforts to control the storage space (garbage collection).

2. Interval version of Buchberger's algorithm.

Algorithm 11 was implemented in its interval version including the improvements in
ordering and pivoting.

3. Speciad triangular version of Hunsen's algorithm with a controlling environment.

The environment program prepares all the data necessary for the recursive calls of
Hansen’s algorithim in one variable (e.g. computing the starting intervals).

Each of these parts can also be applied on its own to an appropriate problem.
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6. Numerical examples

Now we give some examples to demonstrate the performance of our combined method. The
listed computing times are those from a HP 9000/720 equipped with PASCAL-XSC Version
2.03. The tmes for Algorithin IV include the time for order changing and pivoting, the time
for computing all starting intervals for Algorithm 11, and the time for producing a file with
the results. All results are given for a desired relative accuracy of £ = 10712,

We give the results of three different algorithms for comparison:

1. Our combined method (BB+NLTSS: BB = Buchberger's algorithim + NLTSS = Nonlinear
Triangular System Solver).

2. The Hansen-like algorithm which is a part of the PXSCDEMO program of the PASCAL—
XSC system (NLSSDEMO).

3. The nonlinear system solver as described in [10] (TBNLSS).

The starting intervals necessary for input in NLSSDEMO and TBNLSS are those computed by
BB+NLTSS.

Example 8.1. Compute the intersection points of two circles:

|
=]

@ - 20z, + 23 - 2xp, + 100
el - 2z + 3 - 22, + 121

|
e

The numerical results are

Zero No. 1 :
x[1) = [ 1.050000000000000E+001, 1.050000000000000E+001]
xf2] = [ 1.866025403784438E+000, 1.866025403784439E+000]

Zero No: 2 : A
x{1] = [ 1.050000000000000E+001, 1.050000000000000E+001]
x{2) = [ 1.339745962155613E-001, 1.339745962155614E~001}

Statistic for Buchberger’s algorithm:
Number of S-polynomials : 2
Number of M-reductions : 1

If we compare the computing times for the three different methods we get

| Method Time |
BB+NLTSS | 0:00:00,020
NLSSDEMO | 0:00:02,580

TBNLSS | 0:00:00,270

Example 6.2. Compute the intersection of three spheres:

@ -2 + 2k + 22 =0
2 + 23 + 13 - 23 = 0
@+ 1 + 3 - 1 =0

The numerical results are



Zero
x{1]
x{2]
x[3]

Zero
x[1]
x[2]
x[3]

No

No.
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000000000000000E-001, §.000000000000000E-001]

[ s.
[ 7.071067811865474E-001, 7.071067811865476E-001]
[ s.

000000000000000E~-001, 5.000000000000000E-001]

000000000000000E-001, - 5.000000000000000E-001]

{ s.
[ -7.071067811865476E-001, ~-7.071067811865474E-001]
[ s.

000000000000000E-001, 5.000000000000000E-001]

Statistic for Buchberger’s algorithm:
Number of S-polynomials : 2
Number of M-reductions : ©

If we compare the computing times for the three different methods we get

|  Method Time |
"BB+NLTSS | 0:00:00.020
NLSSDEMO { 0:00:05,110

TBNLSS 0:00:00,880

Example 6.3. Brown's almost linear system (5-dimensional) is given by

The numerical results are

Zero
x[1]
x[2])
x(3]
x[4])
x[5]

Zero
x(1]
x (2]
x(3]

No.

(
(
(
(
(

No.

x[4]) =

x[5]

Zero
x{1]
x[2]
x(3])

{
(
[
({
{

No.

=
=
=

{
{
(

2ry + 2 + x3 + x4 + T3 - 6 =0

Iy + 2r2 + 13 + T4 + 15 — 6 = 0

L, + X2 + 223 + x4 + T35 — 6 = 0O

Ly + oo + T3 + 214 + 13 — 6 = 0

ry - &Ly - x3 - Ty - x5 — 1 =0
-5.790430884942E-001, -5.790430884940E-001]

-5.79043088494121E-001, -5.79043088494113E-001]
-5.79043088494121E-001, -5.79043088494113E~001]
-5.79043088494121E-001, -5.79043088494113E-001]

8.89521544247056E+000, 8.89521544247061E+000]

9.1635458253384E-001, 9.1635458253386E~001]
9.16354582533848E-001, 9.16354582533851E-001)
9.16354582533848E-001, 9. 16354582533851E-001]
9.16354582533848E-001, 9.16354582533851E-001]
1.41822708733075E+000,  1.41822708733076E+000]

9.99999999999997E-001,  1.00000000000001E+000]
9.999999999999997E-001, 1.000000000000001E+000]
9.999999999999997E-001, 1.000000000000001E+000]
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x[4]
x[5]

[ 9.999999999999997E-001,
[ 9.999999999999995E-001,

1.000000000000001E+000]
1.000000000000001E+000]

Statistic for Buchberger’s algorithm:

Number of S-polynomials :

Number of M-reductions

If we compare the computing times for the three different methods

Example 6.4. A polynomial system of higher degree is:

9 _
5zy

4
24
we gt'(.
' Method ] Time ‘
"BB+NLTSS 0:00:00,150
NLSSDEMO | > 1:00:00,000
TBNLSS > 1:00:00,000
6z3rs + z,xé + 2riz3 = 0
—22%¢c, + 22z} + 2z903 = 0
2+ 2 — 0265625 = 0.

We skip the numerical results for the 12 solutions and list the statistics:

Statistic for Buchberger’s algorithm:

Number of S-polynomials :

Number of M-reductions

14
106

If we compare the computing times for the three different methods we get

[ Method I Time 1
BB+NLTSS | 0:00:00,3902
NLSSDEMO | 0:03:19,2101

TBNLSS | 0:00:07,4908

Example 6.5. Feigenbaum example (3-dimensional) is:

-3.
-3.
-3.

84z + 384z, - =z = 0
8422 + 384z ~ =z = 0
8402 + 384z — 7, = 0.

We skip the numerical results for the 8 solutions and list the statistics:

Statistic for Buchberger's algorithm:

Number of S-polynomials :

Number of M-reductions

2
8

If we compare the computing times for the three different methods we get

r Method Time ]
BB+NLTSS | 0:00:01,110
NLSSDEMO | 0:00:11,450

TBNLSS | 0:00:02,820
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Example 6.6. A variant of Powell’s singular function:

r, + 10, = 0
V10e; - V10z, = 0
3 - dxrory + 3 =0
\/I—Ox:; - 2\/1—01'11‘4 + / lﬂli 0.

The numerical results are

Zero No. 1 :

x[1] = [ 0.000000000000000E+0G0, {.000000000000000E+000]
x(2] = [ 0.000000000000000E+000, 0.000000000000000E+000]
x[3] = [ 0.000000000000000E+000, 0.000000000000000E+000]
x{4] = { 0.000000000000000E+000, 0.000000000000000E+000]

Statistic for Buchberger’s algorithm:
Number of S-polynomial : 5§
Number of M-reductions : 21

If we compare the computing times for the three different methods we get

| Method Time |

BB+NLTSS | 0:00:00,050
NLSSDEMO | 0:08:33,370
TBNLSS | 0:00:53,580

7. Summary and future work

In general, the problem of solving a system of polynomial equations is NP-hard (cf. [9]), and
therefore, there is no chance 10 get a fae algorithin that would always find all the solutions.
For unbounded systems. the situation is even worse: there exists an example (r; = 2, 23 =
?, ..., Lay1 = T3) of a system whose only solution is hyperexponential and therefore, not
computable in any reasonable time because simply to produce the result digit after digit will
take too long.

We have been studying a combined method for finding interval enclosures of all zeros
of a nonlinear system of polynomial equations. Significant improveinent can be obtained in
interval Newton methods if this method is used instead of a usual interval Newton method.
The reason for this is that the preprocessing step based on an interval version of Buchberger’s
Algorithm reduces the original problem to a sequence of simpler problems, ie. to a special
triangular system of polynomial equations which can be solved by recursively calling a special
Hansen-like one-dimensional solver. We have shown with our examples, that our method
is in many cases much faster than the application of Hansens multi-dimensional algorithm
{or similar methods) to the original nonlinear systems of polynomial equations. Even for the
hyperexponential example above for dimensions up to n = 10, our solver is able to compute
the solution in less than one second.

There are, of course, examples where the combined method fails because the degrees of
the polynomials generated by Algorithm Il are too high and demand to much storage capacity
for executing Algorithm II1. Additionally, there are cases where coefficients of some monomials
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cannot be eliminated in interval arithmetic (due 10 inflation effecis described in Section 2.3.2)
although they would be zero assuming infinite precision arithimetic. Here. we have to deal with
similar problems as in the interval Gauss algorithm.

Possible future work will investigate the application of special subtraction techniques (cf.
[13]) for handling “equal” coefficients. Significant work can also be done to develop a strategy
for deciding when to use the combined method and when to use a usual method. Furthermore,
future research should include application of the combined method to the specific problems of
computer graphics (e.g. ray tracing).
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