
Reliable Computing 1 (1) (1995), pp. 9-14 

Formulas for the width of interval products 
H~,,,ttrr RaTsCnm<" and JoN G. Ror, N~ 

Sharp  formulas for the width of the product of  intervals are derived- which are simpler ahd  more 
effective :than the ones previously, known. These formulas are useful in applications and they are 
appropriate tools for estimating the' quality of  interval evaluations, proofs of such formulas will, in 
general, result in a number of different cases involving' longwinded cak'ulations. By utilizing certain 
functionals which are~ invariants of appropriate interval tranfformatiods the calculations are reduced to 
the ones required for. a minimum number of:cases, 
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1. Introduction 
Let I be the set of real compact intervals. The product in I is defined by 

A B = { a b : a E A ,  b E B }  for A, B E I  

or equivalently, 
[a, b] [c, d] = [min{ac, ad, be, be}, max{ac, ad, be, bd} ] 

cf. [9]: The w/d/h of an interval A = [a,b] is denoted by wA = b - a ,  the modulus by / 
IAI = max{lab Ibl}, the m/dpo/nt by mA = (a + b)/2, the s/ze by sA = (lal + Ibl)/2, and the 
(Hausdorff-) d/stance from A to 0 by < A >= 'min{M : a ~ A}. 

It is often necessary to know the values of the above-mentioned functionals when they are 
applied to an interval product AB. Formulas of varying degree of complexity are known for 
these formulas (cf. [1, 2, 12, 17]) except for the width w(AB). A surprisingly large number 
of conditionally valid formulas for w(AB) are known and in part listed below, whereas a 
universally valid formula has been missing. 

"Thanks are due to the National .Sciences and Engineering Research Council of  Canada for supporting this paper. 
(~) H. Ratschek, J. Rokne, 1995 
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Knowledge of w(AB) is required .in various kinds of investigations. For example, it is 
rt, quired in the exploitation ol" the absolttte precision concept introduced in [10, 11], in the 
description of optimal hounds in a general floating point error analysis [12, 1 ~  in proving 
the existence of higher order approximations of the range of univariate functions [4], in the 
development of effscient bisection strategies for various problems (cf. [fi, 15]; see also [5] for 
a thorough discussion of bisection strategies), and in recommendations for the evaluation of 
arithmetic expressions which involve products. Last, but not least, the knowledg e of w(AB) is 
very important in convergence Woofs for Newton algorithms (cf. [7]) as well as in numerical 
validation of "solutions of nonlinear ~vstems [3]. 

In order to hint at the interesting variety of attempts at describing w(AB), we give an 
excerpt of known formulas keeping as close as posdble m the historical development. The first 
t1~rt completely trivial estimation 

w ( . 4 8 )  < !,4!wB + IB lwa  

was proposed in [8[ Later Ris [17] proposed inter alia formulas like 

w(AB) <. (sA)wB + (sB)wA. 

,0 

He notes that in this estimation strict inequality holds iff 0 E A and 0 E B. iHere, A denotes 
the interior of A.) Further formulas from [I7] are 

w(AB) = 2s(aB) = IA[wB 

w(AB) = 2s(AB) = max{lAJwB, IB]wA} 

(wA)(wB)/2 <_ w(AB) < (wA)wB 

O O 

if OEA,  Of  EB, 
o O 

if OEA,  O E B ,  
0 

i f O E A ,  O E B  

where equality holds on the left hand side iff A and B are symmetric (that is, A = - A ,  
B = - B ) .  

Aiefeld-Herzherger [1, 2] proved rater alia formulas such as 

w(AB) >_ max{(wA)lBl,[AIwB}, 
w(AB) = tB[wA if A is symmetric, 
w(A") <_ nJAI"-twA, n = l , 2  . . . .  

where A n = A x .-- x A (n times) means the simple pouwr in contrast to the extended power, 
A" = {a" : a ~ a } .  and 

w(A-a)"<_2(wA) '~ i f a E A ,  n = 1 . 2 , . . .  

The last formula could he improved by Rump [18] to 

w(A-a)"<_(wA) ~ i f a E A ,  n = l , 2  . . . .  

As far as we know the first complete formula for w(AB) was found by Rail [12]. This 
formula clearly showed how difficult it was to find a suitable formula. The formula is 

/ At I ~ t ~  

w t ~  = max o~ 
i=L....6 
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where 

OL 2 m 

Ot 4 = 

Ol 5 -= 

( ' i  6 = 

Krawczyk [7] wrote Rairs formula in 

](rnA)wB - (wA)(wB)/2[ ,  

t ( w A ) m a  - (wA)(wB)/21, 
I(wa)mB + (mA)(wB)l, 
] (wA)mB - (ma)(wB) l ,  

I(wa)mB + (wA)(wB)/2[, 
I (mA)wB + (wA)(wB)/2[ .  

a more  compact form 

w(AB)  = max ( ImAIwB + (wA)lmBI,  
ImAIwB + (wA) (wB) /2 ,  
(wA)lmBI  + (wA) (wB) /2} .  

In Section 2 of  this paper  sharp formulas for w ( A B )  are derived. A treaunent  of  such 
formulas will, in general; resuh in a number  of  d i f fe rem cases and Iongwinded calculations. 
By utilizing certain fimctionals which are invariances Of the necessary transformations the 
calculations can be reduced to just one simple case. The  most important fimctional, which 
characterizes the symmetry behavior o f  intervals and meets the intrinsic nature of  interval 
products exactly, was introduced in [131 by X : . I  -*  [ - 1 ,  1] with X[0, O] = - 1  and if [a,b] # 0 ,  
with 

a/b if la l<- lbl  
x[a, b] = b / a otherwise. 

For example,  x A  = - 1  means that A is symmetric and x A  = 1 means that A is a nonzero point 
inlervai and hence completely unsymmetric. There fore  X admits the geometric interpretation 
that 

A is more .ffmmelric than B iff xA _< xB .  

Beyond that, X turned out to he an indispensible tool for solving linear interval equations in 
an algebraic manner  [16] or describing the subdistributive behavior of  interval arithmetic [14]. 

2. Formulas for the width of an interval product 

Let A = [a, b] and B = [c, d] and A be the interior of  an interval A. 

Theorem 1. For intervals A, B with 0 ~ ~4, 0 ~ B we get 

w ( A B )  = ]mAlwB + ImBIwA. 

Proof. We only need to derive the formula for the case mA,  m B >  O. The  remaining cases 
can be reduced to this case by substituting A ,  , - A  or B ,  ~ - B  or both and observing 
that the formula of  the theorem is invariant w.r.t, the substitution since w ( A B )  = w ( - A B ) ,  
i m ( - A ) l  = rrnAI and w ( - A )  = wA, etc. T h e  assumptions imply a unique 6xplicit expression 
for the prodnct, A B  = [ac, b~. Hence 

w ( A B )  = bd - ac = b(d - c) + c(b - a) 
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as well as 

w(AB) = bd - ac = d(b - a) + a(d - c). 

Adding the two lines we get 

2w(AB) = (c + d)(b - a) + (a + b) (d-  c) = 2[(mA)wB + (mB)wA] 
= 2[[mAlwB-+[mB[wA]. O 

In order to get an expression for w(AB) not containing m or w we apply the obvious 
formulas 

]taXI = [ X ] - ( w X ) / 2  if X E I ,  0 ~ 7  (1) 

w x  = IXl-  < x > if X E [,  0 r .,~ (2) 

to Theorem 1 with X = A and X = B and gain the following useful formulas. 

Corollary 1. For intervals A, B with 0 r ~4, 0 r b we fret 

(i) w(AB) = IAIwB + IBIwA. (wA)wB, (3) 

( i i)  w(AB) = IAIIBI- < A > <  B > .  (4) 

T h e  theorem as well as the corollary shows that when 0 ~ the expressions for w(AB) 
are symmetric in A and 'B. The following theorem dealing with the case 0 E AB reveals the 
surprising feature that w(AB) depends only on the width of the most symmetrical of the two 
intervals and onl~ on the modulus of  the other one. 

Theorem 2. For intervals A, B with 0 E A or 0 E B or both we get 

IAIwB if xB < xA 
w(AB) = IBlwA if  x B  >_ xA. 

(5) 
(6) 

Proof As in the proof of Theorem 1 we assume mA, m B  > 0 because, in addition to the 
invariants mentioned in that proof, we have IA[ = I - A I  and xA = x ( - A ) .  Further we assume 
xB  <_ xA. The formula for xB  >_ xA may then be derived by just swapping A and B. Firstly, 
if B = 0, the formula is evident. If B # 0 then x B  = old. Using the homeomorphic properties, 
of the modulus of intervals and the x,functional as well as the representation of intervals X 
by IX[ and xX,  cf. [13], we get 

Hence, w(AB) = IAIwB. 

AB = tABI[x(AB), 1] 

= IAIIBI[xB, 1] 

= IAI d [e/d, 11 
= IAl[c, d]. 

ra 

Corollary 2. For intervals A, B we get 

IAIwB + (wA) < B > 
w(AB) = IBlwA + (wB) < A > 

if xB  <_ xA  
if  xA < xB. 

('0 
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Prof. We restrict ourselve~ to the case xB _< xA. If XB >_ 0 (saying that 0 ~ B), formulas (3) 
and (2) are identical by setting X = B in (2). If x B  <_ 0 (saying that 0 E B), then < B > =  0 
such that formulas (2) and (2) are identical. [3 

We utilize the binary operation O on [-1, 1], cf. [14], defined by 

ab, if a ,b>O,  
a G b =  min{a,b} otherwise 

and keep in mind that X is a homomorphism from the algebraic system (I, .) to the algebraic 
system ([-1,1], O), cf. [131. 

Theorem 3. For intervals A, B we get 

w (AB)  = [AIIBI(a - (xA)  0 x B ) .  

Proof. Again mA, m B >  0 is assumed. Then as in the proof of Theorem 2, 

A B  = 'IABI[x( AB) ,  I] 

= ]A[[B[[(xA) @ xB ,  1] 

and w(AB)  = IAIIBI (l  - (xA) 0 xB) .  r3 
Theorem 3 is of importance if interval vectors or interval products are to be estimated 

where the previous theorems are not so useful. For example, if Ai, Bi E I, i = 1 , . . . ,  n. then 

i=1 

Corollary 3. For intervals A1, A 2  . . . .  , A .  and A we get 

(i) w(At. . .~4, ,)  = l A d ' - . - "  IA,,[- < A1 > - . . . -  < A,, > 
(ii) w ( a l . . . A , )  = IA~I . . . . . IA , , - , IwA,  

(iii) w(A")  = IA"-t lwA 

where A '~ means the simple power evaluation. 

o 

i f  O ~ Ai , i  = l , . . . , n .  
ir o e a ,  
and x A ,  < xAi, i = 1 . . . . .  n, 
i f  O E A  

Proof. The modulus as well as the Hausdorff-distance of intervals are homomphisms of ([,-) 
to (R, .). Setting B = A1 " . . . "  A,-1 and A = A,  in (4) and in (2) proves (i) and (ii). [] 
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