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Formulas for the width of interval products

Hewmur Ratschex® and Jon G.-Roxne

Sharp formulas for the width of the product of intervals are derived- which are simpler ahd more
effective :than the ones previously known. These formulas are useful in applications and they are
appropriate tools for estimating the’ quality of interval evaluations. Proofs of such formulas will, in
general, result in a number of different cases mvolvmg longwinded calculations. By utilizing certain
functionals which are: invariants of appropriate interval transformationis the calculations are reduced to
the ones required for-a minimum number of . cases.

(DOpMYABL AAST BBIYMCAEHWS HIVPUHBL
MHTEPBAABHBIX ITPOM3BEAEHNI

X. Pauek, Ax. Ax. Poxkn

Mpencrasienst Tounsie GOPMY.Ibl 118 BHIMHCICHHA IHPHHE IIPOUIBCACHHA HHTEPBAIOB, ABIAIOWMHECH
KaK Gosiee TIPOCTHIMH, Tak H Goaee e TUBHBIMH, YEM HCTIONLIOBABIBHECA J10 CHX Hop. JTh (opMyan
MOryT OBITh NOACIHH LI NPHIOKEHHA; XPOMC TOTO, OHH TPCICTARAAIOT OGO XOPOUIHA HHCTPYMCEHT
/IR OUEHKH Ka4eCTBA HHTEPBALHOTO ouenusanua. [oxalaTeancrsa Takux chopmys, soobuie ropops,
TpeGyoT pa3bopa GOJBINOrO YHCIA CIY4acB H, COOTBCTCTBEHHO, o6neMHbiX BhuHCIennn. [lpumenenne
yHKIHOHAIOB, WHBAPHAHTHHIX NO OTHOWICHHIC K ONPCACICHHLIM HHTCPBAILHLIM fIPEOGPAIOBAHHAM,
NO3BO/IHI0 COKPATHTL /10 MHHHMYMA YHCIO CITyHaes H 06BeM BLIMHCACHMIL.

1. Introduction

Let I be the set of real compact intervals. The product in [ is defined by
AB={ab:a€ A,be B} for A,Bel

or equivalently,

[a, 8][c, d] = [min{ac, ad, be, bd}, max{ac, ad, bc, bd}]

of. [9] The width of an interval 4 = [a,B] is denoted by wA = b — a, the modulus by
[A| = max{|al, |b]}, the midpoint by mA = (a + b)/2, the size by sA = (|a] + |b])/2, and the
(Hausdorff-) distance from A to 0 by < A >="min{|a| : a € A}.

It is often necessary to know the values of the above-mentioned functionals when they are
applied to an interval product AB. Formulas of varying degree of complexity are known for
these formulas (cf. [1, 2, 12, 17]) except for the width w(AB). A surprisingly large number
of conditionally valid formulas for w(AB) are known and in part listed below, whereas a
universally valid formula has been missing.

*Thanks are due to the National Sciences and Engineering Research Council of Canada for supporting this paper.
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Knowledge of w(AB) is required .in various kinds of investigations. For example, it is
required in the exploitation of the absolute precision concept introduced in [10, 11}, in the
description of optimal bounds in a general floating point error analysis [12, 17, in proving
the existence of higher order approximations of the range of univariate functions (4], in the
development of efficient bisection strategies for various problems (cf. [6, 13]; see also [5] for
a thorough discussion of bisection strategies), and in recommendations for the evaluation of
arithmetic expressions which involve products. Last, but not least, the knowledge of w(AB) is
very important in convergence proofs for Newfon algorithms (cf. [7]) as well as in numerical
validation of solutions of nounlinear systemns [3].

In order to hint at the interesting variety of attempts at describing w(AB), we give an
excerpt of known formulas keeping as close as possible to the historical development. The first
not completely trivial estimation

w(AB) £ |AlwB + | BlwA
was proposed in (8] Later Ris [17] proposed inter alia formulas like
w(AB) < (sA)wB + (sB)wA.

He notes that in this estimation strict inequality holds iff 0 € Aand 0€ B. (Here, A denotes
the interior of A.) Further formulas from [17] are

w(AB) = 2s(AB) = |AjwB if0eA,0¢B,
w(AB) = 2s{AB) = max{|AjwB, |BjwA} if 0 A,0¢€ B,
(wA)(wB)/2 < w(AB) < (wA)wB if0cA,0eB

where equality holds on the left hand side iff A and B are symmetric (that is, 4 = -4,
B=-B).
Alefeld-Herzherger {1, 2] proved inter alia formulas such as
w(AB) > max{{wA)|B|,|AlwB},
w(AB) = |BlwA if A is symmetric,
w(A™) < njA™'wA, n=12,...

where A" = A x ---x A (n times) means the simple power in contrast to the extended power,
A" = {a":a € A}, and

w(A—a)* <2(wA)" ifa€e A n=1.2...
The last formula could be improved by Rump [18] to
w(A-a)" <(wA)" ifec A n=12,...

As far as we know the first complete formula for w(AB) was found by Rall [12] This
formula clearly showed how difficult it was to find a suitable formula. The formula is

w(AB) = max_ o
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where

oy = |[(mAYwB - {(wA)(wB)/2|,
) {(wAymB ~ (wA)(wB)/2|,
a3 = |[(wA)mB + (mA){(wB)|,
ay l(wA)mB — (mA)(wB)|,
as = |(wA)mB + (wA)(wB)/2|,
ag = [(mA)wB + (wA)}(wB)/2|.

Il

i

Krawczyk [7] wrote Rall’s formula in 2 more compact form

w(AB) = max {|mAlwB + (wA)mB],
imAjwB + (wAY(wB)/2,
(wA)|mB| + (wA)}(wB)/2}.

In Section 2 of this paper sharp formulas for w(AB) are derived. A treaunent of such
formulas will, in general; result in a number of different cases and longwinded calculations.
By wuiilizing certain functionals which are invariances of the necessary iransformations the
calculations can be reduced to just one simple case. The most important functional, which
characterizes the symmetry behavior of intervals and meets the intrinsic nature of interval
products exactly, was introduced in [13] by x : 7 — [~1,1] with x[0,0] = -1 and if [a,b] #0,
with

=} e/b if |a| < [b]
x[a, b] = { b/a otherwise.
For example, YA = —1 means that 4 is symmetric and YA = 1 means that A is a nonzero point

interval and hence completely unsymmetric. Therefore x admits the geometric interpretation
that
A is more symmetric than B iff YA < xB.

Beyond that, x turned out 1o be an indispensible tool for solving linear interval equations in
an algebraic manner (16} or describing the subdistributive behavior of interval arithmetic [14].

2. Formulas for the width of an interval product

Let A = [a,b] and B = [c.d] and A be the interior of an interval A.

Theorem 1. For intervals A, B with 0 ¢ ;1 0¢ lci' we get
w(AB) = [mAlwB + [mBlwA.

Proof. We only need to derive the formula for the case mA,mB > 0. The remaining cases
can be reduced to this case by substituting A = —~A or B — —B or both and observing
that the formula of the theorem is invariant w.r.t. the substitution since w(AB) = w(—AB),
|m(—A)| = [mA| and w(~A) = wA, etc. The assumptions imply a unique éxplicit expression
for the product, AB = [ac, bd]. Hence

w(AB)=bd —ac=b(d~-c)+c(b—a)
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as well as

w(AB) = bd - ac = d(b - a) + a(d - ¢).
Adding the two lines we get

2w(AB) = (c+d)(b-a)+(a+b)(d—c)=2[(mA)wB + (mB)wA]
= 2[lmAjwB % |mBlwA). o

In order to get an expression for w(AB) not containing m or w we apply the obvious
formulas

mX| = |X|-(@X)/2 i XeI,0¢X )
wX = |X|-<X> if XeI,0¢X @)
to Theorem 1 with X = A and X = B and gain the following useful formulas.

Corollary 1. For intervals A, B with 0 ¢ ;l, o¢ B we get

(i) w(AB) = |AlwB + |BlwA - (wA)wB, 3)
(i) w(AB) = |A||B|-<A><B>. (4)

The. theorem as well as the corollary shows that when 0 ¢ AB the expressions for w(AB)
are symmetric in A and ‘B. The following theorem dealing with the case 0 € AB reveals the
surprising feature that w(AB) depends only on the width of the most symmetrical of the two
intervals and only on the modulus of the other one.

Theorem 2. For intervals A, B with 0 € A or 0 € B or both we get

_J |AlwB if xB<xA (5).
w(AB) = { |BlwA if xB> xA. (6)

Proof. As in the proof of Theorem 1 we assume mA,mB > 0 because, in addition to the
invariants mentioned in that proof, we have |A| = |- A| and xA = x(—A). Further we assume
xB < xA. The formula for xB > xA may then be derived by just swapping A and B. Firstly,
if B =0, the formula is evident. If B # 0 then xB = c¢/d. Using the homeomorphic properties
of the modulus of intervals and the x-functional as well as the representation of intervals X
by |X| and xX, cf. [13], we get

AB = |AB|[x(AB),1]
|4l Bl[xB, 1]
|4l d[c/d, 1]
14lfc, d)-

Hence, w(AB) = |A|wB. |

Corollary 2. For intervals A, B we get

_ | |AlwB + (wA)< B> if xB<xA
w(AB) = { IBlwA+ (wB) < A> if xA< xB. (7)
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Proof. We restrict ourselves to the case xB < xA. If xB > 0 (saying that 0 ¢ é), formulas {3
and (2) are identical by setting X = B in (2). If xB < 0 (saying that 0 € B), then < B >=0

such that formulas (2) and (2) are identical. a
We utilize the binary operation © on {1, 1], cf. [14), defined by
ab, if a,b>0,
aob { min{a, b} otherwise

and keep in mind that X is a homomorphism from the algebraic system (I,-) to the algebraic
system ([—1,1],8), f. [13].

Theorem 3. For intervals A, B we get
w(AB) = |A||B|(1 - (xA4) © xB).

Proof. Again mA, mB 2 0 is assumed. Then as in the proof of Theorem 2,

AB = |AB|[x(AB),1]
|AIBl[(xA) © xB, 1]
and w(AB) = |4]|B|(1 - (xA4) © xB). o
Theorem 3 is of importance if interval vectors or interval products are to be estimated
where the previous theorems are not so useful. For example, if 4;,B; € I,i=1,...,n, then

0 (5 48 = S IAIBI(L - (c) 0 XB).
i=1 i=1

Corollary 3. For intervals Ay, Ay,..., An and A we get

(i) w(A;...4,) = |A]|-... |AsjJ— <A1 >-...-<A,> If 0 A;,i=1,...,n
(M) 'lU(Al .o An) = IAll L IAn—llwAn if 0€ An

and xAn < x4;,1=1,...,n,
(iii) w(A") = |A" Y wA if0€A

where A™ means the simple power evaluation.

Proof. The modulus as well as the Hausdorff-distance of intervals are homomphisms of ([, -)
to (R,-). Setting B=A,-...- Aay and A = A, in {4) and in (2) proves (i} and (ii). 0
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