Formulas for the width of interval products

Helmut Ratschek* and Jon G. Rokne

Abstract

Sharp formulas for the width of the product of intervals are derived which are simpler and more effective than the ones previously known. These formulas are useful in applications and they are appropriate tools for estimating the quality of interval evaluations. Proofs of such formulas will, in general, result in a number of different cases involving longwinded calculations. By utilizing certain functionals which are invariants of appropriate interval transformations the calculations are reduced to the ones required for a minimum number of cases.

Формулы для вычисления ширины интервальных произведений

X. Paчek, $\Delta \pi$. Δx. Рокн

Прелставлены точные формулы лля вычисления ширины произведения интерналов, являвшнеся как более простыми, тах и более зффехтивнымн, чем ислользовавизнеся ло сих иор. Эти формулы могут быть полезны для приложений; хроме того, они представляот собой хороинй ннструмент для оценки качества интервального оиенивания. Доказательства таких формул, вообще говоря, требуют разбора болышого числа случаев и, соответственно, объемных вычислений. Применение фунхиионалов, инвариантных по отношения к определенным интервальным преобразованиям, позволило сократить ло минимума число случаев и объем вычислений.

1. Introduction

Let I be the set of real compact intervals. The product in I is defined by

$$
A B=\{a b: a \in A, b \in B\} \text { for } A, B \in I
$$

or equivalently,

$$
[a, b][c, d]=[\min \{a c, a d, b c, b d\}, \max \{a c, a d, b c, b d\}]
$$

cf. [9]. The width of an interval $A=[a, b]$ is denoted by $w A=b-a$, the modulus by $|A|=\max \{|a|,|b|\}$, the midpoint by $m A=(a+b) / 2$, the size by $s A=(|a|+|b|) / 2$, and the (Hausdorff-) distance from A to 0 by $\langle A\rangle=\min \{|a|: a \in A\}$.

It is often necessary to know the values of the above-mentioned functionals when they are applied to an interval product $A B$. Formulas of varying degree of complexity are known for these formulas (cf. [1, 2, 12, 17]) except for the width $w(A B)$. A surprisingly large number of conditionally valid formulas for $w(A B)$ are known and in part listed below, whereas a universally valid formula has been missing.

[^0]Knowledge of $\boldsymbol{\omega}(A B)$ is required in various kinds of investigations. For example, it is required in the exploitation of the absolute precision concept introduced in [10, 11]. in the description of optimal bounds in a general floating point error analysis [12, 17], in proving the existence of higher order approximations of the range of univariate functions [4], in the development of efficient bisection strategies for various problems (cf. [6, 15]; see also [$\mathbf{0}$] for a thorough discussion of bisection strategies), and in recommendations for the evaluation of arithmetic expressions which involve products. Last, but not least, the knowledge of $w(A B)$ is very important in convergence proofs for Newtion algorithms (cf. [7) as well as in numerical validation of solutions of nonlinear systems [3].

In order to hint at the interesting variety of attempts at describing $w(A B)$, we give an excerpt of known formulas keeping as close as possible to the historical development. The first not completely trivial estimation

$$
w(A B) \leq|A| w B+|B| w A
$$

was proposed in [8]. Later Ris [17] proposed inter alia formulas like

$$
w(A B) \leq(s A) w B+(s B) w A .
$$

He notes that in this extimation strict inequality holds iff $0 \in \AA$ A and $0 \in \stackrel{\circ}{B}$. (Here, A denotes the interior of A.) Further formulas from [17] are

$$
\begin{array}{ll}
w(A B)=2 s(A B)=|A| w B & \text { if } 0 \in \AA, 0 \notin B, \\
w(A B)=2 s(A B)=\max \{|A| w B,|B| w A\} & \text { if } 0 \in \AA, 0 \in B, \\
(w A)(w B) / 2 \leq w(A B)<(w A) w B & \text { if } 0 \in A, 0 \in B
\end{array}
$$

where equality holds on the left hand side iff A and B are symmetric (that is, $A=-A$, $B=-B$).

Alefeld-Herzherger [1, 2] proved inter alia formulas such as

$$
\begin{aligned}
w(A B) \geq \max \{(w A)|B|,|A| w B\}, & \\
w(A B)=|B| w A & \text { if } A \text { is symmetric }, \\
w\left(A^{n}\right) \leq n|A|^{n-1} w A, & n=1,2, \ldots
\end{aligned}
$$

where $A^{n}=A \times \cdots \times A$ (n times) means the simple ponter in contrast to the extended poner, $\bar{A}^{n}=\left\{a^{n}: a \in A\right\}$, and

$$
w(A-u)^{n} \leq 2(w A)^{n} \quad \text { if } a \in A, n=1.2, \ldots
$$

The last formula could be improved by Rump [18] to

$$
w(A-a)^{n} \leq(w A)^{n} \quad \text { if } a \in A, n=1,2, \ldots
$$

As far as we know the first complete formula for $w(A B)$ was found by Rall [12]. This formula clearly showed how difficult it was to find a suitable formula. The formula is

$$
w(A B)=\max _{i=1, \ldots, 6} \alpha_{i}
$$

where

$$
\begin{aligned}
& \alpha_{1}=|(m A) w B-(w A)(w B) / 2| \\
& \alpha_{2}=|(w A) m B-(w A)(w B) / 2| \\
& \alpha_{3}=|(w A) m B+(m A)(w B)|, \\
& \alpha_{4}=|(w A) m B-(m A)(w B)|, \\
& \alpha_{5}=|(w A) m B+(w A)(w B) / 2|, \\
& \alpha_{6}=|(m A) w B+(w A)(w B) / 2|
\end{aligned}
$$

Krawczyk [7] wrote Rall's formula in a more compact form

$$
w(A B)=\max \begin{aligned}
& \{|m A| w B+(w A)|m B| \\
& |m A| w B+(w A)(w B) / 2 \\
& (w A)|m B|+(w A)(w B) / 2\}
\end{aligned}
$$

In Section 2 of this paper sharp formulas for $w(A B)$ are derived. A treatunent of such formulas will, in general; result in a number of different cases and longwinded calculations. By utilizing certain functionals which are invariances of the necessary iransformations the calculations can be reduced to just one simple case. The most important functional, which characterizes the symmetry behavior of intervals and meets the intrinsic nature of interval products exactly, was introduced in [13] by $\chi: I \rightarrow[-1,1]$ with $\chi[0,0]=-1$ and if $[a, b] \neq 0$, with

$$
\chi[a, b]= \begin{cases}a / b & \text { if }|a| \leq|b| \\ b / a & \text { otherwise }\end{cases}
$$

For example, $\chi A=-1$ means that A is symmetric and $\chi A=1$ means that A is a nonzero point interval and hence completely unsymmetric. Therefore χ admits the geometric interpretation that

$$
A \text { is more symmetric than } B \text { iff } \chi A \leq \chi B \text {. }
$$

Beyond that, χ turned out to be an indispensible tool for solving linear interval equations in an algebraic manner [16] or describing the subdistributive behavior of interval arithmetic [14].

2. Formulas for the width of an interval product

Let $A=[a, b]$ and $B=[c, d]$ and $\stackrel{\circ}{A}$ be the interior of an interval A.
Theorem 1. For intervals A, B with $0 \notin \stackrel{\circ}{A}, 0 \notin \stackrel{\circ}{B}$ we get

$$
w(A B)=|m A| w B+|m B| w A
$$

Proof. We only need to derive the formula for the case $m A, m B \geq 0$. The remaining cases can be reduced to this case by substituting $A \longmapsto-A$ or $B \longmapsto-B$ or both and observing that the formula of the theorem is invariant w.r.t. the substitution since $w(A B)=w(-A B)$, $|m(-A)|=|m A|$ and $w(-A)=w A$, etc. The assumptions imply a unique explicit expression for the product, $A B=[a c, b d]$. Hence

$$
w(A B)=b d-a c=b(d-c)+c(b-a)
$$

as well as

$$
w(A B)=b d-a c=d(b-a)+a(d-c)
$$

Adding the two lines we get

$$
\begin{aligned}
2 w(A B) & =(c+d)(b-a)+(a+b)(d-c)=2[(m A) w B+(m B) w A] \\
& =2[|m A| w B+|m B| w A \mid .
\end{aligned}
$$

In order to get an expression for $w(A B)$ not containing m or w we apply the obvious formulas

$$
\begin{align*}
|m X| & =|X|-(w X) / 2 \tag{1}
\end{align*} \quad \text { if } X \in I, 0 \notin \stackrel{\circ}{X},
$$

to Theorem 1 with $X=A$ and $X=B$ and gain the following useful formulas.
Corollary 1. For intervals A, B with $0 \notin \AA, 0 \notin \stackrel{\circ}{B}$ we get

$$
\begin{align*}
& \text { (i) } \quad w(A B)=|A| w B+|B| w A-(w A) w B, \tag{3}\\
& \text { (ii) } \quad w(A B)=|A||B|-<A> \tag{4}
\end{align*}
$$

The theorem as well as the corollary shows that when $0 \notin \dot{\circ} \dot{A} \dot{B}$ the expressions for $w(A B)$ are symmetric in A and B. The following theorem dealing with the case $0 \in A B$ reveals the surprising feature that $w(A B)$ depends only on the width of the most symmetrical of the two intervals and only on the modulus of the other one.

Theorem 2. For intervals A, B with $0 \in A$ or $0 \in B$ or both we get

$$
w(A B)= \begin{cases}|A| w B & \text { if } \chi B \leq \chi A \tag{5}\\ |B| w A & \text { if } \chi B \geq \chi A\end{cases}
$$

Proof. As in the proof of Theorem 1 we assume $m A, m B \geq 0$ because, in addition to the invariants mentioned in that proof, we have $|A|=|-A|$ and $\chi A=\chi(-A)$. Further we assume $\chi B \leq \chi A$. The formula for $\chi B \geq \chi A$ may then be derived by just swapping A and B. Firstly, if $B=0$, the formula is evident. If $B \neq 0$ then $\chi B=c / d$. Using the homeomorphic properties of the modulus of intervals and the χ-functional as well as the representation of intervals X by $|X|$ and χX, cf. [13], we get

$$
\begin{aligned}
A B & =|A B|[\chi(A B), 1] \\
& =|A||B| \mid \chi B, 1] \\
& =|A| d[c / d, 1] \\
& =|A|[c, d] .
\end{aligned}
$$

Hence, $w(A B)=|A| w B$.
Corollary 2. For intervals A, B we get

$$
w(A B)= \begin{cases}|A| w B+(w A) & \text { if } \chi B \leq \chi A \tag{7}\\ |B| w A+(w B)<A> & \text { if } \chi A \leq \chi B\end{cases}
$$

Proof. We restrict ourselves to the case $\chi B \leq \chi A$. If $\chi B \geq 0$ (saying that $0 \notin \dot{B}$), formulas (3) and (2) are identical by setting $X=B$ in (2). If $\chi B \leq 0$ (saying that $0 \in B$), then $=0$ such that formulas (2) and (2) are identical.

We utilize the binary operation \ominus on $[-1,1]$, cf. [14], defined by

$$
a \ominus b= \begin{cases}a b, & \text { if } a, b \geq 0 \\ \min \{a, b\} & \text { otherwise }\end{cases}
$$

and keep in mind that χ is a homomorphism from the algebraic system $\langle I, \cdot\rangle$ to the algebraic system $\langle[-1,1], \ominus\rangle$, cf. [13].

Theorem 3. For intervals A, B we get

$$
w(A B)=|A||B|(1-(\chi A) \ominus \chi B)
$$

Pronf. Again $m A, m B \geq 0$ is assumed. Then as in the proof of Theorem 2,

$$
\begin{aligned}
A B & =|A B| \mid \chi(A B), 1] \\
& =|A||B|[(\chi A) \ominus \chi B, 1]
\end{aligned}
$$

and $w(A B)=|A||B|(1-(\chi A) \ominus \chi B)$.
Theorem 3 is of importance if interval vectors or interval products are to be estimated where the previous theorems are not so useful. For example, if $A_{i}, B_{i} \in I, i=1, \ldots, n$, then

$$
w\left(\sum_{i=1}^{n} A_{i} B_{i}\right)=\sum_{i=1}^{n}\left|A_{i}\right|\left|B_{i}\right|\left(1-\left(\chi A_{i}\right) \ominus \chi B_{i}\right)
$$

Corollary 3. For intervals $A_{1}, A_{2}, \ldots, A_{n}$ and A we get
(i) $w\left(A_{1} \ldots A_{n}\right)=\left|A_{1}\right| \cdot \ldots \cdot\left|A_{n}\right|-<A_{1}>\cdot \ldots<A_{n}>$ if $0 \notin \AA_{i}, i=1, \ldots, n$.
(ii) $w\left(A_{1} \ldots A_{n}\right)=\left|A_{1}\right| \cdot \ldots \cdot\left|A_{n-1}\right| w A_{n} \quad$ if $0 \in A_{n}$ and $\chi A_{\mathrm{n}} \leq \chi A_{i}, i=1, \ldots, n$,
(iii) $\quad w\left(A^{n}\right)=\left|A^{n-1}\right| w A$ if $0 \in A$
where A^{n} means the simple power evaluation.
Proof. The modulus as well as the Hausdorff-distance of intervals are homomphisms of $\langle I, \cdot\rangle$ to $\langle R, \cdot\rangle$. Setting $B=A_{1} \cdot \ldots \cdot A_{n-1}$ and $A=A_{n}$ in (4) and in (2) proves (i) and (ii).

References

[1] Alefeld, G. and Herzberger, J. Einführing in die Interwallrechnung. Bibliographisches Institut, Zürich, 1974.
[2] Alefeld, G. and Herzberger, J. Introduction to intervol computations. Academic Press, New York, 1983.
[3] Alefeld, G., Gienger, A., and Potra, F. Efficienl numerical vulidution of solutions of nonlinear systems. SIAM J. Numer. Anal. 31 (1994), pp. 252-260.
[4] Cormelius, H. and Lohner, R. Compuing the range of owlwes of real functions wilh accuracy higher thom second wreler. Computing 33 (1984), pp. 331-347.
[5] Kearfot, R. B. Aburact generalized bisection and a cost bound. Math. of Comput. 49 (1987), pp. 187-202.
[6] Kearfou, R. B. Preconditioners for the interivl Gauss-Seidel method. SIAM J. Numer. Anal. 27 (1990). pp. 804-892.
[i] Krawczyk, R. and Neumaier, A. An improved imtervel Netuton operator, J. Math. Anal. Appl. 118 (1986). pp. 194-207.
[8] Moore, R. E. The automatic amulysis and control of error in digital computation based on the use of imterxal numbers. In: Rall, L. B. (ed.) "Error in Digital Computation", Vol. 1, Proceedings of an advanced seminar. University of Madison, 1965, pp. 61-130.
[9] Moore, R. E. Interval amalysis. Prentice-Hall, Englewood Cliffs, N.]., 1966.
[10] Olver. F. W. A new approach to error arithmetic. SIAM J. Numer. Analysis 2 (1982), pp. 368392.
[11] Olver, F. W. Further dewelopments of rp and ap analysis. IMA J. Numer. Analysis 2 (1982), pp. 249-274.
[12] Rall, L. B. Representutions of intervads and optinual error bounds. Math. of Computation 41 (1983), pp. 219-297.
[13] Katschek, H. Die binüren Systeme der Intervalimathematik. Computing 6 (1970), pp. 295-308.
[11] Ratschek, H. Die Subdivributititül in der Imerwallmathematik. Z. Angew. Math. Mech. 51 (1971), pp. 189-192.
[15] Ratschek. H. and Rokne. J. The transixor modeling probiem again. Microelectronics and Reliability 32 (1992), pp. 172:-1740.
[16] Ratschek, H. and Sauer, W. Linear imterval equations. Computing 28 (1982), pp. 105-115.
[17] Ris, F. N. Inumvel amalysis and applications to linear algebra. Ph. D. Thesis, Oxford University, 1972.
[18] Rump, S. Pervonal communicution. See [2], p. 18.

Received: February 28, 1994
Revisel version: July 27. 1994
H. Ratschek

Mathematisches Institut der Universität Düsseldorf

Germany
J. Rokne

Dept. of Computer Science The University of Calgary

Canada

[^0]: "Thanks are due to the National Sciences and Engineering Research Council of Canada for supporting this paper. (C) H. Ratschek, J. Rokne, 1995

