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Abstract. No method for the computation of a reliable subset of the
range of vector-valued functions is available today. A method for com-
puting such inner approximations is proposed in the specific case where
both domain and co-domain have the same dimension. A general suffi-
cient condition for the inclusion of a box inside the image of a box by
a continuously differentiable vector-valued is first provided. This suffi-
cient condition is specialized to a more efficient one, which is used in a
specific bisection algorithm that computes reliable inner and outer ap-
proximations of the image of a domain defined by constraints. Some
experimentations are presented.
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1. Introduction

An image set is a subset of R
m that is defined as the image of a subset D

of R
n by a nonlinear vector-valued function f : R

n → R
m. This paper deals

with the image set problem which consists in computing a reliable description
of the image set. More precisely, we want to find two subpavings (i.e. union
of boxes) Y

− ⊆ R
m and Y

+ ⊆ R
m such that

Y
− ⊆ Y ⊆ Y

+,

where Y = {f(x) : x ∈ D} is the image set of D by f . The main contribution
of this paper is to present the first method able to solve the image set problem

for continuously differentiable nonlinear vector-valued functions f : R
n −→

R
n (both domain and co-domain have the same dimension).
Interval analysis provides a large number of methods able to compute

efficiently an outer approximation Y
+ of the image set (see [16, 18, 14]). As

a consequence, the outer approximation problem can be considered as solved
and this is why this paper is mainly devoted to the inner characterization
problem. Existing methods are unable to compute an inner approximation
Y
− of an image set, except for some particular cases :
First, when f maps R

n into R, methods based on Kaucher arithmetic (see
[9] and extensive references) or on twin arithmetic (see [17]) have been shown
to be able to solve the image set problem. Second, when f is vector-valued
and linear the Kaucher arithmetic has been shown to be able to provide
an accurate inner approximation of the image set (see [20, 4]). Finally,
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some advances [3, 5] have been carried out in the general case of constraints
∃y ∈ y, f(x, y) = 0, but none of these methods is able to deal with the
problems tackled in the present paper.

Although the method proposed in the present paper is restricted to func-
tions where both domain and co-domain have the same dimension, this class
of image set problems is of particular importance for many applications in
robotics and control. Let us present two of them.

First, within a set theoretical framework state estimation alternates a
prediction step and a correction step (see e.g. [19, 1]). The correction step
amounts to solving a set inversion problem whereas the prediction step re-
quires the characterization of the image of a subpaving. Existing algorithms
based on interval analysis (see e.g. [11]) are unable to compute an inner
approximation of the feasible set for the state vector at time k. An efficient
solution for the image set problem could be really appreciated during the
prediction step. Second, the workspace of a serial robot represents the set
of all configurations that could be reached by the tool of the robot (see e.g.
[2]). This set can be defined as an image set (as illustrated in the application
section of this paper). A guaranteed inner approximation of the workspace
is needed during the conception phase of the robot : we need to conceive the
robot so that we are certain that it will be able to reach the whole region of
interest.

The paper is composed as follows. Section 2 recalls the main notions of
interval analysis needed for the proposed developments. A test that makes
possible to prove that a box is included in an image set is presented in
Section 3. This test is made more efficient using a preconditioning step as
detailed in Section 4. Section 5 provides a bisection algorithm that computes
an inner and an outer approximation of the image set. The efficiency of the
algorithm is demonstrated on two testcases in Section 6. Finally, Section 7
presents some related work.

2. Interval analysis

The interval theory was born in the 60’s aiming at rigorous computa-
tions using finite precision computers (see [15]). Since its birth, it has been
developed and it proposes today original algorithms for solving problems
independently of the finite precision of computer computations, although
reliable computations using finite precision remain one important advan-
tage of the interval based algorithms (see e.g. [10, 8]).

An interval is a set of real numbers [a, b] = {x ∈ R | a ≤ x ≤ b} where
a, b ∈ R such that a ≤ b are called respectively the lower and upper bounds
of [a, b]. Intervals and related objects (e.g. interval functions and interval
vectors and matrices) are denoted by boldface letters. The set of intervals
is denoted by IR. Interval vectors and interval matrices are defined like in
the context of real numbers. They are identified with vectors of intervals
and matrices of intervals. For example, the interval vector [a, b], where
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a = (a1, · · · , an)T and b = (b1, · · · , bn)T , is identified with the vector of
intervals ([a1, b1], · · · , [an, bn])T . The membership is defined componentwise,
e.g. x ∈ [a, b] is equivalent to xi ∈ [ai, bi] for all i ∈ [1..n]. The interval
vectors are also called boxes. Interval matrices are defined in the same way.

The boundary of an interval x is denoted by ∂x and its interior by intx
(these notations also stand for general subsets of R

n). Also, the mid-
point of an interval [a, b] is denoted by mid [a, b] = (a + b)/2, its radius
(resp. its width) is denoted by rad [a, b] = (b − a)/2 (resp. by wid [a, b] =
b − a). The same definitions hold for interval vectors and interval matri-
ces (note that rad x ∈ R

n and wid x ∈ R
n while rad A ∈ R

m×n). The
magnitude (resp. mignitude) of an interval [a, b] is |[a, b]| = max{|a|, |b|}
(resp. 〈[a, b]〉 = min{|a|, |b|}). For an interval vector [a, b], its magnitude
|[a, b]| = maxi |[ai, bi]|. Throughout the paper, we use the infinite norms
||x|| = maxi{|xi|} and ||A|| = maxi

∑

j |Aij |. Also, we abbreviate || |x| ||
and || |A| || using ||x|| and ||A|| respectively. The distance between interval
vectors is defined as the Hausdorff distance between the underlying sets of
real vectors. It has the following simple expression:

d(x,y) = max
i

max{|xi − y
i
|, |xi − yi|},

where x = ([x1,x1], . . . , [xn,xn]) and y = ([y
1
,y1], . . . , [yn

,yn]). Given an

interval vector x ∈ IR
n (resp. an interval matrix A ∈ IR

n×m), we define
Ix := {x′ ∈ IR

n : x′ ⊆ x} (resp. IA := {A′ ∈ IR
n×m : A′ ⊆ A}).

The core of the interval theory is the extension of real functions to inter-
vals. These extensions allow computing outer approximations of the image
of intervals by real functions. Formally, given a real function f : R

n −→ R
m

and an interval function f : IR
n −→ IR

m, the interval function f is an in-
terval extension of f if and only if, for all x ∈ IR

n, range (f,x) ⊆ f(x),
where range (f,x) is the image of x by f . The smallest box that con-
tains range (f,x) is called the interval hull of range (f,x) and is denoted
by � range (f,x). It is the most accurate interval extension that one may
hope to construct.

Now that the definition of interval extensions is stated, it remains to
compute such interval extensions. Computing the interval hull of range (f,x)
with arbitrary precision is a NP-hard problem (see [13]). Therefore lots of
work has been done to provide interval extensions that are both precise and
cheap. Based on the interval arithmetic (that computes exact ranges for
elementary functions like +, −, /, ×, exp, cos, etc...) two interval extensions
are widely used (see [18]):

• The natural extension simply consists in replacing the real operation
by their interval counterparts in the expression of the function. For
example, f(x) = x2 − x is an interval extension of f(x) = x2 − x.
• The mean-value extension consists in rigorously linearizing the func-

tion before computing the natural extension of the linearization. For
example, the mean-value extension of the function f(x) = x2 − x is
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f(x) = f(mid x)+∆(x−mid x) where ∆ is an interval that contains
{f ′(x) | x ∈ x} (the interval ∆ can be computed using the natural
extension of f ′).

In order to study the asymptotic behavior of interval extensions, it is
useful to introduce the Lipschitz continuity of interval functions:

Definition 2.1. An interval function f : IR
n −→ IR

m is locally Lipschitz
continuous if and only if for all xref ∈ IR

n there exists λ > 0 such that for
all x,y ∈ Ixref ,

d
(

f(x), f(y)
)

≤ λ d(x,y).

Under mild hypothesis, the natural interval extension has a linear order
of convergence. Note that an interval extension f of a real function f which
is locally Lipschitz continuous satisfies the following property: for all xref ∈
IR

n there exists γ > 0 such that for all x ∈ Ixref , || rad f(x)|| ≤ γ|| rad x||.
This follows from the following obvious overestimations:

rad f(x) ≤ d(f(x), f(x̃)) ≤ λ d(x, x̃) ≤ λwid x ≤ 2λ rad x.

Interval matrices naturally arise when the mean-value extension is used
for vector-valued functions. In this case, the derivative of f is the matrix

f ′(x) =













∂f1

∂x1
(x) ∂f1

∂x2
(x) · · · ∂f1

∂xn
(x)

∂f2

∂x1
(x) ∂f2

∂x2
(x) · · · ∂f2

∂xn
(x)

...
...

. . .
...

∂fm

∂x1
(x) ∂fm

∂x2
(x) · · · ∂fm

∂xn
(x)













.

The expression of the mean-value extension is then

f(mid x) + J(x−mid x)

where J is an interval matrix that contains {f ′(x) | x ∈ x}. The follow-
ing specific definitions about interval matrices will be used in the sequel:
consider A ∈ IR

n×n, then

• Diag A is the diagonal interval matrix whose diagonal entries are
(Diag A)ii = Aii.
• Diag−1 A is the diagonal interval matrix whose diagonal entries are

(Diag A−1)ii = 1/Aii.
• OffDiag A is the interval matrix whose diagonal is null and whose

off-diagonal entries are (OffDiag A)ij = Aij .

3. A test for the inclusion in the range of a function

This section presents Theorem 3.1 which provides a sufficient condition
for a box y ⊆ R

n to be included inside the image of a box x ⊆ R
n by a

continuously differentiable function f : R
n −→ R

n. Its corollary 3.1 will be
used in the next section as the basis of a specific bisection algorithm that
computes an inner approximation of range (f,x).
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Theorem 3.1. Let x,y ∈ IR
n and f : x ⊆ R

n −→ R
n be a continuous

function continuously differentiable in intx. Suppose that the three following

conditions are satisfied:

(i) y ∩ range (f, ∂x) = ∅;
(ii) y ∩ range (f,Σ) = ∅ where Σ = {x ∈ intx | det f ′(x) = 0};
(iii) f(x̃) ∈ y for some x̃ ∈ x.

Then y ⊆ range (f,x).

Proof. x is compact and we can apply Lemma A.2 of Appendix A. Therefore

∂
(

range (f,x)
)

⊆ range (f, ∂x)
⋃

range (f,Σ) .

Using the conditions (i) and (ii), we have

y ∩ ∂
(

range (f,x)
)

= ∅. (1)

Denote range (f,x) by E (which is compact because x is compact and f is
continuous) and f(x̃) by y. Notice that y ∈ intE because of (1). Consider
any z ∈ y and suppose that z /∈ E. There exists a path included in y

between y and z. By Lemma A.1 of Appendix A this path intersects ∂E
which is absurd by (1). Therefore z ∈ E which concludes the proof. �

Theorem 3.1 can be used in many ways to construct some inner approxi-
mations of the range of a function. The bisection algorithm to be proposed
in the next section is based on the following corollary of Theorem 3.1.

Corollary 3.1. Let x ∈ IR
n and f : x −→ R

n be a continuous function

continuously differentiable in intx. Consider y ∈ IR
n and x̃ ∈ x such that

f(x̃) ∈ y. Consider also an interval matrix J ∈ IR
n×n that contains all

f ′(x) for x ∈ x. Suppose that 0 /∈ Jii for all i ∈ [1..n]. Then

x̃ + Γ
(

J, (x− x̃),y − f(x̃)
)

⊆ intx (2)

=⇒ y ⊆ range (f,x) ,

where Γ(A,u,b) := (Diag−1 A)
(

b − (OffDiag A)u
)

. Furthermore, (2) also

implies that the matrix J is an H-matrix.

Proof. It is sufficient to prove that the condition (2) implies the three con-
ditions of Theorem 3.1.
(i) Consider an arbitrary x ∈ ∂x. As x ∈ x the mean-value theorem shows
that f(x) ∈ f(x̃) + J(x− x̃) (this is the well-known argument that leads to
the interval mean-value extension). It is therefore sufficient to prove that
(

f(x̃)+J(x− x̃)
)
⋂

y 6= ∅ contradicts (2). So suppose that there exist J ∈ J

and y ∈ y such that f(x̃)+J(x−x̃) = y. Splitting J to (Diag J)+(OffDiag J)
leads to

x = x̃ + (Diag−1 J)
(

y − f(x̃)− (OffDiag J)(x− x̃)
)

.
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As x ∈ x, y ∈ y, (Diag−1 J) ∈ (Diag−1 J) and (OffDiag J) ∈ (OffDiag J),
using the interval arithmetic leads to

x ∈ x̃ + (Diag−1 J)
(

y − f(x̃)− (OffDiag J)(x− x̃)
)

.

As x ∈ ∂x this latter appurtenance contradicts (2).
(ii) It is sufficient to prove that (2) implies that any real matrix J ∈ J is
regular (so Σ = ∅ and (ii) holds). The condition (2) implies

x̃ + (Diag−1 J)
(

y − f(x̃)− (OffDiag J)(x − x̃)
)

⊆ intx

for every J ∈ J. As f(x̃) ∈ y (so 0 ∈
(

y − f(x̃)
)

) the previous inclusion
implies

x̃− (Diag−1 J)
(

(OffDiag J)(x− x̃)
)

⊆ intx.

This inclusion proves that rad
(

x̃−(Diag−1 J)
(

(OffDiag J)(x−x̃)
))

< rad x.
Using the radius rules proved on page 84 of [18], one concludes that

|(Diag−1 J)(OffDiag J)|(rad x) < rad x.

As (Diag−1 J) is diagonal, |(Diag−1 J)(OffDiag J)| = |(Diag−1 J)||(OffDiag J)|
and the ith line of the latter inequality can be written

∑

i6=j

|Jij | rad xj < |Jii| rad xi

As |Jij | rad xj = |Jij(rad xj)| (because rad xj ≥ 0), the latter inequality
means that J can be scaled to a strictly diagonally dominant matrix. As a
consequence, J is an H-matrix and is eventually regular. This also proves
that the interval matrix J is an H-matrix (because it contains only real H-
matrices).
(iii) By hypothesis, f(x̃) ∈ y. �

Remark. Corollary 3.1 is closely related to the existence test provided by the
Hansen-Sengupta interval operator (see [6]). Indeed the latter is retrieved
if y is set to [0, 0] in the expression (2). As a consequence, Theorem 3.1
provides an elementary proof of the existence test related to the Hansen-
Sengupta operator.

4. A preconditioning process

In order to succeed, the test provided by Corollary 3.1 needs the interval
evaluation of the derivative of f to be an H-matrix. However, this is not the
case in general. The following simple example illustrates this situation.

Example 4.1. Consider the linear function f : R
2 −→ R

2 defined by f(x) =
Mx with

M =

(

1 1
−1 1

)

.

Also consider x = ([−2, 2], [−2, 2])T and y = ([−ǫ, ǫ], [−ǫ, ǫ])T . Obviously,

the image of x is obtained from x by a π/4 rotation followed by a
√

2
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inflation. Therefore y is a subset of the image of x by f if and only if ǫ ≤ 2.
The function f has a constant derivative so M is an interval evaluation of its
derivative. Now apply Corollary 3.1: on one hand choose x̃ = mid x so x̃ = 0
and f(x̃) = 0. On the other hand (Diag J) = I and (OffDiag J) = M − I.
Therefore Corollary 3.1 leads to the following implication:

(

[−ǫ, ǫ]
[−ǫ, ǫ]

)

−
(

[−2, 2]
−[−2, 2]

)

⊆ int

(

[−2, 2]
[−2, 2]

)

=⇒ y ⊆ range (f,x) .

The sufficient condition is never satisfied whatever is ǫ > 0. This is due to
the fact that J = M is not an H-matrix.

In such situations, the right thing to do is to precondition the problem
in such a way that the interval evaluation of the derivative becomes close
to the identity matrix (and therefore possibly an H-matrix). In the present
situation, preconditioning the problem consists in replacing the inclusion to
be checked, i.e. y ⊆ range (f,x), by the more restrictive one

Cy ⊆ range (Cf,x) , (3)

where C ∈ R
n×n is any regular real matrix. The latter is indeed more

restrictive than the former: (3) implies Cy ∈ range (Cf,x) for every y ∈ y,
that is

(

∃x ∈ x
)(

Cy = Cf(x)
)

. As C is regular, this finally implies y ∈
range (f,x) for every y ∈ y, i.e. y ⊆ range (f,x). As usual, CJ is an interval
evaluation of the derivative of Cf provided that J is an interval evaluation
of the derivative of f . Therefore, once J is computed using the expressions
of the derivative of f , one can choose C ≈ (mid J)−1 in order to obtain
a near identity interval evaluation of the derivative of Cf (so that CJ can
be an H-matrix). The preconditioned version of Corollary 3.1 leads to the
following condition:

x̃ + Γ
(

CJ, (x− x̃), Cy − Cf(x̃)
)

⊆ intx (4)

=⇒ y ⊆ range (f,x) .

When the midpoint inverse preconditioning is used (i.e. C ≈ (mid J)−1), it
is proved in [18] that CJ is an H-matrix if and only if J is strongly regular.
Therefore the strong regularity of the interval evaluation of the derivative
of f is a necessary condition for the success of the preconditioned version
of Corollary 3.1. Example 4.1 is now revisited thanks to the presented
preconditioning:

Example 4.2. Consider f , x and y as in Example 4.1. Choose C = M−1

so that Cf(x) = x. Therefore the interval evaluation of the derivative of
Cf is I. The preconditioned version of Corollary 3.1 leads to the following
condition:

(

0.5× [−ǫ, ǫ]− 0.5× [−ǫ, ǫ]
0.5× [−ǫ, ǫ] + 0.5× [−ǫ, ǫ]

)

−
(

0× [−2, 2]
0× [−2, 2]

)

⊆ int

(

[−2, 2]
[−2, 2]

)

⇓
y ⊆ range (f,x) .
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Therefore y ⊆ range (f,x) is now proved for ǫ < 2.

5. A specific bisection algorithm

This section presents a bisection algorithm that computes a paving in-
cluded inside the image of a box x by a function f . A bisection of both the
domain and co-domain aiming at a direct use of the tests provided in the
previous section presents several drawbacks: on one hand, this would result
in the bisection of a 2n dimensional space. On the other hand, the bisection
would have to provide couples of boxes x̃ and ỹ that satisfy Corollary 3.1.
This situation is not easy to reach during a bisection process. Some experi-
mentations have shown that acting in such a way leads to instability of the
bisection algorithm. The specific bisection algorithm described in Subsec-
tion 5.1 overcomes these difficulties by bisecting only the box x. It is based
on a function Inner() which is described in Subsection 5.2. The convergence
of the algorithm is investigated in Subsection 5.3. Finally Subsection 5.4
provides the modifications needed for the bisection algorithm to deal with
domains defined by constraints.

5.1. The bisection algorithm. Given the initial box x ⊆ R
n and a func-

tion f : x −→ R
n, the bisection algorithm bisects only x producing a list

of boxes LDomain = {x̃(1), · · · , x̃(N)}. Given x̃ ∈ LDomain, the basic idea
is to compute some outer approximation ỹ of range (f, x̃) using an interval
extension of f and to test if ỹ is a subset of range (f,x). This results in
a list of boxes LInside that are proved to be subsets of range (f,x). This is
illustrated by Figure 1 for n = 1: the initial interval x has been bisected to
twelve intervals (one x̃ being displayed). For each of them, an outer approx-
imation has been computed. The resulting boxes (x̃, ỹ)T are displayed in
white if ỹ 6⊆ range (f,x) or in gray if ỹ ⊆ range (f,x). The figure displays
seven intervals that are subsets of range (f,x). One can notice that these
intervals actually overlap.

The core of this bisection algorithm is therefore a function Inner() that
tests if a box ỹ is a subset of the image of x. The information that ỹ is an
outer approximation of range (f, x̃) is of central importance for an efficient
implementation of the function Inner() (see Subsection 5.2). Therefore, the
function Inner() will have four arguments f , x, x̃ and ỹ. It satisfies

Inner(f,x, x̃, ỹ) = 1 =⇒ ỹ ⊆ range (f,x) .

The efficient implementation of this function is proposed in Subsection 5.2.
Finally, a simple but efficient bisection algorithm is then easily con-

structed. It is summarized in Algorithm 1. The algorithm computes both
an inner and an outer approximation of range (f,x): on one hand, obviously

⋃

y∈LInside

y ⊆ range (f,x) .
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Figure 1. Bisection of the initial domain x leading to a list
of boxes x̃ and to some outer approximations ỹ of their image.

On the other hand, the initial box x has been paved into a set of boxes x̃

and for each x̃ an outer approximation of range (f, x̃) is stored either in the
list Inside or in the list Boundary. Therefore,

range (f,x) ⊆
⋃

y∈
(

LInside
⋃

LBoundary

)

y.

The next section presents the domain inflation which plays a key role in
the implementation of the function Inner(f ,x,x̃, ỹ). The bisection algorithm
has been actually made stable thanks to the domain inflation (experimen-
tations have shown that constructing some bisection algorithms without
domain inflation leads to unstable algorithms).

5.2. The domain inflation. The basic idea of domain inflation is the fol-
lowing: suppose that one tries to prove that the quantified proposition

(

∀y ∈ ỹ
)(

∃x ∈ x
)(

φ(x, y)
)

,

where φ is a relation (in the case of the approximation of the range of a
function φ(x, y) ≡ f(x) = y). After the bisection of the box x, he may
happen to have to prove the quantified proposition

(

∀y ∈ ỹ
)(

∃x ∈ x̃
)(

φ(x, y)
)

, (5)

where x̃ ⊆ x. At this point, it is allowed and certainly useful to inflate x̃ to
a bigger box x∗ that satisfies x̃ ⊆ x∗ ⊆ x. Then the quantified proposition

(

∀y ∈ ỹ
)(

∃x ∈ x∗
)(

φ(x, y)
)

(6)

may be easier to validate. The trivial choice x∗ = x cannot be done in
general because sufficient conditions for the validity of the quantified propo-
sition (6) certainly work only on small enough intervals (e.g. it involves
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Data: f , x , ǫ
Result: LInside (list of boxes), LBoundary (list of boxes)
LInside: empty list of boxes;1

LDomain: empty list of boxes (sorted by decreasing radius);2

Store the box x in LDomain;3

while LDomain not empty do4

x̃ ← Extract(LDomain );5

ỹ ← f(x̃) ∩
(

f(mid x̃) + f ′(x̃)(x̃−mid x̃)
)

;6

if Inner(f ,x,x̃,ỹ) then7

Store the box ỹ in LInside;8

else if || rad x̃|| ≥ ǫ then9

Bisect the box x̃ to obtain x̃′ and x̃′′;10

Store x̃′ and x̃′′ in LDomain;11

else12

Store ỹ in LBoundary;13

end14

end15

return (LInside,LBoundary);16

Algorithm 1: The bisection algorithm

some interval extensions that are precise only for small intervals) while the
initial interval x can be very large. Therefore, instead of trying to prove
the quantified proposition (5), the task becomes to construct a box x∗ such
x̃ ⊆ x∗ ⊆ x and such that one can easily prove that the quantified proposi-
tion (6) is true.

In Algorithm 1, the domain inflation is obligatory as the quantified propo-
sition (5) is generally false: indeed the box ỹ is an outer approximation of
range (f, x̃) so the quantified proposition (5) cannot be true. Therefore, the
box x̃ has to be inflated before applying Corollary 3.1. This inflation process
is illustrated by Figure 2: a box (x̃, ỹ)T is displayed in the left hand side
graphic. Of course ỹ 6⊆ range (f, x̃) because ỹ is an outer approximation of
range (f, x̃) by construction. So x̃ is enlarged to x∗ in the right hand side
graphic in such a way that ỹ ⊆ range (f,x∗) holds.

Corollary 3.1 offers an easy and efficient way to enlarge x̃ to x∗: we
compute the fixed point iteration

x(0) = x̃,

u(k+1) = Γ
(

Cf ′(x(k)),x(k) − x̃, Cỹ − Cf(x̃)
)

,

x(k+1) = x̃ + τu(k+1),

(7)

where τ > 1 (experimentations have shown that τ = 1.01 is an efficient
choice), x̃ := mid x̃ and C = f ′(x̃)−1 (note that x̃ and C are fixed during the
iteration). We expect this iteration to be contracting, therefore it is stopped
as soon as the distance between consecutive iterated does not decrease of at
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Figure 2. Enlargement of the box x̃ to x∗ aiming at a suc-
cessful application of Corollary 3.1 applied to x∗ and ỹ.

least a given ratio µ (µ = 0.9 has been chosen based on experimentations).
In this case, the process fails proving ỹ ⊆ range (f,x). At each step of the

iteration, we check if Corollary 3.1 can prove ỹ ⊆ range
(

f,x(k)
)

.

Remark. The inflation factor τ is introduced for the following reason: the
limit x(∞) of the iteration satisfies

Γ
(

Cf ′(x(∞)),x(∞) − x̃, Cỹ − Cf(x̃)
)

= τ−1(x(∞) − x̃).

As the inclusion

Γ
(

Cf ′(x(∞)),x(∞) − x̃, Cỹ− Cf(x̃)
)

⊆ int(x(∞) − x̃)

is required to apply Corollary 3.1, we need τ > 1 so that the limit of the
iteration satisfies Corollary 3.1.

This implementation of the function Inner(f ,x,x̃,ỹ) is described in Al-
gorithm 2. It is correct as it returns true only if x̃ ⊆ x (Line 6) and if
x̃ + Γ(Cf ′(x̃), x̃ − x̃, Cỹ − Cf(x̃)) ⊆ x̃ (Line 8). The latter inclusion al-
lows applying Corollary 3.1 to prove that ỹ ⊆ range (f, x̃) holds. Finally,
termination of Algorithm 2 is obvious: as computations are performed with
floating point numbers, the fixed point iteration cannot be µ-contracting for-
ever, and hence the condition dk ≤ µdk−1 will be false after a finite number
of steps.

5.3. Convergence of the algorithm. The convergence of the algorithm is
now investigated. The test based on the preconditioned version of Corollary
3.1 cannot succeed if the interval evaluation of the derivative of f is not
regular. Therefore, if det f ′(x) = 0 for some x ∈ x then it will not be
possible to prove that f(x) is inside range (f,x) using this x. However, there
may exist another x′ ∈ x such that both det f ′(x′) 6= 0 and f(x′) = f(x)
and f(x) may eventually be proved to belong to range (f,x). To formalize
this idea, the following subset of range (f,x) is defined:

range∗ (f,x)
def
=

{

y ∈ R
n |

(

∃x ∈ intx
)(

y = f(x) ∧ det f ′(x) 6= 0
)}

.
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Data: f , x, x̃ ,ỹ
Result: Boolean
τ ← 1.01; µ← 0.9;1

x̃← mid x̃;2

C ← f ′(x̃)−1;3

b← Cỹ− Cf(x̃);4

dk ← +∞; dk−1 ← +∞; /* The while loop is run at least5

twice */

while dk ≤ µdk−1 ∧ x̃ ⊆ x do6

u← Γ(Cf ′(x̃), x̃− x̃,b);7

if x̃ + u ⊆ x̃ then return True;8

dk−1 ← dk;9

dk ← d(x̃, x̃ + τu);10

x̃← x̃ + τu;11

end12

return False;13

Algorithm 2: Function Inner()

Then, the following theorem shows that Algorithm 1 converges asymp-

totically to range∗ (f,x). That is, ignoring the finite precision of the com-
putations, any y ∈ range∗ (f,x) is finally proved to be inside range∗ (f,x)
provided that a small enough ǫ is chosen.

Theorem 5.1. Suppose that the interval extensions f and f ′ used in algo-

rithms 1 and 2 locally Lipschitz continuous1. Then for all y ∈ range∗ (f,x)
there exists ǫ > 0 such that Algorithm 1 succeeds proving that y ∈ range (f,x).

Proof. Let us consider an arbitrary y∗ ∈ range∗ (f,x). So, there exists
x∗ ∈ intx such that y∗ = f(x∗) and det f ′(x∗) 6= 0. The theorem is proved
by contradiction: we suppose that, no matter how small ǫ is chosen, y∗ is
not proved to be inside range (f,x) by the algorithm. Therefore, we can

pick up a sequence of boxes x(k) such that x∗ ∈ x(k), ||wid x(k)|| ≤ 1/k
and Inner(f,x,x(k),y(k)) fails for all k, where y(k) is defined as in Line 6 of
Algorithm 1, i.e.

y(k) := f(x(k)) ∩
(

f(x̃(k)) + f ′(x(k))(x(k) − x̃(k))
)

,

with x̃(k) := mid x(k). To build a contradiction, we just have to find a l ≥ 0
for which Inner(f,x,x(l),y(l)) succeeds.

For δ ≥ 0 let us define xδ := x∗± (δe), where ei = 1 for all i ∈ {1, . . . , n}.
By Proposition A.1 (cases (2) and (3)), there exists δ∗, κ∗, c1 > 0 such
that, for all x̃ ∈ xδ∗ , f ′(x̃) is nonsingular and ||f ′(x̃)−1|| ≤ κ∗, and for all

1The natural interval extensions can be used under mild hypothesis like
√

abs(x) is

not evaluated for intervals which contain 0.
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δ ≤ δ∗ and all x̃ ∈ xδ, f ′(x̃)−1f ′(xδ) ⊆ I ± (c1 δ E), where Eij = 1 for all

i, j ∈ {1, . . . , n}. Define x∗ := xδ∗ and

b∗ := �{f ′(x̃)−1f(x̃)− f ′(x̃)−1f(x̃) + f ′(x̃)−1f ′(x∗)(x∗ − x̃) : x̃ ∈ x∗}
(which is well defined because ||f ′(x̃)−1|| ≤ κ∗). Note that for all x̃ ∈ x∗ we
have b∗ ⊇ f ′(x̃)−1f ′(x∗)(x∗ − x̃).

For x̃ ∈ x∗, consider the function Ax̃ : Ix∗ −→ IR
n×n defined by Ax̃(x) :=

f ′(x̃)−1f ′(x). As f ′ is locally Lipschitz continuous, it is Lipschitz continuous
inside Ix∗, for some Lipschitz constant λ∗. As ||f ′(x̃)−1|| ≤ κ∗, Ax̃ is (κ∗λ∗)-
Lipschitz continuous inside Ix∗.

For some arbitrary δ ≤ min{1/2, δ∗}, x̃ ∈ xδ, b ⊆ b∗, define

gδ,b,x̃ : Ixδ −→ IR
n

x 7−→ Γ(Ax̃(x),x − x̃,b).

Proposition A.2 shows that there exists c2 > 0 such that the functions gδ,b,x̃

are c1 c2 δ-Lipschitz. Furthermore, using Proposition A.1 (case (1)) and
Lemma A.4, we show that there exists c3 > 0 such that

∀x ∈ Ix∗ , ∀x̃, ỹ ∈ x∗ , d
(

gδ,b,x̃(x),gδ,b,ỹ(x)
)

≤ c3 ||x̃− ỹ||. (8)

Then, define

δ+ = min{1/2, δ∗ , (c1τ(n + 1))−1, µ(c1c2τ)−1}
so that both τAx̃(xδ+

) is strictly diagonally dominant and δ ≤ δ+ implies
that the functions τgδ,b,x̃ are µ-Lipschitz.

Define x+ := xδ+ ⊆ x∗. Lemma A.5 shows that there exist b+ ∈ IR
n

such that rad b+ > 0, 0 ∈ intb+, b+ ⊆ b∗ and

τgδ+,b+,x∗(x+) = x+ − x∗. (9)

Now define b(k) := f ′(x̃(k))−1y(k) − f ′(x̃(k))−1f(x̃(k)) which satisfies b(k) ⊆
b∗ (see the definition of b∗ and note that y(k) ⊆ f(x̃(k)) + f ′(x(k))(x(k) −
x̃(k))). As f is locally Lipschitz continuous, there exists c > 0 such that
||wid y(k)|| ≤ c||wid x(k)|| = c/k, which implies ||wid b(k)|| ≤ cκ∗/k. Fi-
nally, define

l′ :=

⌈

cκ∗ + c3 + 1

m+

⌉

and l = max{l′, ⌈1/δ+⌉} (10)

where m+ := mini |b+
i | (which satisfies m+ > 0 as 0 ∈ intb+ and ±(m+e) ⊆

b+), so that both x(l) ⊆ x+ (because wid x(l) ≤ 1/l ≤ δ+ = rad x+ while
x∗ ∈ x(l) and x+ = x∗ ± (δ+e)) and l ≥ l′.

We are now in position to prove that Inner(f,x,x(l),y(l)) succeeds. Fix

x̃ = x̃(l) and define h : Ix+ −→ IR
n by

h(x) := x̃ + τgδ+,b(l),x̃(x) = x̃ + τΓ(f ′(x̃)−1f ′(x),x− x̃,b(l)).

Note that x̃ computed at Line 11 of Algorithm 2 is actually x̃ ← h(x̃).
We have proved that h is µ-Lipschitz continuous inside Ix+ and we now
prove that for all x ∈ Ix+, h(x) ⊆ x+. First, note that by (10) we have
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l ≥ cκ∗/m+, which implies that α := m+− cκ∗/l ≥ 0. For all i ∈ {1, . . . , n}
we have

α + wid b
(l)
i ≤ α + cκ∗/l = m+.

As 0 ∈ b(l), we conclude that b
(l)
i ±α ⊆ ±m+ ⊆ b+

i , and hence b(l)±(αe) ⊆
b+. Now,

h(x) = x̃ + τgδ+,b(l),x̃(x)

(using (8)) ⊆ x̃ + τgδ+,b(l),x∗(x)± (c3/l e)

⊆ x∗ + τgδ+,b(l),x∗(x)± ((1 + c3)/l e)

(using (10))2 ⊆ x∗ + τgδ+,b(l),x∗(x)± (αe)

(1 ∈ (f ′(x̃)−1f ′(x))ii) ⊆ x∗ + τgδ+,b(l),x∗(x) + (±(αe))/(f ′(x̃)−1f ′(x))ii

(basic properties of IA) = x∗ + τgδ+,b(l)±(αe),x∗(x)

(inclusion isotonicity) ⊆ x∗ + τgδ+,b+,x∗(x)

(using (9)) = x+.

Therefore, we can apply the Banach fixed point theorem which proves
that the fixed point iteration x̃ ← h(x̃) converges to the unique solution
of x̃ = h(x̃). From the proof of the Banach fixed point theorem, we know
that the distance of consecutive iterated decreases of at least a factor µ.
Therefore, the condition at Line 6 always succeeds. It just remains to prove
that the condition at Line 8 eventually succeeds. This condition can be
written x̃ + g(x̃) ⊆ x̃ with g(x̃) := gδ+,b(l),x̃(x̃).

Let us explicitly enumerate the iterations computed in Algorithm 2 by
x̃(i), and denote by x̃∗ the unique interval vector which satisfies x̃∗ = h(x̃∗)
(which hence satisfies τg(x̃∗) = x̃∗ − x̃). By the Banach fixed point the-

orem, we know that d(x̃(i), x̃∗) ≤ µi/(1 − µ)d(x̃(0), x̃(1)) =: β(i) and thus
d(g(x̃(i)),g(x̃∗)) ≤ µτ−1β(i) (because τg is µ-Lipschitz continuous). Then,

x̃ + g(x̃(i)) ⊆ x̃ + g(x̃∗)± (µτ−1β(i)e)

= x̃ + τ−1τg(x̃∗)± (µτ−1β(i)e)

= x̃ + τ−1(x̃∗ − x̃)± (µτ−1β(i)e)

⊆ x̃ + τ−1(x̃(i) ± (β(i)e)− x̃)± (µτ−1β(i)e)

= x̃ + τ−1(x̃(i) − x̃)± (γ(i)e)

with γ(i) := τ−1(1 + µ)β(i). Now note that [−m+,m+] ⊆ b
(l)
j for all j ∈

{1, . . . , n}. Using direct computations, we show that x̃ ∈ x̃(i) implies both

x̃ ∈ x̃(i+1) and b(l) ⊆ x̃(i+1). By induction, we thus prove that for all
i ≥ 1 both x̃ ∈ x̃(i) and b(l) ⊆ x̃(i) hold. Therefore, we can write x̃(i) =

x̃ + [a(i), b(i)] with a
(i)
j ≤ −m+ and m+ ≤ b

(i)
j for all j ∈ {1, . . . , n}. We

2Note that (10) implies 1 + c3 + cκ∗

≤ lm+ which implies (1 + c3)/l ≤ α.
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obtain

x̃ + g(x̃(i)) ⊆ x̃ + [a(i)/τ − γ(i) , b(i)/τ + γ(i)].

Now because τ ≥ 1, multiplying m+ ≤ b
(i)
j by (1−1/τ) gives rise to b(i)/τ ≤

b(i) − (1 − 1/τ)m+, while multiplying m+ ≥ a(i) by (1 − 1/τ) gives rise to

a(i)/τ ≥ a(i) + (1 − 1/τ)m+. Therefore, we have proved that x̃ + g(x̃(i)) is
a subset of

x̃ + [a(i) + (1− 1/τ)m+ − γ(i) , b(i) − (1− 1/τ)m+ + γ(i)].

Finally, as γ(i) can be made arbitrary small and (1 − 1/τ)m+ > 0, we can

choose i such that γ(i) ≤ (1−1/τ)m+. For this i, we have x̃+g(x̃(i)) ⊆ x̃(i),
and the condition in Line 8 succeeds. �

The experimentations presented in Section 6 illustrate this convergence.

5.4. Domains described by constraints. The presented bisection algo-
rithm can be easily extended in order to deal with domains that are defined
by constraints. Constrained domains that are considered are of the following
form:

D = x
⋂

E,

where x ∈ IR
n and E ⊆ R

n. The constraint will be actually described by
the following three-valued interval constraint:

c : IR
n −→ {0, 1, {0, 1}}.

This function has the following semantic:

• c(x̃) = 1 =⇒ x̃ ⊆ D;
• c(x̃) = 0 =⇒ x̃

⋂D = ∅;
• c(x̃) = {0, 1} is interpreted as ”don’t know” so x̃ will have to be

bisected.

Example 5.1. Suppose E = {x ∈ R
2|g(x) ≤ 0}. Then an interval extension

g of g can be used in order to obtain the corresponding function c:

• c(x̃) = 1 if g(x̃) ≤ 0 and x̃ ⊆ x;
• c(x̃) = 0 if g(x̃) > 0 or x̃ ∩ x = ∅;
• c(x̃) = {0, 1} otherwise.

Finally, the bisection algorithm is easily updated in order to deal with the
constrained domain:

(1) The constrained domain has to be taken into account in the function
Inner(f,x, x̃, ỹ). This is done changing the condition x̃ ⊆ x in Line
6 of Algorithm 2 to

x̃ ⊆ x ∧ c(x̃) = 1.

As a consequence, the function Inner(f,x, x̃, ỹ) returns true only if
ỹ is an inner approximation of range (f, x̃) and x̃ is inside D.
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(2) Line 12 of Algorithm 1 is modified so that only boxes satisfying
c(x̃′) 6= 0 (c(x̃′′) 6= 0 respectively) are stored in the list. As a con-
sequence, boxes x̃′ (x̃′′ respectively) such that c(x̃) = 0 (c(x̃′′) = 0
respectively) are not used anymore. These boxes do not belong to
the domain D. Therefore the lists LInside and LOutside keep their
respective semantics.

Note that the asymptotic convergence proved by Theorem 5.1 also holds
in the case of constrained domains provided that the interval extensions used
to define c are convergent.

6. Experimentations

This section presents some applications of Algorithm 1. The algorithm has
been implemented in C/C++ using the PROFIL/BIAS [12] interval library
and executed on a PentiumM 1.4Ghz processor. In order to provide clearer
results, a regularisation of the overlapping pavings computed by Algorithm
1 has been performed leading to regular pavings. Indicated timings concern
only the execution of Algorithm 1. The quality of the couple inner/outer
approximations is defined by

qual(Inner,Outer) := n

√

vol(Inner)

vol(Outer)
, (11)

if vol(Outer) 6= 0. The closer to one the quality is, the closer inner and
outer approximations are.

Example 6.1 shows the approximation of the range of a simple function
with a constrained domain. It was proposed in [14] where a non-reliable
approximation was obtained.

Example 6.1. Consider the function

f(x) =

(

xy
x + y

)

and the domain D =
{

(x, y)T ∈ R
2 | x2 + y2 ∈ [1, 2]

}

, which is represented
in the left hand side graph of Figure 3. The following table displays the
time needed to compute the approximations and their quality measure for
some different values of epsilon.

ǫ 0.1 0.05 0.025 0.0125 0.00625
qual 0.37 0.63 0.80 0.89 0.94
time 0.09 0.28 0.69 1.9 5.1

In these experimentations, the quality of the approximation obviously im-
proves linearly as ǫ decreases, leading to 1 when ǫ goes to zero. This
is an experimental evidence of the truthfulness of Theorem 5.1. On the
other hand, the computation time seems to increase quadratically with ǫ:
t(ǫ) ≈ 0.000097ǫ−2 +0.017ǫ−1−0.10. One may be surprised as the boundary
of the set to be approximated has dimension 1. However, two pieces of this
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Figure 3. Domain D (left hand side graph) and the reliable
approximation of its image (right hand side graph).

boundary are built folding the domain and are therefore made of singular-
ities. On these singular boundaries, the algorithm accumulates on a thin
surface around the boundary, hence the quadratic dependence w.r.t. ǫ−1.

The right hand side graphic of Figure 3 shows the approximation of
range (f,D) obtained with Algorithm 1 for ǫ = 0.0125.

A more realistic situation is now investigated in Example 6.2.

Example 6.2. Consider the serial robot presented in the left hand side
graphic of Figure 4. Both abscissa a and the angle θ can be controlled in
their respective domains a ∈ [0, 4] and θ ∈ [−2, 2]. An obstacle (the dashed
disk of radius r centered at C = (Cx, Cy)) is placed in the robot environment
so

D =
{

(a, θ) ∈ R
2 | a ∈ [0, 4], θ ∈ [−2, 2], c(a, θ)

}

.

The constraint c(a, θ) is true if and only if the whole robot arm does not
meet the obstacle for the controls a and θ. To obtain an expression of this
constraint, we can note that d2(M,A,B), the square of the distance between
a point M to a segment [A,B], is given by

〈M −A|M −A〉 if 〈B −A|M −A〉 < 0
〈M −B|M −B〉 if 〈A−B|M −B〉 < 0

〈M −A|M −A〉 − 〈B−A|M−A〉2

〈B−A|B−A〉 otherwise,

where 〈 . | . 〉 is the scalar product (writing explicitly these constraints w.r.t.
the variables of the problem allows some useful formal simplification). An
interval expression of this constraint is easily obtained. The function that
computes the working point coordinates from the commands is

f(a, θ) =

(

a + L cos(θ)
a + L sin(θ)

)

.

The image of D by f is the workspace of the robot. For our numerical
experimentation, we choose C = (3, 1), r = 1 and L = 2. The following
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Figure 4. A serial robot with an obstacle (left hand side
graphic) and its workspace reliable approximation (right
hand side graph). The dotted circle in the workspace ap-
proximation has been added to represent the obstacle.

table displays the time needed to compute the approximations and their
quality measure for some different values of epsilon.

ǫ 0.1 0.05 0.025 0.0125 0.00625
qual 0.80 0.9 0.95 0.975 0.987
time 0.95 2.3 5.9 15.3 40.2

As previously, the quality of the approximation obviously improves lin-
early as ǫ decreases, leading to 1 when ǫ goes to zero. This is again
an experimental evidence of the truthfulness of Theorem 5.1. The de-
pendence of the computational time w.r.t. ǫ−1 is once more quadratic
(t(ǫ) ≈ 0.00072ǫ−2 + 0.14ǫ−1 − 0.69). Here again a piece of the bound-
ary is made of singularities and the algorithm accumulates on a thin surface
in this area.

The results are plotted on the right hand side of Figure 4 and have been
computed using ǫ = 0.025.

7. Related work

In the context of the study of serial robots, some work has been done for
providing some description of the workspace of the robot. These works nat-
urally concern the image set problem as workspaces of serial robots consists
in the computation of the image set of a vector valued function.

One of the main technique proposed in this framework is to compute
the boundary of the workspace (i.e. the boundary of the image set) using
some continuation method (see [7, 2]). The method proposed in the present
paper has several advantages: on one hand, the continuation method does
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not provide a reliable approximation while Algorithm 1 does. On the other
hand, Algorithm 1 can deal with constrained domains while the continuation
method proposed in [7] cannot.

8. Conclusion and perspectives

This paper has presented a method able to compute an inner approxima-
tion of an image set in the case where the involved function is vector-valued
(with domain and co-domain of the same dimension) nonlinear and dif-
ferentiable. Although this problem appears in many applications, to our
knowledge, it has never been solved before. A general reliable sufficient con-
dition for a box to be a subset of the image of a given box has been provided
(Theorem 3.1). It has been specialized to an efficient test (Corollary 3.1)
that turned out to be closely related to the existence test associated to the
Hansen-Sengupta interval operator. Our algorithm has been made efficient
and stable thanks to a preconditioning process and an original domain-

inflation phase based on a fixed-point iteration. The good behavior of our
algorithm has been demonstrated on two academic examples.

The main forthcoming work will be to deal with domain and co-domain
that do not have the same dimension. When the domain has a dimension
smaller than the one of the co-domain, the image set has a zero volume
and an inner approximation is not needed. When the domain has a greater
dimension than the co-domain, the image set has an interior and the pre-
sented method is not able to compute an inner approximation of the image

set without serious adaptations. Now, there exist some applications where
the domain has a greater dimension than co-domain: workspaces of over-
actuated robots (i.e., its number of motors in greater than its number of
degrees of freedom) are image sets of vector-valued functions with greater
domain dimension than co-domain dimension.

Acknowledgments. The authors would like to thanks Nacim Ramdani
for his helpful comments and Gilles Chabert and Nicolas Delanoue for their
careful reading of the paper and their helpful comments.

Appendix A. Technical results

A.1. Technical results for Section 3.

Lemma A.1. Let E be compact in R
n and y ∈ int E and z /∈ E. Any

continuous path connecting y to z intersects ∂E.

Proof. As E is compact we have E ⊆ E. By definition ∂E = R
n\(int E∪CE)

which is equal to R
n\(int E∪CE). We will prove that if the continuous path

w : [0, 1] −→ R
n such that w(0) = y and w(1) = z does not intersect ∂E

then it is disconnected. This fact being absurd because the image of the
connected set [0, 1] by the continuous function w must be connected. On
one hand, int E is open in R

n so w([0, 1]) ∩ int E is open inside w([0, 1]).
Also, y ∈ w([0, 1]) ∩ int E and therefore this set is nonempty. On the other
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hand, CE is open in R
n (because E is compact) so w([0, 1]) ∩ CE is open

inside w([0, 1]). Also, z ∈ w([0, 1]) ∩ CE and therefore this set is nonempty.
Therefore, w([0, 1]) ⊆ (int E ∪ CE) implies w([0, 1]) is disconnected, which
is absurd. Therefore, w([0, 1]) ∩ ∂E 6= ∅. �

Lemma A.2. Let E ⊆ R
n be compact and f : E −→ R

n be a continuous

function continuously differentiable in int E. Denote {x ∈ intE | det f ′(x) = 0}
by Σ. Then we have ∂

(

f(E)
)

⊆ f(∂E) ∪ f(Σ).

Proof. Consider any y ∈ ∂
(

f(E)
)

. As E is compact and f is continuous,

f(E) is also compact. Therefore ∂
(

f(E)
)

⊆ f(E) and there exists x ∈ E
such that y = f(x). Now suppose that x ∈ int E and x /∈ Σ. We now prove
that it is absurd. As x ∈ intE we have

(

∃α > 0
)(

B(x, α) ⊆ E
)

. As x /∈ Σ
we can apply the inverse function theorem and we conclude that there exists
β such that f is a diffeomorphism in B(x, β). Define γ := min{α, β} and
F := f

(

B(x, γ)
)

. Notice that y ∈ F . On one hand F ⊆ f
(

B(x, α)
)

⊆ f(E).

On the other hand, F is the preimage of B(x, γ) by (f |B(x,β))
−1. This latter

being continuous, F is open in R
n. As a conclusion y ∈ int

(

f(E)
)

which

contradicts y ∈ ∂
(

f(E)
)

. As a conclusion we have x ∈ ∂E or x ∈ Σ. And

eventually ∂
(

f(E)
)

⊆ f(∂E) ∪ f(Σ). �

A.2. Technical results for Section 5. In the rest of the subsection, we
define xδ := x∗ ± (δe) (as previously, e ∈ R

n and E ∈ R
n×n satisfy respec-

tively ei = 1 for all i ∈ {1, . . . , n} and Eij = 1 for all i, j ∈ {1, . . . , n}). Basic
properties of interval arithmetic can be found in [18] and won’t be explicitly
mentioned each time they are used.

Proposition A.1. Let f : R
n −→ R

n be continuously differentiable, and

x∗ ∈ R
n such that det f ′(x∗) 6= 0. Consider a locally Lipschitz continuous

interval extension f ′ of f ′, e.g. its natural extension. Then, there exist

δ∗ > 0, κ∗ > 0 and c > 0 such that:

(1) f ′(x)−1 is Lipschitz continuous inside xδ∗ ,

(2) for all x ∈ xδ∗ , ||f ′(x)−1|| ≤ κ∗,

(3) for all δ ≤ δ∗,∀x ∈ xδ, f ′(x)−1f ′(xδ) ⊆ I ± (cδE).

Proof. (1) It is well known that the function M 7−→M−1 is continuously dif-
ferentiable where it is defined. Therefore, f ′(x)−1, which is the composition
of two continuously differentiable functions, is continuously differentiable
where it is defined. As f ′(x∗) is nonsingular, there exists a neighborhood
xδ∗ of x∗ inside which f ′(x)−1 is continuously differentiable. As xδ∗ is com-
pact, f ′(x)−1 is Lipschitz continuous inside x∗.

(2) ||f ′(x)−1|| is the composition of two continuous functions, and is there-
fore continuous. As a consequence, it is bounded above by some κ∗ > 0
inside the compact set x∗.

(3) As f ′ is locally Lipschitz continuous, there exists c′ such that for all
δ ≤ δ∗ we have || rad f ′(xδ)|| ≤ c′δ. Consider some arbitrary δ ≤ δ∗ and



INNER APPROXIMATION OF THE RANGE OF VECTOR-VALUED FUNCTIONS 21

x ∈ xδ. Then we have

|| rad f ′(x)−1f ′(xδ)|| ≤ ||f ′(x)−1|| || rad f ′(xδ)|| ≤ c′κ∗δ.

Because f ′(x) ∈ f ′(xδ), we have I ∈ f ′(x)−1f ′(xδ). From the last two results,
we obtain f ′(x)−1f ′(xδ) ⊆ I± (2c′κ∗δE). As the latter holds for all x ∈ xδ,
this concludes the proof with c = 2c′κ∗. �

Lemma A.3. Let a,b,a′,b′,a′′,b′′ ∈ IR be intervals such that a′ ⊆ a,

a′′ ⊆ a, b′ ⊆ b and b′′ ⊆ b. Then

d(a′b′,a′′b′′) ≤ |a|d(b′,b′′) + |b|d(a′,a′′).

Proof. We have d(a′b′,a′′b′′) ≤ d(a′b′,a′b′′) + d(a′b′′,a′′b′′) by the tri-
angular inequality. Then d(a′b′,a′b′′) ≤ |a′|d(b′,b′′) ≤ |a|d(b′,b′′), and
d(a′b′′,a′′b′′) ≤ |b′′|d(a′,a′′) ≤ |b|d(a′,a′′). �

Lemma A.4. Let A∗ = I ± (δE) with δ ≤ 1/2, and x∗,b∗ ∈ IR
n. Then,

there exist λ′, λ′′ > 0 such that for all δ ≤ 1/2, Γ( . , . ,b) : IA∗×Ix∗ −→ IR
n

is λ′δ-Lipschitz w.r.t. A and λ′′δ-Lipschitz w.r.t. x, where λ′ and λ′′ depend

only on x∗ and b∗.

Proof. Let us compute the Lipschitz constant w.r.t. A, the Lipschitz con-
stant w.r.t. x being similar and simpler to compute. Let A, Ã ⊆ A∗ and
x ⊆ x∗. Then d(Γ(A,x,b∗),Γ(Ã,x,b∗)) is equal to

max
i

d
(

A−1
ii (b∗

i −
∑

j 6=i

Aijxj) , Ã−1
ii (b∗

i −
∑

j 6=i

Ãijxj)
)

.

Now, by Lemma A.3 the latter is less than

max
i
|A∗−1

ii | d
(

b∗
i−

∑

j 6=i

Aijxj ,b
∗
i−

∑

j 6=i

Ãijxj

)

+|b∗
i−

∑

j 6=i

Ã∗
ijxj | d(A−1

ii , Ã−1
ii ).

Note that |A∗−1
ii | = 〈A∗

ii〉−1 = (1− δ)−1 while |b∗
i −

∑

j 6=i Ã
∗
ijxj| ≤ ||b∗|| +

(n− 1)δ||x∗||. Now

d
(

b∗
i −

∑

j 6=i

Aijxj,b
∗
i −

∑

j 6=i

Ãijxj

)

≤
∑

j 6=i

d(Aijxj , Ãijxj)

≤
∑

j 6=i

|x∗
j | d(Aij , Ãij)

≤
∑

j 6=i

||x∗|| 2δ = 2(n − 1)||x∗||δ,

while
d(A−1

ii , Ã−1
ii ) ≤ |A∗−2

ii |d(Aii, Ãii) ≤ (1− δ)−2 2δ.

So far, we have proved that Γ( . , . ,b) is Lipschitz continuous of constant

2(n− 1)||x∗||(1 − δ)−1δ + 2(||b∗||+ (n− 1)δ||x∗||)(1 − δ)−2δ

w.r.t. A. The proof is concluded noting that δ ≤ 1/2 which implies (1 −
δ)−1 ≤ 2. �



22 ALEXANDRE GOLDSZTEJN AND LUC JAULIN

Proposition A.2. Let x∗ ∈ IR
∗ and A : Ix∗ −→ I

(

I±(δE)
)

, with δ ≤ 1/2,
be λ′′′-Lipschitz. Let x̃ ∈ R

n and b∗ ∈ IR
n and an arbitrary b ⊆ b∗. Define

T : Ix∗ −→ IR
n by

T(x) := Γ
(

A(x),x − x̃,b
)

.

Then, there exists λ > 0 such that for all δ ≤ 1/2, T is λδ-Lipschitz contin-

uous, where λ depends only on x∗ and b∗.

Proof. The proposition is proved using Lemma A.4. Fix an arbitrary δ ≤
1/2. Then,

d( Γ(A(x),x − x̃,b) , Γ(A(y),y − x̃,b)

≤ d( Γ(A(x),x − x̃,b) , Γ(A(y),x − x̃,b)
+ d( Γ(A(y),x − x̃,b) , Γ(A(y),y − x̃,b)

≤ λ′δ d(A(x),A(y)) + λ′′δ d(x− x̃,y − x̃)
≤ λ′λ′′′δ d(x,y) + λ′′δ d(x,y).

Thus, the proposition is proved with λ = λ′λ′′′ + λ′′. �

The proof of the following technical lemma involves generalized intervals
and the Kaucher arithmetic (see [20] and references therein). Details on this
generalization of the interval arithmetic are not given here as it is used only
in the following short proof.

Lemma A.5. Let A ∈ IR
n×n be a strictly diagonally dominant interval

matrix and 0 < δ ∈ R. Define x ∈ IR
n by xi = ±δ. Then there exists an

unique b ∈ IR
n such that rad bi > 0 and Γ(A,x,b) = x. Furthermore,

mid b = 0 and b ⊆ Ax.

Proof. Using the Kaucher arithmetic group properties, Γ(A,x,b) = x is
equivalent to, for all i ∈ {1, . . . , n}

bi = (dual Aii)xi +
∑

j 6=i

(dual Aij)(dual xj)

= ±〈Aii〉δ +
∑

j 6=i

∓|Aij| δ,

where ∓ǫ := dual ±ǫ. Now, rad bi = δ(Aii −
∑

j 6=i |Aij |), which is strictly
positive as A is strictly diagonally dominant, so b is proper. Furthermore
mid bi = 0 as it is the sum of zero-centered intervals. Finally, by inclusion
monotonicity we have bi ⊆ Aiixi +

∑

j 6=i Aijxj = Ax. �
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