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Abstract

This paper investigates guaranteed methods for estimating feasible
parameter sets when the system under study is modeled with ordinary
differential equations (ODE). The issue is to find the set of parameters
such that the solution of the ODE remains within specified intervals at
known time-data points. These intervals correspond usually to measure-
ment uncertainty.

This is a set inversion problem which can be solved in a guaranteed
way by using a partitioning algorithm, interval analysis and validated
numerical integration methods for IVPs for ODEs.

In order to address high dimensional nonlinear continuous-time sys-
tems, a guaranteed but tight enclosure of the solution of the ODE is
needed. Here, we introduce a new approach which is capable of brack-
eting any uncertain nonlinear monotone dynamical system between an
upper and a lower deterministic hybrid dynamical system. The solution
enclosures thus obtained are tighter than the ones given by classical val-
idated numerical integration methods. The methodology is illustrated
with simulated data from an actual parameter identification setup.
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1 Introduction

The identification of continuous-time systems from sampled data is recognized as an
inverse problem of great importance in many fields. In the literature, it is usually
solved in a stochastic context via probabilistic methods [1, 2].

In fact, probabilistic methods are relevant only when an explicit characterization
of the measurement noise is available. If the data sample is too small for instance, it
may be difficult to evaluate the effect of non-exact matching of the assumed statisti-
cal assumptions on the errors. Furthermore, deterministic modeling or measurement
errors cannot adequately be described by random variables. Therefore it is often more
natural to assume the perturbations unknown but belonging to a set with known
bounds. In this case, set-membership (SM) (also known as unknown-but-bounded-
error) approaches allow the characterization of the whole set of parameter vectors
that are compatible with the measured data, a model structure and some prior error
bounds. One of the advantages of SM approaches is that they are capable of dealing
with problems with non-unique solutions and make the uncertainty in the identified
parameter vector directly available from the shape and size of the solution set: the
projection of this set onto the parameter axes constitutes uncertainty intervals for the
identified parameters.

Model validation plays an important role in system identification. When the latter
is performed in the stochastic framework, appropriate model validation criteria must
be used a posteriori in order to test model quality and correctness [2]. For instance,
it is important to check that model residuals satisfy the statistical hypotheses. To
the contrary, set membership approaches address model validation in a self-contained
manner. Indeed, the emptyness/non-emptyness of the parameter solution set is a
validation criterion (see e.g. [3]). Consequently, any model for which the parameter
solution set is empty should be invalidated, hence rejected. Nevertheless, classical
approaches such as cross-validation, i.e. checking model output error with new data
set can still be used with set-membership estimation.

The design of experiment, i.e. the determination of the experimental conditions
and system inputs which should provide the best estimation results, is another impor-
tant aspect in system identification. Because of the self-contained validation capability
of SM approaches, and their capabilities to deal with non unique solutions, the clas-
sical design of experiment techniques developed for probabilistic methods [2] can also
be used for SM estimation.

SM identification of discrete time models is a rather mature topic in the automatic
control community, see for instance [4, 5, 6, 7] and the references therein. To the
contrary, the case of continuous-time models still needs attention. Hence, this paper
deals with the identification of the model parameter vector p for nonlinear continuous-
time systems described by ordinary differential equations (ODE):















ẋ(t) = f(x,u,p, t)
y(t) = h(x,u,p, t)
x(t0) ∈ X0

p ∈ P0















(1)

where t ∈ [t0, T ], f ∈ Ck−1(D × U × P0), D × U × P0 ⊆ Rn+nu+np is an open set; n,
nu, m and np are the dimension of respectively the state vector x, the input vector u,
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the output vector y and the parameter vector p. The functions f : D × U × P0 → Rn

and h : D × U × P0 → Rm are possibly nonlinear. The initial state x0 is assumed
to belong to a prior known set X0. We assume that measurements yj of the output
vector are available at sampling times ti ∈ {t1, t2, . . . , tn} in I = [t0, tnT

]. Note that
the sampling interval need not be constant. The measurement noise is a discrete time
signal assumed additive and bounded with known bounds. Denote by Ej a feasible
domain for output error at time tj : the feasible domain for model output at time tj is
then given by

Yj = yj + Ej (2)

In this framework, estimating the parameter vector p consists of determining the set
S of all acceptable parameters

S = { p ∈ P0 | (∀t ∈ [t0, tnT
], ẋ(t) = f(x,u,p, t))

∧(∀tj ∈ {t1, t2, . . . , tN}, h(x,u,p, tj) ∈ Yj)}
(3)

where the set P0 is the initial search space for the parameters. The characterization
of the solution set S is a set inversion problem; a guaranteed approximation of such
a set can be provided by using interval analysis only if an inclusion function for the
solution of the ODE in (3) can be computed at prescribed time-data points tj for a
whole set of parameter vectors.

Remark 1 In practical cases, actual data may contain some spurious measurements,
outlier data corrupted by gross errors exceeding the prior bounds, rendering the data
inconsistent with the prior hypotheses on model structure and error bounds, hence
leading to an empty set for the parameter solution set S [8, 9, 10]. One way to address
this case is to relax the inclusion test in (3) by allowing q out of n empty intersections
(q ≪ n), hence using what is known as a q−relaxed set inversion [8, 9]. Now, analyzing
data coherence prior to estimation is an open issue. However, it is possible to check
data coherence after estimation by using the relaxed inclusion test. �

We have investigated parameter estimation problem with ODEs using set mem-
bership approaches in [11, 12]. It has also been investigated in [13, 14, 15]. Since
the model is not an explicit function of the parameters to be identified, the main idea
retained was to replace it by its numerical evaluation using a guaranteed integration of
the ODE. In [11, 12], this integration was performed with an interval Taylor method
implemented with mean-value forms and matrix pre-conditioning [16, 17]; the method
was successfully used for the identification of the two-dimensional parameter vector
of a Lotka–Volterra predator-prey competition model. However, we found that this
interval analysis based approach is not efficient in the general case when the dimension
the state space Rn is large. In fact, the enclosures of the numerical evaluation of the
solution of the ODE often become very pessimistic and thus useless when the widths
of the initial state or the parameter interval vectors are large, or when one proceeds
with numerical integration over a long period of time [18, 19]. Such conservatism leads
to an extensive use of bisection and thus huge computation time, since it is well known
that the computation time is exponential in the dimension of the parameter vector.

In order to circumvent these shortcomings, the theory of quasimonotone dynamical
systems, i.e. order-preserving semiflows (see for instance [20, 21] and the references
therein) was used in [13, 18] in order to bracket the whole state flow of the uncertain
dynamical system between two lower and upper deterministic dynamical systems, i.e.
involving no uncertainty. These bracketing methods have been successfully applied to
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parameter identification with systems where the dimension of the state vector was as
large as 13.

One difficulty in the application of the theory of monotone dynamical systems re-
sides in the construction of the bracketing systems, since there is no rule for this con-
struction in the general case. Hence, the purpose of this paper is to develop a method-
ology for obtaining the bracketing systems for any uncertain monotone dynamical sys-
tem submitted to any kind of input. The case of systems described by continuous-time
models of large dimension similar to the ones usually encountered within the context
of physical parameter identification is also emphasized. The methodology introduced
will use the formalism of hybrid dynamical systems, and the derived bounding systems
will be modeled as hybrid nonlinear automata.

In section 2, set inversion via interval analysis is reviewed. Validated integration
schemes via interval analysis and via the theory of monotone dynamical systems are
reviewed in section 3. Section 4 contains the main contribution of this paper, i.e.
the bracketing with hybrid automata. Section 5 contains an application to an actual
system with simulated data.

2 Set inversion via intervals

Interval analysis was initially developed to account for the quantification errors intro-
duced by the floating point representation of real numbers with computers and was
extended to validated numerics [7]. A real interval [a] = [a, ā] is a connected and
closed subset of R. The set of all real intervals of R is denoted by IR. Real arithmetic
operations are extended to intervals. Consider an operator ◦ ∈ {+,−, ∗,÷} and [a]
and [b] two intervals. Then:

[a] ◦ [b] = {u ◦ v | u ∈ [a], v ∈ [b]} (4)

Consider ψ : Rn 7−→ Rm ; the range of this function over an interval vector [a] is given
by:

ψ([a]) = {ψ(u) | u ∈ [a]} (5)

The interval function [ψ] : IRn 7−→ IRm is an inclusion function for ψ if

∀[a] ∈ IR
n, ψ([a]) ⊆ [ψ]([a]) (6)

An inclusion function for ψ can be obtained by replacing each occurrence of a real vari-
able by the corresponding interval and each standard function by its interval counter-
part: the resulting function is called the natural inclusion function. The performance,
i.e. the tightness of the enclosure provided by this inclusion function depends on the
formal expression for ψ.

The computation of the reciprocal image of a set can be computed by the SIVIA
algorithm, Set Inversion Via Interval Analysis [7]. As soon as the enclosures [xj ] of the
solution of the ODE in (1) at time tj are available, SIVIA will allow the characterization
of the solution set S defined by (3), by computing two sets S and S such as:

S ⊆ S ⊆ S (7)

The set S contains all the boxes proved to be feasible. To prove that a box [p] is
feasible, one should verify that

∀tj ∈ {t1, t2, . . . , tN}, h([xj ],uj , [p], tj) ⊆ Yj (8)
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and to prove that a box [p] is unfeasible, one should prove that

∃tj ∈ {t1, t2, . . . , tN}, h([xj ],uj , [p], tj) ∩ Yj = ∅ (9)

The recursive algorithm SIVIA partitions the prior space P0 into boxes [p] to be
submitted to these tests. Any undetermined box is bisected and tested again, unless
its size is less than a precision parameter ǫ to be tuned by the user, which ensures that
the algorithm terminates after a finite number of iterations. The outer approximation
is then computed as S = S∪∆S, where ∆S is the union of all remaining undetermined
boxes.

Obtaining enclosures [xj ], or in other words performing a guaranteed numerical
integration of (1), is thus an essential part of the method, for which two approaches
can be used: interval Taylor models, and the theory of monotone systems. These
methods are to be reviewed in the next section.

3 Guaranteed set integration

3.1 Guaranteed set integration using interval Taylor mod-

els

Consider the following differential equation:

ẋ(t) = f(x,u,p, t),
x(t0) ∈ X0 ⊆ [x0] ⊆ D,
u ∈ U, p ∈ P0 ⊆ [p]

(10)

with t0 ≥ 0. The function f , possibly nonlinear, is assumed to be at least k−times
continuously differentiable in a domain D ⊆ Rn. The objective is to compute interval
vectors [xj ], j = 1, . . . , nT , that are guaranteed to contain the solution of (10) at
t1, t2, . . . , tnT

.

Effective methods for solving such problems are based on Taylor expansions, see
[22, 23] and the references therein. These methods are usually one-step methods which
proceed with two phases:

1. they first verify existence and uniqueness of the solution using a fixed point theo-
rem and the Picard-Lindelöf operator [22, 24, 25], compute an a priori enclosure
[x̃j ] such that x(t) ∈ [x̃j ] for all t ∈ [tj , tj+1] and adapt the integration step size
hj if necessary in order to keep the relative width of the solution smaller than a
given threshold;

2. they then compute a tighter enclosure [xj+1] of the solution for (10) at tj+1 as

[xj+1] = [xj ] +
k−1
∑

i=1

hi
jf

[i]([xj ], [uj ], [p], tj)

+hk
j f

[k]([x̃j ], [ũj ], [p], [tj , tj+1]),

(11)

which corresponds to a Taylor expansion of order k, where [x̃j ] is used to com-
pute the remainder term. The coefficients f [i] are the Taylor coefficients of the
solution x(t), and can be computed either numerically by automatic differentia-
tion or analytically via formal methods. In (11), the interval vector [ũj ] is such
that u(t) ∈ [ũj ] for all t ∈ [tj , tj+1].
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The enclosures thus obtained are said to be validated. This is in contrast with conven-
tional numerical integration techniques, which derive approximations with unknown
global error, and where the accumulation of both truncation and round-off errors may
cause the computed solution to deviate widely from the real one. When using interval
Taylor models, it is then possible to control the global truncation error, since it is
directly connected to the width of the solution enclosure.

Unfortunately, the wrapping effect, i.e. the overestimation due to the bracketing
of a set of any shape by an axis-aligned box makes the explicit scheme (11) width-
increasing and thus not suitable for numerical implementation. To remove this draw-
back, one usually uses mean value forms, matrix preconditioning and linear transfor-
mations [22, 16, 17, 26, 27, 28, 23, 25, 29, 30].

A good compromise between CPU time required and achieved accuracy can be
obtained when the order of the Taylor expansion series is taken between 15 and 20
[31].

In [27, 29], a Taylor series expansion with respect to initial state has also been used
in order to curb the pessimism introduced by wrapping effect. An implicit interval
method has been introduced in [32], where a tighter enclosure of the true solution is
computed via a Taylor expansion model, where the desired enclosure appears implic-
itly. A more general scheme has been developed in [31, 23, 25], where the interval
method is founded on the Hermite-Obreshkoff expansion series where the sought en-
closure appears both implicitly and explicitly. In [33], an alternative technique has
been introduced where constraint propagation techniques are used in connection with
a guaranteed relaxation of the ODE in order to build a pruning step.

In practice, apart for some particular cases such as affine uncertain stable systems,
the above techniques derive useful enclosures only if the ODE under study involves
no uncertain variable. Indeed, when the widths of the initial state or the parameter
interval vectors are large, or when one proceeds with numerical integration over a long
period of time, the enclosure [xj+1] usually becomes very pessimistic and thus useless,
notwithstanding all the techniques used to circumvent the wrapping effect in interval
computations. In the next subsection, we indicate how to solve this problem when the
system under study is a monotone dynamical system.

3.2 Guaranteed set integration with the theory of mono-

tone dynamical systems

A monotone dynamical system is just a dynamical system on an ordered metric space
which has the property that ordered initial states lead to ordered subsequent states.
The theory of monotone dynamical systems has mainly been developed by Hirsch
after the seminal work of Müller, Kamke and Krasnoselskij (see [34, 20, 21] and the
references therein). The application of monotone methods and comparison arguments
in differential equations started in the early 1920s.

Monotone dynamical systems is a broad class of dynamical systems, to which
many chemical, physical and economic models belong, and is one of the most im-
portant classes of systems in theoretical biology (see [21, 35, 36], and the references
therein). Furthermore, it is not difficult to find a change of orthants which transforms
a monotone dynamical system into a cooperative one [35].

Property 1 If a system of ODE is cooperative, a property to be defined later, then
the dynamical system is monotone, and it is possible to compute an inclusion function
for the solution of the ODE.
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Definition 1 The dynamical system is cooperative over D, if all the off-diagonal
terms of its Jacobian matrix are non negative over D, i.e.

∀i 6= j, t ≥ 0, ∀p ∈ [p], ∀x ∈ D, ∀u ∈ U,
∂fi(x,p,u, t)

∂xj

≥ 0. (12)

Theorem 1 [20, 13]: Let us consider two cooperative systems

ż(t) = f(z,p,p,u, t) (13)

ż(t) = f(z,p,p,u, t) (14)

which satisfy the condition

∀p ∈ [p,p], ∀x ∈ D, u ∈ U, ∀t ≥ t0,

f(z,p,p,u, t) ≤ f(x,p,u, t) ≤ f(z,p,p,u, t).Z
(15)

Moreover, if there exists two initial conditions such that

∀p ∈ [p,p], z(p,p, t0) ≤ x(p, t0) ≤ z(p,p, t0), (16)

then the solution of (10) satisfies

∀t ≥ t0, [x(t)] ⊆ [z(t),z(t)]. (17)

Now, the bracketing systems (13)–(14) involve degenerate intervals only, so interval
Taylor models can be used for the guaranteed numerical evaluation of z(t) and z(t),
since the wrapping effect in interval computations can be efficiently controlled by the
methods we reviewed in the previous section.

The main difficulty is to obtain suitable bracketing systems in the general case.
However, when the components of f , fi(x,p,u, t) (i = 1, ..., n) are monotonic with
respect to each parameter pk, it is quite easy to derive upper and lower bounds for
fi(x,p,u, t) and to define the bracketing systems [37], while avoiding possible diver-
gence that may occur when both upper and lower bounds of a parameter appear si-
multaneously in the same expression of the components of the bracketing systems [18].

Rule 1 Use of monotonicity property: Here we adapt the idea introduced in [37].

Define δ
i
(pk) as follows.

δ
i
(pk) =

{

pk if ∂fi

∂pk
≥ 0,

p
k

if ∂fi

∂pk
< 0,

(18)

and δ
i
(p) = [δ

i
(p1), ..., δ

i
(pk), ...]T . In a similar way, define δi(pk) as follows.

δi(pk) =

{

p
k

if ∂fi

∂pk
≥ 0,

pk if ∂fi

∂pk
< 0,

(19)

and δi(p) = [δi(p1), ..., δ
i(pk), ...]T .

If system (10) is cooperative over D then the components of the enclosing systems
(13)–(14) can be obtained as follows.

żi(t) = fi(z, δ
i
(p),u, t); zi(t0) = x0,i,

żi(t) = fi(z, δ
i(p),u, t); zi(t0) = x0,i.

(20)
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4 Bracketing uncertain monotone dynamical sys-

tems with hybrid automata

In this section, we address the case of uncertain monotone dynamical systems, for
which the signs of the partial derivatives ∂fi/∂pk change along the integration time
interval [t0, tnT

]. In such cases, the uncertain system (10) admits an enclosure over
each time interval where the functions fi are monotonic with respect to variables pk.
Therefore both upper and lower bounding systems are defined by piecewise nonlinear
ODEs, and can thus be regarded as hybrid dynamical systems. They can be modeled
by a hybrid automaton, where the hybrid state encompasses both a discrete time
component and continuous time state variables associated with it [38]. The hybrid
automaton which will model the systems which bracket (10) is defined by :

H = (Q,E,D,U,F,T,R), (21)

where:

1. Q is a finite set of the discrete components of the hybrid states, called “modes”
or “locations.” To each location corresponds two continuous-time systems which
provide the locally upper and lower solutions of (10). These systems are built
using the monotonicity property, i.e. rule 1 and hence equation (20).

2. E ⊆ Q×Q is the set of the transitions. It contains all the possible commutations
between the locally upper (resp. lower) continuous systems which brackets (10).

3. D is the state space of (10).

4. U represents the definition domain for the input of (10).

5. F = F ∪ F where F = {f q , q ∈ Q} and F = {f q, q ∈ Q} are the collections of the
field vectors defined by the upper and lower systems which enclose locally the
state flow generated by (10).

∀q ∈ Q, f q : D × U −→ R
n (22)

∀q ∈ Q, f q : D × U −→ R
n (23)

6. T = {te, e ∈ E} is the collection of switching time instants.
Define gi,k(.) = ∂fi

∂pk
(.). The set T is defined as

T =







te ∈ [t0, tnT
] |

∃ k = 1, ..., np, ∃i = 1, ..., n,
∃p ∈ [p] | gi,k(x,u,p, te) = 0







. (24)

That is to say, if the monotonicity of f with respect to one of the parameters
changes at te, a transition e = (q, q′) ∈ E occurs and the bracketing systems
change too from {fq , fq} to {f q′ , fq′}.

7. R = {Re, e ∈ E} is the collection of reset functions. They initialize the field
vectors fq′ (resp.fq′) after the activation of a transition e = (q, q′): xq′(t0) =
Re(xq(te)) and xq′(t0) = Re(xq(te).

Now, in order to build {f q and fq} using rule 1 and hence (20), we will split the
experiment time period [t0, tnT

] into a succession of integration time intervals [tj , tj+1],
where tj+1 = tj + hj and where integration time steps hj are either chosen a priori or
adapted on-line.
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Denote by IM , the set of time intervals [tj , tj+1] over which no switching occurs,
i.e., all the components of the field vectors f of (10) are monotonic with respect to
each parameter:

IM = {[tj , tj+1] ⊂ [0, tnT
] | ∀e ∈ E, te /∈ [tj , tj+1]} . (25)

Since the a priori solution [x̃j ] encloses the whole state trajectory over [tj , tj+1], an
inner approximation of the set (25) can also be defined without loss of guarantee as
follows

IM =







[tj , tj+1] ⊂ [0, tnT
] |

∀i = 1, ..., n, ∀k = 1, ..., np,
0 /∈ [g]i,k([x̃j ],u, [p], [tj , tj+1])







. (26)

Similarly, define the set IS of intervals where a switching occurs, i.e.,

IS = {[tj , tj+1] ⊂ [0, tnT
] | ∃e ∈ E, te ∈ [tj , tj+1]} . (27)

Since we have
[t0, tnT

] = IM ∪ IS, (28)

we can write without loss of guarantee

IS = [t0, T ] \ IM . (29)

Now, we can use rule (1) and (20) over each time interval [Im] ∈ IM in order to
derive fm and fm and to bracket all the possible solutions of the uncertain system
(10):

∀[Im] ∈ IM , ∀m ∈ Q, ∀p ∈ [p], ∀x ∈ D, ∀u ∈ U,

∀t ∈ [Im], fm(x,p,p,u, t) ≤ f(x,p,u, t) ≤ fm(x,p,p,u, t),
(30)

where fm ∈ F and fm ∈ F.
One difficulty remains, since the actual time instant, i.e., te in (24), when the upper

(resp. lower) hybrid system reaches one of its switching time instant is unknown a
priori. By using a validated interval Taylor model integration method, we will be able
to solve this problem in an efficient and guaranteed way. It suffices to apply a validated
integration method over each time interval [Is] ∈ IS to the system (10) in order to
cross the switching time instant. By doing so, we keep the guarantee property for the
enclosures without having to derive the actual time instant where the commutation
occurs. Note that since the widths of the intervals [Is] are equal to an integration
time step (i.e., hj) the wrapping effect will be very small in the validated integration
method. Eventually, the time intervals [Is] might also be reduced using root solving
algorithms, for instance [39]. By doing so, one reduces the size of the time step where
switching occurs, and hence ensures that the actual length of the step size hj has
minor impact onto the quality of the state trajectory.

Example 1 (Illustrative example) Let’s consider the scalar dynamical system with
two uncertain parameters: p1 and p2











ẋ(t) = f(x, p1, p2, t),

x0 ∈ [x0, x0],

pi ∈ [p
i
, pi] i = 1, 2.

(31)

Figure 1 depicts a possible time history for g1 = ∂f

∂p1
and g2 = ∂f

∂p2
. There are 4 cases

where the signs of the two partial derivatives can be determined with no ambiguity :
during these time periods bounding systems are, as time goes forward:



Reliable Computing 14, 2010 97

Figure 1: Time history for the partial derivative gi of example (31).

– (f(x, p
1
, p2, t), f(x, p1, p2

, t));

– (f(x, p1, p2, t), f(x, p
1
, p

2
, t));

– (f(x, p1, p2, t), f(x, p
1
, p2, t));

– (f(x, p
1
, p

2
, t), f(x, p1, p2, t)).

To the contrary, there are time intervals where the signs of the partial derivatives can-
not be ascertained. During these time intervals we will handle the uncertain system
(31) via interval Taylor models, i.e. we will perform numerical integration with inter-
vals of significant widths. As a conclusion, the hybrid automaton which characterizes
the bounding systems will contain 1+4 modes: mode 0 refers to the use of interval
Taylor models, mode 1 to 4 refer to the 4 cases where bounding systems can be tuned
for (31). The automaton driving the upper bracketing system is depicted in Figure 2.
The one driving the lower bracketing system can be obtained in the same way. �

In the sequel, mode 0 will denote the original uncertain dynamical system and
modes q 6= 0 will denote the case where the bounding systems method is used.

Finally, the methodology used for computing the upper (resp. lower) bracketing
system is summarized in the following algorithm:

Algorithm Hybrid-Bound-Solution
(in : t0, tnT

, f , F, [x](t0), [p];
(out : Bnd([x](t1), . . . ,Bnd([x](tn)

1. t := t0;

2. q := Initialize(f , [x](t0), [p]);
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Figure 2: The automaton used for computing the upper bracketing hybrid sys-
tem for (31).

3. fq := Select-ODE(Bnd(F), q);

4. while (t < tnT
) do

5. {h, [x](t+ h), [x̃(t)]} := Integrate(fq,Bnd([x](t)], t);

6. {transition, q′} := Guard-Cond([x̃(t)], fq);

7. if (transition) then

8. q := q′;

9. [x](t+ h) :=
Interval-Integrate(f ,Bnd([x](t)), [p], t, h);

10. fq := Select-ODE(F, q);

11. endif

12. t := t+ h;

13. end

The upper and lower solutions of (1) can be computed by the same algorithm
Hybrid-Bound-Solution. It suffices to set algorithm Bnd to return either the
upper or the lower bound of the state vector, accordingly.

Algorithm Hybrid-Bound-Solution finds the initial discrete mode q at line 2 (al-
gorithm Initialize), then selects the ODE fq which corresponds to this initial discrete
state at line 3 (algorithm Select-ODE). The latter only implements the monotonic-
ity property as detailed in rule 1. In the while loop, the ODE fq is integrated until
a transition occurs, which is detected at line 6 by algorithm Guard-Cond. If this is
the case (boolean transition is true), algorithm Guard-Cond also returns the new
discrete state q′. In order to cross the guard condition with guarantee, one integration
step over [Is] = [t, t + h] is performed for the original uncertain ODE f with a full
interval validated method (algorithm Interval-Integrate at line 9).
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Figure 3: Discrete mode evolution for the automata modeling the bounding sys-
tems of (32), with X0i

= [9, 11]oC and P0 = [0.73, 1.23]s−1×[0.23, 0.64]mW−1K.
(continuous line: upper system, dash-dot: lower system)

5 An Application

The problem under investigation is the simultaneous identification of thermo-physical
properties of material samples, taken from [18]. The state vector x ∈ R13 stands for
the node temperatures and the state equation. It is as follows:



























































ẋ1(t) = α1(x2 − 2x1 + u1),

ẋ2(t) = 2α1(x1 − (1 + ρ1

ρ2
)x2 + ρ1

ρ2
x3),

ẋ3(t) = 2p1(x4 − x3 + p2
δ2
ρ2

(x2 − x3)),

ẋi(t) = p1(xi+1 − 2xi + xi−1) i = 4, . . . , 9,

ẋ10(t) = 2p1(x9 − x10 + p2
δ2
ρ2

(x11 − x10)),

ẋ11(t) = 2α2(x12 − (1 + ρ3

ρ2
)x11 + ρ3

ρ2
x10),

ẋ12(t) = α3(x13 − 2x12 + x11),

ẋ13(t) = 2α3(x12 − (1 + ρ3

ρ4
)x13 + ρ3

ρ4
u2),

(32)

where the unknown parameter vector to be identified is p = [p1 p2]
T . The system

input u1 is taken as a multi-harmonic signal with mean value T0 = 10◦C and u2 = T0.
The model output is taken as y (p, t) = x12 (t).

5.1 Direct image : Solution enclosure

Using full interval Taylor models. Here we test the three integration schemes
(explicit and implicit Taylor and IHO, with order k = 11) with a varying integration
step size strategy as implemented in the VNODE package [31]. As expected, the en-
closure of the solution of the ODE becomes very pessimistic (it diverges, actually) as
soon as the width of the box used for the parameter vector is greater than 0.0025.
Nevertheless, for this limiting box, the use of validated integration schemes is suc-
cessful. However, if used within SIVIA, set inversion would only be achieved after an
unreasonable computation time.
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Figure 4: Bounding solutions for the output of model (32). (continuous line:
upper solution, dash-dot: lower solution). CPU time = 67.8h (PIV 2.4 GHz)

Using the hybrid bounding method. There are 10 guard conditions, since
parameters p1 and p2 appear in f3 and f10, and parameter p1 appears in fi, i =
4 . . . 9. Therefore, the set Q of discrete modes contains 210 elements, but not all
of them may be activated. Figure 3 shows the evolution of the discrete modes as
obtained for the upper and lower hybrid automata used for bracketing the solutions
for the output temperatures of (32) as generated by the algorithms Hybrid-Bound-
Solution, when both initial state vector and parameter vector are taken uncertain
with large uncertainty. Note that the numerical integration of the bounding systems
is also achieved using VNODE package. Figure 4 shows the evolution of the upper and
lower solutions for the original continuous time model output. Obviously, even for very
large parameter boxes, the hybrid bracketing method does not diverge. In Figure 5,
the solution enclosures as obtained with the hybrid bounding method, and by IHO as

Figure 5: Solution enclosure for the output of (32). Blue curves obtained
with the hybrid method; Red curves obtained with interval Hermite–Obreshkoff
method.
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Figure 6: Inner approximation (white boxes ) of the solution set (3) with model
(32). Uncertainty layer ∆S = S \ S (black boxes). CPU time = 24h (PIV 2.4
GHz)

given by VNODE package, are plotted when the size of the parameter vector interval
corresponds to the case where full interval Taylor models derive effective results. It is
clear that the size of the enclosures derived with the hybrid bounding approach are
tighter than the ones obtained by full interval Taylor models.

5.2 Set inversion with hybrid bounding

The initial state vector is taken as a point vector. Pseudo-actual data are constructed
by adding to model simulation a random uniform noise. The prior feasible domain for
the model output error is taken as Ei = [−0.05, 0.05]oC. The sampling time step is
taken constant ∆t = 5s and the duration of the experiment is 500s. The initial search
space for parameter vector is taken to be P0 = [0.5, 1.5]s−1 × [0.25, 1]mW−1K. Used
with SIVIA, the hybrid bracketing approach derives the inner and outer approxima-
tions of the solution set S as defined in (3). This set is plotted in Figure 6.

6 Conclusion

This paper investigates guaranteed methods for estimating feasible parameter sets
when the system under study is modeled with ODE. The issue is to find the set of
parameters such that the solution of the ODE remains within specified intervals at
known time-data points. When the system under study is a monotone dynamical sys-
tem, we introduce an effective method for computing enclosures for the solution of
the ODE which are tighter than the one usually obtained even with efficient validated
numerical integration software. The bracketing systems are modeled using hybrid au-
tomata. Used within a set inversion algorithm, it was successfully tested for parameter
set estimation on a problem of fairly high dimension. In the future, the approach will
be tested on monotone systems of larger dimension. The case of uncertain non linear
hybrid dynamic systems will also be addressed.
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