Definition of the Arithmetic Operations and

Comparison Relations for an Interval Arithmetic
Standard*

Gerd Bohlender and Ulrich Kulisch
Institut fiir Angewandte und Numerische Mathematik,
Universitat Karlsruhe, D-76128 Karlsruhe, Germany

bohlender@kit.edu,ulrich.kulisch@kit.edu

Abstract

Concepts of interval arithmetic like arithmetic operations, compari-
son relations, distances, convergence, etc. are clearly defined terms of
pure mathematics. The development of a standard for interval arithmetic
should be based on these concepts. This paper considers the definition
of the arithmetic operations and of comparison relations for an interval
arithmetic computation standard. For derivation see [6] and [5] in par-
ticular. Hardware support for the operations and comparison relations is
given in [3].

Keywords: computer arithmetic, floating-point arithmetic, interval arithmetic,
elementary functions, arithmetic standards
AMS subject classifications: 65G30, 65G99, 65G50, 65Y04, 68MO07

1 Interval Sets and Mappings

Interval arithmetic over the real numbers deals with closed' and connected sets of the
real numbers R. An interval is denoted by a bold lower case letter. It represents an
ordered pair, written as a = [a,@], with a,@ € R. a denotes the lower bound and @
the upper bound. The lower bound shall not be greater than the upper bound. The
set of nonempty, closed and bounded real intervals is denoted by IR.

The set of all bounded or unbounded intervals is denoted by IR, ¢ € IR. If a bound
is —oo or +o0o the bound is not an element of the interval. Such intervals may also
be written as (—oo,a] or [b, +00) with a,b € R or (—oo,400) where the parentheses
indicate that the bounds —oco and +oo are not elements of the interval. With respect
to set inclusion as an order relation {IR, C} is a complete lattice. It is bounded from
below by the empty set) and from above by the set (—oo,+00).

On the computer real numbers are approximated by the subset of floating-point
numbers as defined by the IEEE 754 floating-point arithmetic standard, for instance.

*Submitted: January 19, 2009; Revised: February 10, 2010; Accepted: February 20, 2010.
1A subset of R is called closed if its complement is open.

36

Reliable Computing 15, 2011 37

The set of floating-point numbers is denoted by F. The subset of IR with bounds of F
is denoted by IF. The subset of all bounded or unbounded intervals of IR with finite
bounds of F is denoted by IF, ¢ € IF. Intervals over the real numbers, arithmetic op-
erations, and comparison relations for these are approximated by intervals, arithmetic
operations, and comparison relations for intervals of the set IF.

A real number or an interval over the real numbers is mapped onto the smallest
floating-point interval that contains the number or interval respectively. This mapping
¢ : IR — TF is characterized (uniquely defined) by the following properties:

(R1) ¢a = a, for all a € TF,

(R2) a C b= $a C Ob, for a,b € IR,
(R3) a C $a, for all a € IR,

(R4) ¢&(—a) = —Oa, for all a € IR.

2 Arithmetic Operations for Intervals

With the mapping & : IR — IF and its properties listed at the end of Section 1
arithmetic operations for intervals of IF are uniquely defined by:

(RG) a ®b:=(aob), for all a,b € TF and all o € {+, —, *, /}.

The TEEE floating-point arithemtic standard 754 specifies arithmetic with four
roundings: to the nearest floating-point number, downwards, upwards, and towards
zero. For these operations the following notations will be used:
+, —, %, / for the operations with rounding to the nearest floating-point number,

YV ,V,Y, VY for the operations with rounding downwards,
A, A, A, A for the operations with rounding upwards,? and
%[, —|, +|, /| for the operations with rounding towards zero (chopping).

With these notations for bounded intervals a =[a, @], b =[b,b] € IF the following

arithmetic operations 4, —, ¥, and / can be derived from (RG)*:

Addition [a,a] + [b,b] = [a V b,T@ A b].

Subtraction [a,a] — [b,b] = [a V b,a A b

2Tn our PASCAL extension (available since 1980) and the Fortran extension we developed
for and with IBM (available 1990) pairs of keyboard symbols +<, —<, *<, /< and +>, —>,
*>, /> have been used for the operations with rounding downwads and upwards, respectively.

3Frequently used programming languages do not allow 4 plus, minus, multiply, and di-
vide operators for floating-point numbers. A future interval arithmetic standard could or
should specify names for low level operations with the directed roundings. They could be:
addp, subp, mulp, divp, addn, subn, muln, and divn. Here p stands for rounding toward posi-
tive and n for rounding toward negative. With these routines interval operations would be
fully transferable from one processor to another.

4For details see [5].

38

G. Bohlender, U. Kulisch, Interval Arithmetic Standard

Multiplication b, b] b, b] [b, 0]
[a, @] * [b, b] b<0 b<0<b b>0
la,a),a <0 [@¥ b,aAb [a ¥ b,aAb [aVb,aAb
a<0<a @V baAd [min(aV¥bavd), [aVbaAobd
maz(a A b,a A D)]
[a,a],a >0 @VbaAbl [@aVbaAl [aVbaAl
Division, 0 ¢ b b, b] [b,b]
la,a]/[b, b] b<0 b>0
[a,a],a <0 [@Vbabl [aVbahd
[a,d,a<0<a | [@aVbaAbd [aVbahbd
0@,a>0 |[@Vhahb [aVbaAl
Division, 0 € b b= b, b] b, b]
la, a]/[b, b] [0, 0] b<b=0 0=b<b
[a,a],@ <0 0 [@ Vb, +00) (—o0,a A D
[a,al,a<0<a | (—oo,+0) (—o00,+0) (—00,+00)
la,a],a >0 0 (—00,a A D] [a Vb, +00)

Division by an interval that includes zero in the last table leads to unbounded
intervals. To be complete, arithmetic operations for unbounded intervals now have to

be defined also.

The first rule is that any operation with the empty set () has the empty set as
its result. Arithmetic operations for unbounded intervals of IF can be performed on
the computer by using the above formulas for bounded intervals if in addition a few
formal rules for operations with —oo and +o0o are applied. These rules are shown in

the corresponding tables.

Addition | —00 b 400 Subtraction | —oo b 400
—00 -0 —00 —00 -0 —00
a —00 +o00 a “+o00 —00
“+o00 +o00 +4o0 “+o00 +o00 400
Multiplication | —c0o b<0 0 b>0 +o0
—00 +o00 400 0 —00 —
a<0 +o00 —00 Division | —00 +o0o
0 0 0 a | O 0
a>0 —00 +o00
+o00 —o00 -0 0 400 +o

Reliable Computing 15, 2011 39

These rules are not new in principle. They are well established in real analysis and
IEEE 754 provides them anyhow. The only rule that goes beyond IEEE 754 is

0% (—00) = (—00) * 0 = 0* (+00) = (+00) * 0 = 0. (1)

This rule follows quite naturally from the definition of unbounded intervals. However,
it should not be interpreted as a new mathematical law. It is just a short cut to easily
compute the bounds of the result of an operation with unbounded intervals.

3 Remarks on the Arithmetic Operations

I. In the table for division by an interval that includes zero the case b < 0 < b is
missing. This needs some explanation.

A basic concept of mathematics is that of a function or mapping. A function
consists of a pair (f, Dy). It maps each element x of its domain of definition Dy on a
unique element y of the range Ry of f, f: Dy — Ry.

In real analysis division by zero is not defined. Thus a rational function y = f(z)
where the denominator is zero for x = c is not defined for x = ¢, i.e., ¢ is not an element
of the domain of definition Dy. Since the function f(z) is not defined at « = ¢ it does
not have any value or property there. In this strict mathematical sense, division by
an interval [b, 1_7] with b < 0 < b is not well posed. For division the set b < 0 < b
devolves into the two distinct sets [b,0]°> and [0,b] and division by an interval [b,b]
with b < 0 < b actually consists of two divisions the result of which again consists
of two distinct sets. In each case the result is a single unbounded interval. The two
divisions should be performed separately. Division by the two sets [b,0] and [0,d] is
shown in the corresponding table.

The situation can easily be identified by the signs of the bounds of the divisor
before the division is executed. For interval multiplication or division a case selection
has to be done (by hardware or software) anyhow before the operations are performed.
In the case b < 0 < b the sign of b is negative and the sign of b is positive.

In the user’s program, however, the two divisions appear as a single operation, as
division by an interval [b, 5] with b < 0 < b. So an arithmetic operation in the user’s
program delivers two distinct results. This is an unusual situation in conventional
computing.%

A solution to the problem would be for the computer to provide a flag for distinct
intervals. The situation occurs if the divisor is an interval that contains zero as an
interior point. In this case the flag would be raised and signaled to the user. The user
may then apply a routine of his choice to deal with the situation as is appropriate for
his application.

This routine could be: Modify the operands and recompute, or continue the com-
putation with one of the sets and ignore the other one, or put one of the sets on a
list and continue the computation with the other one, or return the entire set of real
numbers (—o00,+00) as result and continue the computation, or stop computing, or
any other action.

5Since division by zero does not contribute to the solution set it does not matter whether
a paranthesis or bracket is used here.

61t would be very convenient for computing if other operations would also deliver two an-
swers: floating-point addition and subtraction the rounded result and the error, multiplication
the product to the double length and division the quotient and the remainder.

40 G. Bohlender, U. Kulisch, Interval Arithmetic Standard

A somewhat natural solution would be to continue the computation on different
processors, one for each interval. But the situation can occur repeatedly. How many
processors would we need? Future multicore units will provide a large number of
processors. They will suffice for quite a while. A similar situation occurs in global
optimization using subdivision. After a certain test several candidates may be left for
further investigation.

Newton’s method reaches its ultimate elegance and strength in the extended inter-
val Newton method. It computes all (single) zeros in a given domain. If a function has
several zeros in a given interval its derivative becomes zero in that interval also. Thus
Newton’s method applied to that interval delivers two distinct sets. This is how the
extended interval Newton method separates different zeros. If the method is continued
along two separate paths, one for each of the distinct intervals it finally computes all
zeros in the given domain. If the method continues with only one of the two distinct
sets and ignores the other one it computes an enclosure of only one zero of the given
function. If the interval Newton method delivers the empty set, the method has proved
that there is no zero in the initial interval.

II. If interval arithmetic is hardware supported then execution of the operations
listed above is about as fast as execution of the corresponding floating-point operations.
It is thus not reasonable to define and study operations between floating-point numbers
and intervals in order to save computing time. Floating-point arithmetic and interval
arithmetic are not the same calculus for approximate arithmetic for real numbers.
They should be kept strictly separate.”

Of course, computing with result verification often makes use of floating-point
computations. If executed in IEEE 754 arithmetic this may result in an exception.
So there remains the question of how exceptions like —co, +00, NalN, —0, +0 can
reasonably be mapped on floating-point intervals.

The following would be reasonable: —0 and +0 can only mean 0. Since NalN is
not a real number it should be mapped on the empty set and since —oo and +oco are
also not real numbers their image could or should also be the empty set. If the image
of the result of a floating-point computation is the empty set a flag should be set.

III. The empty set) may occur as result of an interval operation as listed in the
tables of Section 2. The result of any operation with the empty set) was defined to be
the empty set. This suggests an encoding of the empty set by) = [+NaN,—NaN].
Then the rules for interval arithmetic listed in Section 2 can also be applied to the
empty set. By the well established rules of IEEE 754 for NaN an operation with the
empty set would then automatically produce the empty set as the result.

The encoding § = [+NaN, —NaN] for the empty set also turns out to be useful
for the definition of comparison relations for intervals. These will be studied in the
next section.

IV. Success of interval arithmetic is based on two arithmetical features: One is
double precision interval arithmetic. The other is variable precision interval arithmetic
[8, 9, 11, 1]. An exact scalar product for the double precision format is the basic tool
to achieve high speed variable (dynamic) precision arithmetic for real and interval
data. Pipelining gives it high speed, and exactitude brings very high accuracy into
computation. There is no way to compute a dot product faster than the exact result.
By pipelining, it can be computed in the time the processor needs to read the data,

“The XSC-languages allow real and interval data and operations between these in an
expression. However, all real data are immediately interpreted as intervals and all operations
are performed as interval operations.

Reliable Computing 15, 2011 41

i.e., it comes with utmost speed [4, 5]. Variable length interval arithmetic fully benefits
from such speed [5]. No software simulation can go as fast. With operator overloading
variable length interval arithmetic is very easy to use.

4 Comparison Relations and Lattice Operations
Three comparison relations are important for intervals of IF:
equality, less than or equal, and set inclusion.® (2)

Let a and b be intervals of IF with bounds a <@ and b < b respectively. Then the
relations equality and less than or equal in IF are defined by:

Since bounds for intervals of IF may be —oo or +co these comparison relations are
executed as if performed in the lattice {F*, <} with F* := F U {—oo} U {+o0}.

With the order relation <, {IF, <} is a lattice. The greatest lower bound (glb) and
the least upper bound (lub) of a,b € IF are the intervals

glb(a,b) := [min(a,b), min(a, b)],

lub(a,b) := [max(a,b), max(a,bd)].

The greatest lower bound and the least upper bound of an interval with the empty set
are both the empty set.
The inclusion relation in IF is defined by
aCb =b<ana<hb. (3)
With the relation C, {IF,C} is also a lattice. The least element in {IF,C} is the
empty set () and the greatest element is the interval (—oo,4+00). The infimum of two

elements a,b € IF is the intersection and the supremum is the interval hull (convex
hull):

inf(a,b) =anNb :=[max(a,b),min(a,d)] or the empty set 0,

sup(a,b) = aUb := [min(a,b), max(a,b)].

The intersection of an interval with the empty set is the empty set. The interval hull
with the empty set is the other operand.

If in the formulas for glb(a,b), lub(a,b), a N'b, aUb, a bound is —co or +0o a
parenthesis should be used at this interval bound to denote the resulting interval.
This bound is not an element of the interval.

80f course, also other order relations can be defined for intervals of IR and IF. The theory
of interval arithmetic is extensively studied in [5]. Only the three order realtions considered
here are needed for it. So specification of these three realtions should suffice in order to keep
an interval arithmetic standard simple. If a particular application needs another relation the
user can easily define it ad hoc.

42 G. Bohlender, U. Kulisch, Interval Arithmetic Standard

If in any of the comparison relations defined here both operands are the empty set,
the result is true. If in 3 a is the empty set the result is true. Otherwise the result is
false if in any of the three comparison relations only one operand is the empty set.’

A particular case of inclusion is the relation element of. It is defined by

a€b :<:>Q§a/\a§l_7.

Another useful check is for whether [a, @] is an interval at all, that is, if a < @.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic
Press, New York, 1983.

[2] W. Kahan, A More Complete Interval Arithmetic, Lecture Notes prepared for a
summer course at the University of Michigan, June 17-21, 1968.

[3] R. Kirchner and U. Kulisch, “Hardware support for interval arithmetic”, Reliable
Computing, vol. 12, no. 3, pp. 225-237, 2006.

[4] U. W. Kulisch, Advanced Arithmetic for the Digital Computer — Design of Arith-
metic Units, Springer-Verlag, Wien, New York, 2002.

[5] U. W. Kulisch, Computer Arithmetic and Validity — Theory, Implementation and
Applications, De Gruyter, Berlin, New York, 2008.

[6] U. W. Kulisch, “Complete Interval Arithmetic and its Implementation on the
Computer”, In: A. Cuyt et al. (eds.), Numerical Validation in Current Hardware
Architectures, Lecture Notes in Computer Science LNCS, vol. 5492, Springer-
Verlag Berlin Heidelberg, pp. 41-67, 2009.

[7] IFIPWG-IEEE754R, Letter of the IFIP WG 2.5 to the IEEE Computer Arith-
metic Revision Group, 2007.1°

[8] R. E. Moore, Interval Analysis, Prentice Hall Inc., Englewood Cliffs, New Jersey,
1966.

9] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia,
Pennsylvania, 1979.

[10] S. Ratz, On Extended Interval Arithmetic and Inclusion Isotony, Preprint, Insti-
tut fiir Angewandte Mathematik, Universitat Karlsruhe, 1999.

[11] S. M. Rump, Kleine Fehlerschranken bei Matrizproblemen, Dissertation, Univer-
sitat Karlsruhe, 1980.

9A convenient encoding of the empty set may be §) = [+NaN, —NaN]. Then most com-
parison relations and lattice operations considered in this section would deliver the correct
answer if conventional rules for NaN are applied. However, if a = () then set inclusion 3 and
computing the interval hull do not follow this rule. So in these two cases whether a = () must
be checked before the operations can be executed.

10See http://www.math.kit.edu/ianm2/~kulisch.

