
Block Floating Point Interval ALU for Digital

Signal Processing∗

Sandeep Hattangady, William Edmonson, Winser Alexander
Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh, USA

hattangady@gmail.com,wwedmons@ncsu.edu,winser@ncsu.edu

Abstract

Numerical analysis on real numbers is performed using either point-
wise arithmetic or interval arithmetic. Today, interval analysis is a ma-
ture discipline and finds use not only in error analysis but also control
applications such as robotics. The interval arithmetic hardware architec-
ture proposed in the work [W. Edmonson, R. Gupte, J. Gianchandani,
S. Ocloo, W. Alexander, Interval arithmetic logic unit for signal process-
ing and control applications, Workshop on Reliable Engineering Comput-
ing, Savannah, GA, USA, 2006] for Digital Signal Processors (DSP) is
prone to unreliability owing to overflow errors resulting from the small
dynamic range offered by fixed point computations. In this paper, we
present a solution to this problem in the form of a fixed point interval
ALU that utilizes the concept of Block Floating Point (BFP) presented in
[K. Kalliojarvi, J. Astola, [Roundoff errors in block-floating-point systems,
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 44,
pp. 783–790, 1996] to attain a higher dynamic range for interval as well as
point-wise computations. We add block floating point support to the ALU
in the form of special instructions such as Exponent Detection and Nor-
malization that aid the change of the dynamic range of the input. We also
provide additional hardware to perform Conditional Block Floating-point
Scaling (CBFS) on the output endpoints of the interval result. We explore
the design space across varying pipeline depths for best throughput which
is characterized as the highest number of output samples processed per
second. Our results show that the four-stage highly-pipelined architecture
provides the highest throughput of about 86.1 Msamples/sec for interval
operations.

Keywords: Block floating point, interval arithmetic, arithmetic logic unit.

AMS subject classifications: 97P60, 65G30, 65G40

∗Submitted: January 27, 2009; Accepted: February 9, 2010.

69

70 S. Hattangady et al, Block Floating Point Interval ALU

1 Introduction

Digital signal processing and control applications use algorithms based on interval
arithmetic to address a wide range of complex problems including solving systems
of nonlinear equations, determining eigenvalues and eigenvectors of matrices, finding
roots of functions and performing global optimization [1][2][3]. The demands of high
computational performance for these applications can be met by Digital Signal Proces-
sors (DSP) which take advantage of specialized hardware architectural features such
as fast multiply-accumulate instructions, multiple-access memory, parallel operations,
specialized program control for interrupt handling and I/O, and fast and efficient ac-
cess to peripherals. DSPs based on fixed point implementations are cheaper and less
power hungry than their floating point counterparts given comparable speeds. How-
ever, fixed point implementations face the disadvantage of limited dynamic range and
this can cause wrap around in 2’s complement arithmetic leading to poor fidelity for
signal processing applications. Therefore, interval computations cease to be reliable
for the architecture presented in the work of [4]. Overflow is not much of an issue for
floating point implementations because they have higher dynamic range [5].

In this paper, we provide a solution to mitigate the effect of overflow errors that
beset the dedicated fixed point interval ALU [4]. We propose an interval ALU archi-
tecture that uses Block Floating Point (BFP) arithmetic to achieve higher dynamic
range. The skeleton of our architecture is derived from the work of [4]. Since the un-
derlying fixed point architecture is still prone to overflow errors, we handle it through
the technique of Conditional Block Floating-point Scaling (CBFS). We extend BFP
support to the ALU by incorporating instructions that perform Exponent Detection
and Normalization. We also incorporate modifications in this architecture so that the
ALU can also perform point-wise operations. We create a design space comprised of
pipelined Block Floating Point Interval ALU (BFPIALU) architectures and estimate
average throughput for each design.

This paper is organized as follows. Section II presents published work that provides
the basis and motivation for this paper. Section III extends the concept of BFP arith-
metic to interval arithmetic using CBFS for overflow handling. Section IV describes
the basic hardware architecture of the non-pipelined BFPIALU and extends pipelin-
ing to this architecture for higher throughput. Section V presents the performance
analysis for these designs and Section VI concludes the paper.

2 Related Work

Floating point interval hardware implementations have been carried out previously [6]
[7] [8] [9] as a solution to address the poor execution rate of interval operations in
software. However, there is only one dedicated fixed point interval ALU for DSP and
control applications that has been designed and tested [4]. This design has recorded
a competitive throughput on the order of 56 MIOPS (Millions of Interval Operations
per Second) for the non-pipelined design and about 307 MIOPS for a 7-stage pipelined
design [4]. A shortcoming of the design is that overflow errors lead to unreliable interval
arithmetic and this problem is addressed in this paper.

We explore BFP arithmetic for the fixed point interval ALU to attain a dynamic
range higher than that allowed by conventional fixed point arithmetic. BFP arith-
metic has been successfully applied to point-wise computation based applications such
as digital filters [10] and the Fast Fourier Transform [5] [11]. BFP arithmetic support

Reliable Computing 15, 2011 71

for point-wise computations in most DSPs is typically provided in the form of Expo-
nent Detection and Normalization instructions [5]. Commercial fixed-point DSPs such
as Analog Devices ASDP-21xx, Texas Instruments TMS320C54x [5], SGS-Thomson
D950-CORE, Zoran ZR3800x, DSP Group OakDSPCore and uPD7701x provide single
cycle Exponent Detection. However, DSPs from the AT&T DSP16xx family (other
than DSP1602 and DSP1605) are the only ones that provide single cycle Normalize
instructions. Other DSPs such as the Texas Instruments TMS320C2x, TMS320C5x,
the DSP Group PineDSPCore, the Motorola DSP5600x and DSP561xx provide itera-
tive normalization instructions where an n-bit number takes n-cycles to normalize [5].
However, none of these DSPs provide specialized BFP support for interval arithmetic.
Overflow will be handled through the CBFS scheme [12] [13].

3 Interval Block Floating Point arithmetic

We consider a fixed point interval arithmetic system for the BFPIALU, presented in
Section V, based on setting the interval endpoints to finite values, that abides by the
set of criteria mentioned in the work of [14]. The criteria for evaluation of hardware
is: correctness, totality, closedness, optimality, and efficiency. This section discusses
BFP arithmetic with interval numbers and the CBFS scheme for handling overflow.

3.1 BFP Arithmetic

The BFP algorithm is based on the Automatic Gain Control (AGC) concept. Block
AGC only scales the value of the data at the input stage of the data processing, thus
only adjusting the input signal power. The block floating point algorithm takes it
a step further by tracking the signal strength from stage to stage to provide a more
comprehensive scaling strategy and extended dynamic range [15].

A block of N numbers has a joint scaling factor of γ corresponding to the largest
magnitude of the data in the block for BFP representation. We extend the definition of
BFP representation presented in [12] for point-wise data, to interval data. If [xLi, xUi]
represents the ith interval data sample and γ represents the interval block exponent,
then the BFP representation is denoted as

[[xL1, xU1], [xL2, xU2], . . . , [xLN , xUN]] =

[[x̂L1, x̂U1], [x̂L2, x̂U2], . . . , [x̂LN , x̂UN]] · 2γ ,

where [x̂Li, x̂Ui] = [xLi, xUi] · 2
−γ . The block exponent γ is defined by

γ = ⌊log
2
M⌋ + 1 + S

where M = max(|xL1|, |xU1|, ...,|xLN |, |xUN |) and |x̂Li| ∈ [0,1]; |x̂Ui| ∈ [0,1]. The
integer S signifies a constant integer scaling term for the block exponent and will
affect both endpoints in a similar way. The same exponent is applied to both endpoints
of each interval data since we intend to accommodate overflow errors in fixed point
hardware. Furthermore, the complexity of hardware will approach that of a floating
point implementation if different exponents are used for the lower and upper endpoints
of the interval data.

A more intuitive approach to compute the value of γ for the block is to assign it
with the negated count of the leading zeros for the sample with the largest magnitude
in a data block. Data with small magnitudes in two’s complement arithmetic normally

72 S. Hattangady et al, Block Floating Point Interval ALU

fit to the machine register size by size extension. Therefore, the data with the least
number of leading sign bits has the largest magnitude and we exploit this fact in
computing the value of γ [12]. Once the block of interval data is normalized, we may
then perform the interval operations on it.

3.2 CBFS

This technique is based upon the idea of correcting overflow errors. The output block
exponent is determined a posteriori without using the constant integer scaling term
‘S’ during normalization. After normalization, the data samples are brought into
the fixed point hardware for computations. If no overflow occurs, then the output
block exponent is kept the same as the normalized input block exponent. However, if
overflow occurs, then a set of corrective actions are taken. These are listed below:

1. The hardware block scales the overflowed output down by a factor of 2. This is
performed by right shifting the result of the operation in fixed point.

2. The output block exponent is incremented and the result is stored.

3. If the computations are iterative in nature and an intermediate overflow occurs,
then all inputs from that point onwards are scaled down by an additional factor
of 2. This process is repeated at each instance of overflow.

CBFS implementations do not scale the input data unnecessarily during normal-
ization and set the value of parameter S to 0. The operation is first performed and the
output is scaled down by a factor of two only in the event of overflow. CBFS imple-
mentations that run long iterative operations, such as computation of dot products,
increment the output block exponent only if overflow occurred. We do not consider the
saturation scheme for the interval architecture since it could lead to underestimation
of the output interval bounds and hence not meet the criterion of correctness. The
design of the BFPIALU, proposed in this work implements the CBFS technique.

4 Hardware Architecture

The hardware architecture for the ALU is shown in Figure 1. It comprises of the
Flag Generator module, the Lower Bound module, the Upper Bound module, the
Scale Synchronizer module and the input scaling modules Scale L and Scale U. We
choose the Q0.15 data format for fixed point data representation to obtain higher
precision. We provide the ability to handle overflow errors due to the small dynamic
range obtained as a result.

The ALU takes two intervals X and Y with corresponding endpoints XL, XU , YL

and YU as inputs. The ALU has two modes of operation, namely the interval mode and
¯pointwise mode for interval and point arithmetic operations respectively. The choice

of the mode of operation is dictated by the mode signal. Asserting this signal high
causes the ALU to function in the interval mode while asserting it low causes the ALU
to operate in the ¯pointwise mode of operation. In the interval mode of operation, both
the Lower Bound and Upper Bound modules operate on the same command. However,
in the ¯pointwise mode of operation, both modules can execute different commands
independently. This explains the presence of two copies of command input cmd and
data / control lines such as maxexp, mac and permitscaling. The signals macexp1 and
maxexp2 are input lines that convey the amount of shifting to be performed on the
input data. This input is important while normalizing a data block. Asserting the mac

Reliable Computing 15, 2011 73

Flag Generator

Module

Upper Bound

Module

Lower Bound

Module

XL

XU

YL
YU

16

16

16

16

cmd1 4

4cmd2

4

4
maxexp1

maxexp2

disjoint

maxexp_L

maxexp_U

mul

16

32 U

rnd_mode

mode 1

cmd_L

cmd_U

z

L
z

32

16

OVFL_U

OVFL_L

disjoint

mac1

ZU_B

ZL_B
disjoint

min_U

min_L

 1
 1mac2

mac_U

mac_L

rnd_scale_L

rnd_scale_U

updt_U

Scale_U

Scale_L

Scale

Synchronizer

Module

updt_L

1
loadL

1
loadU

1

1

permitscaling1

permitscaling2

psL

psU

cmd1

cmd2

mode

rnd_mode

permitscaling1

permitscaling2

maxexp1

maxexp2

Figure 1: Hardware Architecture

signals high results in an accumulation of products as long as this signal is asserted
high. Signal permitscaling indicates an iterative operation when asserted high. For
situations that demand iterative operations to be resumed midway, signals loadL and
loadU can be asserted to load the value of the increment in the output block exponent.
The input rnd mode is used to make the choice of a rounding scheme in the Upper and
Lower Bound modules when the interval ALU is in the ¯pointwise mode of operation.
Therefore, both modules can function as two independent ALUs that can perform

¯pointwise operations in parallel.

Outputs ZL B and ZU B signify the endpoints of the interval output interval. The
output min L and min U indicate the least exponent detected value among all samples
of a data block. These are updated alongside the process of Exponent Detection in
the BFPIALU. The outputs updt L and updt U indicate the increment in the output
block exponent compared to the input data block exponent. The signals rnd scale L
and rnd scale U are used to indicate a special case of scaling performed to account
for overflow due to rounding to + ∞ in either the Lower Bound or the Upper Bound
modules.

The BFPIALU is capable of performing the operations mentioned in Table 1.
While commands 0-7 have been implemented in [4], commands 8-F represent the
extended set of operations in this ALU. The logic blocks that are used to perform these
extended operations are described later in the chapter. Both commands cmd1 and
cmd2 can assume these values at any point of time. The MAC (multiply-accumulate)
operation is performed as part of multiplication. The corresponding mac signal is
asserted high along with the multiply command to perform this operation. We provide
a detailed description of the individual modules comprising the BFPIALU architecture
shown in Figure 1.

74 S. Hattangady et al, Block Floating Point Interval ALU

Command Description

0 ADDITION
1 SUBTRACTION
2 MULTIPLICATION / MAC
3 DIVISION
4 UNION
5 INTERSECTION
6 WIDTH
7 MIDPOINT
8 MIN
9 MAX
A OR
B AND
C XOR
D EXPONENT DETECTION
E NORMALIZATION
F SIGNED LEFT SHIFT

Table 1: Command Set for the ALU

4.1 Flag Generator

The Flag Generator identifies the appropriate case of interval multiplication to be
performed and flags disjoint input intervals. It also handles the distribution of ap-
propriate control signals such as cmd, maxexp, permitscaling to the Lower and Upper
Bound modules depending on the mode of operation.

4.2 Lower and Upper Bound Modules

Both the Lower and Upper Bound modules are largely similar in structure. The
operations in each of these modules are performed in parallel with one logic path
dedicated to each operation. Changes in these modules as compared to the work of
[4] include the addition of block floating point operations and the elimination of the
special multiplication block and the next signal for set operations.

The inputs to the Lower Bound module are obtained from the Scale L module and
are denoted by XL, XU , YL and YU for convenience. Each of these inputs represent
scaled values of the original interval inputs.

We next describe the logic used to realize the operations of Exponent Detection
and Normalization.

Exponent Detection and Normalization: The operation of Exponent Detection in-
volves identifying the number of redundant sign bits in a given data element. For
a given data element, it is done by XORing successive bits and then passing the result
through an array of priority encoders. The output is an integer corresponding to the
number of redundant sign bits in the input data element depending on where the first
combination of 01 or 10 occurs in the input. Exponent detection for interval data is
performed by identifying the minimum number of redundant sign bits in the lower and
upper end point of the applied interval. The result (γ) is updated in both the min L
and min U output registers. Once an interval data block is traversed through, the

Reliable Computing 15, 2011 75

value of γ is applied to the maxexp1 or maxexp2 and the entire interval data block is
left shifted. This normalizes the interval data block.

4.3 Scale Synchronizer Module

Overflow can occur in either the Lower Bound module, the Upper Bound module, or
in both. In order to obtain a reliable result, the overflow detection circuitry, housed
within each of these modules, scales down the output of the operation by a factor
of 2. It is advantageous to set both output interval endpoints to the same scaling
level in hardware because this would enable both endpoints to bear the same output
exponent value. Performing this step in hardware avoids the time penalty associated
with checking the status of scaling of individual endpoints for each output interval
while normalizing the output interval data block for the next stage of block processing.
The Scale Synchronizer block takes two 32-bit inputs, namely ZL and ZU from the
outputs of the Lower Bound and Upper Bound modules respectively. It rounds these
32-bit values to 16-bit outputs with the choice of the appropriate rounding scheme.
It synchronizes the scaling on ZL and ZU and updates registers updt L and updt U to
store the increment in output block exponent, depending upon the status of overflow
signals from the Lower Bound and Upper Bound modules. It also stores the minimum
exponent detected in a data block during Exponent Detection, so that Left shifting
can follow immediately for Block Normalization.

Special case of Overflow
The outward rounding scheme for intervals is retained from the work of [4]. Therefore,
the 32-bit result from the Lower Bound module is truncated to 16-bits while the output
of the Upper Bound module is rounded to +∞. Rounding to +∞ entails the addition
of the OR-ed result of the lower-precision bits, to be discarded, to the rest of the
bits. However, this can lead to unintentional overflow when the 32-bit result is of the
form 0x7FFFXXXX hex where XXXX is non-zero. This is referred to as the Special
case of Overflow. This overflow results in 8000 hex resulting in an incorrect result.
Such a situation can occur in the Upper Bound result in either the interval mode or

¯pointwise mode and in the Lower Bound result in the ¯pointwise mode of operation.
This special case is addressed by flags rnd scale L and rnd scale U which are asserted
high by the Scale Synchronizer module when such a situation is detected. Corrective
action is taken by putting out a result of 4000 (hex) and setting the relevant flag to
indicate this situation. This also results in γ incrementing by 1.

Synchronizing the outputs
The synchronization of the interval output endpoints and the value of the updated
registers updt L and updt U is illustrated in Table 2. Signal psL represents permitscal-
ing1, OVFL L and OVFL U indicate the status of overflow in the Lower and Upper
Bound modules while SplRnd indicates whether the special case of rounding occurred.
Both output endpoints share common block exponent for an interval operation and
the same value is loaded in the output registers updt L and updt U. Updating regis-
ters updt L and updt U in the event of overflow for iterative computations involves
incrementing their previous values. For non-iterative operations, the output block
exponent increment is simply set to 1 when overflow occurs. It is important to note
that the input is scaled by a factor equal to the output block exponent increments.
The same principle is extended for point-wise operations by updating the output block
exponent registers, updt L and updt U, independent of each other. Furthermore, this

76 S. Hattangady et al, Block Floating Point Interval ALU

psL OVFL L OVFL U SplRnd ZL B updt L ZU Bhex updt U
0 0 0 0 zl 0 zu 0
0 0 0 1 zl/2 1 4000 1
0 0 1 0 zl/2 1 zu 1
0 0 1 1 zl/4 2 4000 2
0 1 0 0 zl 1 zu/2 1
0 1 0 1 zl 1 4000 1
0 1 1 0 zl 1 zu 1
0 1 1 1 zl/2 2 4000 2
1 0 0 0 zl updt L zu updt L
1 0 0 1 zl/2 updt L+1 4000 updt L+1
1 0 1 0 zl/2 updt L+1 zu updt L+1
1 0 1 1 zl/4 updt L+2 4000 updt L+2
1 1 0 0 zl updt L+1 zu/2 updt L+1
1 1 0 1 zl updt L+1 4000 updt L+1
1 1 1 0 zl updt L+1 zu updt L+1
1 1 1 1 zl/2 updt L+2 4000 updt L+2

Table 2: Scale Synchronization for Interval Operations

module houses the logic to identify the value of γ by identifying the least number of
leading sign bits in the given block of data samples. The output registers min L and
min U store the value of γ identified for data samples applied to the Lower and Upper
Bound modules respectively. Interval operations result in a common value for both
the registers while point-wise operations can result in distinct values. The operation
of Exponent Detection begins with the value of γ being set to a maximum value of
11112 and the value is replaced successively with smaller values as data samples are
passed through the ALU. The values of min L and min U registers at the end of this
procedure correspond to the value of the exponent for the entire data block.

4.4 Scaling Modules

Overflow in the intermediate stages of iterative computations must be handled by scal-
ing the inputs down by a factor equal to the output block exponent. Thus operation is
performed by the modules, Scale L and Scale U, which scale the inputs to the Lower
and Upper Bound modules respectively. Both the modules contain right-shifted ver-
sions of the input subjected to appropriate rounding to ensure that no underestimation
of the input is performed.

4.5 Pipelined Architecture

The non-pipelined architecture described above presents a critical path upon synthe-
sis, starting in the Flag Generator module, passing through one of the multipliers in
the Upper Bound module and terminating in the Scale Synchronizer module. The
multiplier contributes a significant cloud of logic towards the critical path. Therefore,
the use of pipelined multipliers provides scope for reducing the logic depth of this path
resulting in a faster design. We refer to the pipelined designs obtained in this manner
as Normally pipelined designs.

Using only pipelined multipliers to achieve designs with four stages of pipelining
or higher does not yield significant timing gain. Hence, we insert a register at the

Reliable Computing 15, 2011 77

x

ZU_B

command

C
O
M
B
IN
A
T
IO
N
A
L

L
O
G
IC

UPPER BOUND

MODULE

SCALE

SYNCHRONIZER

MODULE

x

A
C
C
U
M
U
L
A
T
IO
N
 /
 O
V
F
L
 D
E
T
.

mux_mul_ovfl

FLAG

GENERATOR

REG
ZU

REG

REG

REG

REG

REG

Inputs

3-stage

pipelined

multiplier

3-stage

pipelined

multiplier

COMBINATIONAL

LOGIC

Figure 2: Critical Path for the Highly-pipelined design

boundary of the Lower and Upper Bound modules with the Scale Synchronizer module
in the three-stage normally-pipelined design to reduce the logic depth of the critical
path. This results in a four-stage pipelined design. Since this is the fastest design
obtained upon exploring various ways of pipelining the design, we refer to it as the
Highly pipelined design. The critical path for this design is shown in Figure 2.

5 Results

5.1 Area, Timing and Power Results

The various architectures of the ALU are synthesized using the 0.18µm standard cell
library from Oaklahoma State University [16]. Synopsys Design Compiler [17] was
used to perform the area and timing analysis. Synopsys Prime Power [17] was used to
perform power analysis using the netlist corresponding to each pipelined architecture
and simulating it 1000 random input interval vectors. The area, timing and average
power dissipation values obtained for the various architectures are presented in Table
3.

Table 3: Area and Timing Report for the Synthesized Architectures
Pipeline Stages Least T iming (ns) Area (µm2) Power (W)

Nonpipelined 10.33 473703 0.04918

2-stage Normally Pipelined 7.08 483855 0.06978

3-stage Normally Pipelined 5.10 506727 0.09033

4-stage Normally Pipelined 5.04 557637 0.1032

4-stage Highly Pipelined 3.87 527184 0.1247

78 S. Hattangady et al, Block Floating Point Interval ALU

5.2 Evaluating Throughput for the Highly-Pipelined

Architecture

Throughput for an interval ALU is ideally defined as the number of interval operations
performed per second [4]. However, throughput for a BFP implementation depends
upon many factors such as the number of cycles per output sample, the time it takes to
normalize a data block and the effect of overflow. In this section, we redefine through-
put and evaluate it for interval operations based on a chosen scheme of computations
performed in the BFPIALU.

5.2.1 Probability of Overflow

Each overflow in the ALU is dealt with by scaling the inputs down by a factor of
2. This corresponds to doubling the available dynamic range in the ALU and clearly
indicates a reduced probability of the occurrence of the next overflow. A Monte-Carlo
simulation with the accumulation of products of uniformly distributed inputs to the
ALU was performed which confirmed this trend. This fact allows us to ignore any
computation-cycle penalties associated with overflow in pipelined designs. In general,
N-stage pipelined designs present an overhead of at least N clock cycles upon the
occurrence of each overflow owing to the propagation of the output block exponent to
the input Scaling modules.

5.2.2 Evaluation of Throughput

We define throughput (R) for the BFPIALU in terms of Output Samples per Second.

R =
Number of Samples Processed

T ime to process the Samples

The time to perform operations that do not involve feedback in their paths or need
not be performed iteratively can be looked up directly from Table 3 as the reciprocal
of the clock period. We, however, focus on the throughput obtained with the MAC
operation, since it is important for DSP applications. We assume, for our analysis, a
data block comprised of N interval data samples to evaluate the throughput for interval
operations. We also assume that the architecture is to be evaluated for throughput
contain k pipeline stages and that the computation for each block results in p number
of overflows. For normally pipelined designs, the throughput is obtained [18] as

R =
N

[3N + 2(k − 1) + p(k + 2)] · t
(1)

We next subject the MAC operation in the highly-pipelined design to a similar analysis.
The throughput in this case is obtained [18] as

R =
N

[3N + p(k + 3) + 2(k − 1) + 1] · t
(2)

In the limiting case of N → ∞, n ≫ k for both (1) and (2), the throughput evaluates
to

R =
1

3 · t

Reliable Computing 15, 2011 79

Clocked at 3.87ns, the highly pipelined design has the highest throughput of 86.1
Msamples/sec. This represents 166% improvement over the throughput of the non-
pipelined design (k=1), which was clocked at 10.33ns recording a mere 32.2 Msam-
ples/sec, as well all other normally-pipelined designs. Thus, the highly pipelined ar-
chitecture provides the highest throughput among all the pipelined designs of the ALU
for the chosen scheme of computation.

Under ideal circumstances, where no structural hazard [18] occurs, the throughput
of the designs for point-wise operations may be stated to be exactly twice that of the
interval operations. Therefore the point-wise operations ideally record a throughput
of 172.2M samples/second for MAC and non-MAC operations.

6 Conclusion

We have presented the architecture for a BFPIALU that handles overflow using the
CBFS scheme in this paper. We apply this scheme to operations susceptible to over-
flow such as addition, subtraction and special instructions specific to DSP and control
applications such as multiply-accumulate. We have presented the basic architecture
first and then explored the design space comprised of designs with varying depths
of pipelining to obtain better performance. We identify the highly-pipelined archi-
tecture, distinguished with a three-stage pipelined multiplier and a delay element at
the boundary of the Lower and Upper Bound modules with the Scale Synchronizer
module, as the design that yields the highest throughput, measured as the number
of samples processed per second. This design records a throughput of 86.1 Msam-
ples/sec in comparison to the basic design which records a throughput of only 32.2
Msamples/sec with a latency of one clock cycle.

References

[1] S. Ocloo, W. Edmonson, An Interval-based Algorithm for Adaptive IIR Fil-
ters, Fortieth Asilomar Conference on Signals, Systems and Computers (ACSSC),
pp. 258–262, 2006.

[2] E. Hansen, G. W. Walster, Global Optimization using Interval Analysis, Marcel
Dekker, Inc. and Sun Microsystems, Inc., 2004.

[3] R. Shettar, R. M. Banakar, P. S. V. Nataraj, Design and implementation of
interval arithmetic algorithms, Proc. International Conference on Industrial and
Information Systems, Peradeniya, Sri Lanka, pp. 328–331, 2006.

[4] R. Gupte, W. Edmonson, S. Ocloo, W. Alexander, Pipelined ALU for signal
processing to implement interval arithmetic, The IEEE 2006 Workshop on Signal
Processing Systems (SiPS06), Banff, AB, Canada, pp. 95–100, 2006.

[5] P. Lapsley, J. Bier, A. Shoham, E. A. Lee, DSP Processor Fundamentals - Ar-
chitectures and Features. Institute of Electrical and Electronics Engineers Inc.,
1997.

[6] A. Amaricai, M. Vladutiu, L. Prodan, M. Udrescu, B. Oana, Design of addi-
tion and multiplication units for high performance interval arithmetic processor,
Proc. 10th IEEE Workshop on Design and Diagnostics of Electronic Circuits and
Systems, Krakow, Poland, pp. 1–4, 2007.

80 S. Hattangady et al, Block Floating Point Interval ALU

[7] M. J. Schulte, J. E. E. Swartzlander, A family of variable precision interval arith-
metic processors, IEEE Transactions on Computers, vol. 49, pp. 387–398, 2000.

[8] J. E. Stine, M. J. Schulte, A combined interval and floating-point multiplier, 8th
Great Lakes Symposium on VLSI, pp. 208–213, 1998.

[9] A. Akkas, A combined interval and floating-point comparator/selector, Proc.
IEEE 13th International Conference on Application-Specific Systems, Architec-
tures and Processors, San Jose, USA, pp. 208–217, 2002.

[10] A. Oppenheim, Realization of digital filters using block-floating-point arithmetic,
IEEE Transactions on Audio and Electroaccoustics, vol. 18, pp. 130–136, 1970.

[11] S. Kobayashi, S. Y. Lee, T. Kino, I. Kozuka, and T. Tokui, Audio application
implementations on a block-floating-point dsp, IEEE Workshop on Signal Pro-
cessing Systems, pp. 51–56, 2002.

[12] K. Kalliojarvi, J. Astola, Roundoff errors in block-floating-point systems, IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 44, pp. 783–790,
1996.

[13] A. C. Erickson, B. S. Fagin, Calculating the FHT in hardware, IEEE Transactions
on Signal Processing, vol. 40, 1992.

[14] V. Emden, T. Hickey, Q. Ju, Interval arithmetic: From principles to implemen-
tation, Massachusetts Journal of the ACM, vol. 48, pp. 1038–1068, 2001.

[15] A. Chhabra, R. Iyer, A block floating point implementation on the tms320c54x
dsp, Technical report, Texas Instruments, December 1999. Application report
SPRA610.

[16] The Oaklahoma State University System on Chip (SOC) Design Flows,
http://vcag.ecen.okstate.edu.

[17] http://www.synopsys.com

[18] http://www.lib.ncsu.edu/theses/available/etd-09242007-104624/

unrestricted/etd.pdf

