
A Note on a Verified Automatic Integration

Algorithm∗

Naoya Yamanaka
Graduate School of Science and Engineering

, Waseda University

yamanaka@suou.waseda.jp

Masahide Kashiwagi
Faculty of Science and Engineering,

Waseda University

Shin’ichi Oishi
Faculty of Science and Engineering,

Waseda University

Takeshi Ogita
Department of Mathematics

, Tokyo Woman’s Christian University

Abstract

A verified integration algorithm is proposed for calculating s-dimen-
sional integrals over a finite domain using numerical computations. To
construct an efficient verified numerical integrator, the truncation error
and the rounding error need to be considered. It has been known that
interval arithmetic is one of the most efficient methods of evaluating the
rounding error. However, it is much slower than pure floating-point arith-
metic, so that in an inclusion algorithm for integrals, the computational
effort by the interval arithmetic tends to become a large part. To over-
come this problem, an algorithm for evaluating the rounding error using
floating-point computations is proposed. The proposed algorithm is based
on calculating a priori error bounds for function evaluations and an ac-
curate sum algorithm. With the use of the proposed algorithm and a
inclusion algorithm for evaluating the truncation error, we propose an
automatic inclusion algorithm. Numerical examples are presented for il-
lustrating the effectiveness of the proposed algorithm.

Keywords: Numerical integration, rounding error, verification

AMS subject classifications: 65G20, 65G50

∗Submitted: January 26, 2009; Accepted: March 5, 2010.

156

Reliable Computing 15, 2011 157

1 Introduction

This paper is concerned with a verified numerical computation of the definite integral.
The purpose of this paper is to present an efficient automatic inclusion algorithm for a
certain class of definite integrals. A type of s-dimensional integrals considered in this
paper is as follows:

Is =

∫

Ω

f (x) dx, (1)

where f : R
s → R and Ω = [a1, b1]× [a2, b2]×· · ·× [as, bs]. In general, an s-dimensional

integral can be approximated by a one-dimensional integration algorithm recursively
as

Is ≈ Î =
∑

i1

∑

i2

· · ·
∑

is

wi1wi2 · · ·wis
f (xi1 , xi2 , · · · , xis

) , (2)

where wik
and xik

(k = 1, · · · , s) denote weights and points of the one-dimensional
integration algorithm. Here, we assume in this paper that all weights of the integration
algorithm used are positive.

We consider the estimation of an error

|Is − res| ,

where res denotes an approximate value of Eq. (1) by a certain s-dimensional integra-

tion algorithm. For example, fl
(

Î
)

epitomizes res, where fl (formula) means that the

formula inside the parenthesis is calculated by the floating point calculations under
the rounding to the nearest mode. Here, we divide the error into two parts

|Is − res| ≤ |Is − Î | + |Î − res|.

We introduce notations Et and Er by

Et = |Is − Î | (3)

and

Er = |Î − res|,
respectively. Et and Er are called the truncation error and the rounding error, respec-
tively. Obviously, we have

|Is − res| ≤ Et + Er.

It is known that interval arithmetic is one of the most efficient methods for eval-
uating Er. The idea of the method is to calculate upper and lower endpoints for the
range of values of every operation. However, since the pure floating-point arithmetic
is replaced with interval arithmetic in a verified algorithm, it is much slower than
the pure floating-point arithmetic, so that in an inclusion algorithm for integrals, the
computational effort by the interval arithmetic tends to become a large part of that
of calculating res.

To overcome this problem, we propose an algorithm for evaluating the rounding
error Er (Algorithm 4). In Algorithm 4, we suggest that an approximate value of
Eq. (1) be calculated by

res = PrecSum

(

∑

i1

∑

i2

· · ·
∑

is

fl (wi1wi2 · · ·wis
f (xi1 , xi2 , · · · , xis

)) , K

)

,

158 N. Yamanaka et al., A Note on Verified Automatic Integration

which K denotes an integer obtained in the proposed algorithm, and PrecSum (·, K)
denotes the calculations by the K-fold accurate sum algorithm PrecSum proposed by
Rump, Ogita and Oishi [3]. Since Algorithm 4 is designed to compute all rounding
errors that occur throughout the calculation of res, the proposed algorithm makes it
possible to calculate res by the pure floating-point arithmetic.

Namely, Algorithm 4 is based on two methods: Kashiwagi’s method and the
error analysis of PrecSum. Kashiwagi’s method is an algorithm for calculating a
priori error bounds of function evaluations using floating-point computations. For a
function g (x) : R

s → R, this algorithm calculates for any x in the domain Ω a global
constant εf satisfying

max
x∈Ω

|g(x) − fl (g(x))| ≤ εf .

Since numerical integration algorithms generally compute function values at a number
of different points as mentioned above, one can expect that the algorithm evaluating
the function by pure floating-point operations with a priori error bound εf becomes
much faster than the algorithm based on the interval arithmetic. Accurate sum al-
gorithm PrecSum is used for calculating the main summands of res. The error
analysis of PrecSum is useful for evaluating the rounding error Er since the result of
this algorithm doesn’t depend on the condition number, something relevant for these
summands.

We assume in this paper that a tolerance for the numerical integration error is
given and an inclusion algorithm for evaluating the truncation error Et (e.g. Petras’s
algorithm [2]) have already been chosen. Then, with the use of Algorithm 4 and the
inclusion algorithm for evaluating Et, we propose an automatic inclusion algorithm for
Eq. (1) (Algorithm 5). Here, an automatic inclusion algorithm means an algorithm
calculating an interval Ĩs s.t.

Is =

∫

Ω

f (x) dx ∈ Ĩs,

∣

∣

∣

∣

Is − Ĩs

Is

∣

∣

∣

∣

≤ rad(Ĩs)

|Is|
≤ εrel,

where εrel is the given relative tolerance and rad(Ĩ) denotes the radius of Ĩ .
By numerical experiments it is shown that Algorithm 4 is efficient, i.e., we will

present numerical examples which show inclusions of the rounding error Er by Al-
gorithm 4 can be obtained with less computational time than that by the interval
arithmetic.

In this paper, we assume that in the function description fl (formula) if the formula
includes intervals, its value is evaluated as an interval using the interval arithmetic.
Furthermore, throughout this paper, we assume floating-point arithmetic adhering to
IEEE standard 754, and neither overflow nor underflow occur.

2 An algorithm for evaluating rounding

errors and its error analysis

In verified numerical computations, all rounding errors that occur throughout the
algorithm must be taken into account. Although the rounding errors can be calculated
by interval arithmetic, it is much slower than pure floating-point arithmetic.

To overcome this problem, we propose an algorithm which gives a method of
computing the upper bound of Er. In the algorithm, two algorithms are used: one
is an algorithm for calculating a priori error bounds of function evaluations using

Reliable Computing 15, 2011 159

floating-point computations, which is proposed by Kashiwagi, and another is accurate
sum algorithm PrecSum proposed by Rump, Ogita and Oishi [3].

In the section 2.2, we present the algorithm in detail and present a theorem on its
error analysis.

2.1 Preliminaries

2.1.1 Kashiwagi’s method

Now, let us briefly explain Kashiwagi’s method. This method is based on the concept
of operator overloading. Assume that a univariate function f(x) can be calculated by
the algorithm recursively using

(1) the four arithmetic operators {+,−,×, /},
(2) elementary functions such as sin, cos, exp, log and so on,

(3) and composition of functions.

Then, consider the data type (J, ε), where J is an interval and ε is a positive number.
For this data type, the four arithmetic operations are defined by

(1) (addition)

(J1, ε1) + (J2, ε2) = (J1 + J2, fl+ (ε1 + ε2 + u sup |J1 + J2|)) ,

(2) (subtraction)

(J1, ε1) − (J2, ε2) = (J1 − J2, fl+ (ε1 + ε2 + u sup |J1 − J2|)) ,

(3) (multiplication)

(J1, ε1) · (J2, ε2) = (J1 · J2, fl+ (ε1 sup |J2| + ε2 sup |J1| + u sup |J1 · J2|)) ,

(4) (division)

(J1, ε1) / (J2, ε2) =
(

J1/J2, fl+

(

ε1 sup |1/J2| + ε2 sup
∣

∣J1/J2
2

∣

∣ + u sup |J1/J2|
))

,

where u denotes the unit roundoff, for example, in the double precision format of the
IEEE 754 floating point number standard, u is 2−53. The notation fl+ (formula) and
fl− (formula) mean that the formula inside the parenthesis is calculated with floating
point arithmetic under the rounding toward +∞ and −∞ modes, respectively. For
J1 = [a, b], J2 = [c, d] and ∗ ∈ {+,−, ·, /}, J1∗J2 means the machine interval arithmetic
defined by

J1 + J2 = [fl− (a + c) , fl+ (a + c)] ,

J1 − J2 = [fl− (a − d) , fl+ (b − c)] ,

J1 · J2 = [min A−, max A+] ,
{

A+ = {fl+(ac),fl+(ad),fl+(bc), fl+(bd)}
A− = {fl−(ac), fl−(ad),fl−(bc), fl−(bd)} ,

J1/J2 = [min B−, max B+] ,
{

B+ = {fl+(a/c), fl+(a/d), fl+(b/c), fl+(b/d)}
B− = {fl−(a/c), fl−(a/d), fl−(b/c), fl−(b/d)} .

160 N. Yamanaka et al., A Note on Verified Automatic Integration

Here, in the definition of J1/J2, we assume that 0 6∈ J2. Let g(x) be a continuously
differentiable function g(x). Then, g((J, ε)) is defined as

g((J, ε)) = (g(J), ε sup
∣

∣g′(J)
∣

∣ + u sup |g(J)|).

Here, we assume that we have a software library which evaluate the function g with
the following accuracy:

|gfl(x) − g(x)| ≤ |g(x)|u,

where gfl(·) is an evaluated value of g(·) by this library using the floating point oper-
ations. It is known that CRlibm library [5] fulfills this requirement for a number of
elementary functions.

Let us assume that a program language supporting operator overloading, such as
C++ or MATLAB, is used. Then, for a given function g, the following bottom-up
algorithm using the object (J, ε) calculates a global constant ε satisfying

max
a≤x≤b

|gfl(x) − g(x)| ≤ ε :

Algorithm 1 Computation of an a priori error bound on the rounding errors εy when
evaluating g (ξ) : R → R for any ξ (a ≤ ξ ≤ b, ξ ∈ F) by floating-point operations, and
an interval Jy satisfying

inf Jy ≤ g ([a, b]) ≤ sup Jy.

Step 1 Set an interval J = [a, b].

Step 2 Put x = (J,max (|a|, |b|)u).

Step 3 Calculate (Jy, εy) = g (x) using operator overloading.

Step 4 Output εy and Jy.

Algorithm 1 is easily applicable to multi-dimensional problems. For a given func-
tion g (x), the following bottom-up algorithm using the object (J, ε) calculates a global
constant ε for any x in the domain Ω satisfying

max
x∈Ω

|gfl(x) − g(x)| ≤ ε.

Algorithm 2 Computation of an a priori error bound on the rounding errors εy when
evaluating g (t) : R

s → R for any t (t ∈ [a1, b1], [a2, b2], · · · , [as, bs], t ∈ F) by floating-
point operations, and an interval Jy satisfying

inf Jy ≤ g (t) ≤ sup Jy.

Step 1 Set an area J = ([a1, b1], [a2, b2], · · · , [as, bs]).

Step 2 Put x = (J, max (maxk |ak|, maxk |bk|)u).

Step 3 Calculate (Jy, εy) = g (x) using operator overloading.

Step 4 Output εy and Jy.

Reliable Computing 15, 2011 161

2.1.2 Accurate Sum Algorithm PrecSum

Here we consider the summands of a vector pi (i = 1, 2, · · · , n). An accurate summation
algorithm PrecSum, developed by Rump, Ogita and Oishi [3], is useful to evaluate
rounding errors in the summands. For the algorithm details, see [3]. The error bound
for the result by PrecSum is given as follows [3]:

Theorem 1 (Rump et al. [3]) Let p be a vector of n floating-point numbers, let
1 ≤ K ∈ N, define M = ⌈log2(n + 2)⌉ and assume u ≤ 1/1024 and 22M

u ≤ 1.

Assume K ≤
(

4
√

u

)−1
. Let res be the result of PrecSum applied to p. Abbreviate

s :=
∑n

i=1
pi and S :=

∑n

i=1
|pi|. Then s 6= 0 and

|res − s| ≤ u
KS + 2u |s| . (4)

2.2 Main Algorithm

We now consider the problem of constructing an algorithm for evaluating the rounding
error Er using Kashiwagi’s method and accurate sum algorithm PrecSum. For this
purpose, we introduce an algorithm calculating an approximate value of Eq. (1). Here,
abbreviate

wi1,···,is
:= wi1wi2 · · ·wis

,

fi1,···,is
:= f (xi1 , xi2 , · · · , xis

) ,

respectively.

Algorithm 3 Computation of an approximation value of Eq. (1).

Input f , Ω
Output res

Step 1 Calculate εf and Jf , which are the upper bound of error occurred when the
calculating fi1,···,is

and the inclusion interval of fi1,···,is
respectively, using

Algorithm 2. We note that εf and Jf satisfy

max
Ω

|fl (fi1,···,is
) − fi1,···,is

| ≤ εf , (5)

inf Jf ≤ fl (fi1,···,is
) ≤ supJf . (6)

Step 2 Choose a minimum integer K satisfying

u
K sup |Jf | ≤ εf . (7)

Step 3 Calculate

res = PrecSum

(

∑

i1

∑

i2

· · ·
∑

is

pi1,···,is
, K

)

,

with floating point arithmetic, where pi1,···,is
denotes

pi1,···,is
:= fl (wi1,···,is

fi1,···,is
) .

162 N. Yamanaka et al., A Note on Verified Automatic Integration

Then, we consider the rounding errors occurred during the calculation of Algo-
rithm 3. More concretely, we will consider the problem of evaluation of the upper
bound of Er;

Er =

∣

∣

∣

∣

∣

∑

i1

∑

i2

· · ·
∑

is

wi1,···,is
fi1,···,is

− res

∣

∣

∣

∣

∣

.

To solve this problem, we present the following theorem:

Theorem 2 Let a positive number d =
∏s

k=1
(bk − ak). Let a constant εf , an interval

Jf and a positive integer K be defined by Eq. (5), Eq. (6) and Eq. (7) respectively. If
a constant c0(≥ 1) satisfies

εw := |fl (wi1,···,is
) − wi1,···,is

| ≤ c0u |wi1,···,is
| , (8)

and a positive number c1 and c2 are selected as

c1 = (1 + u)3
(

εf + u

(

εfc0 + sup |Jf |
(

c0 + (1 + c0u)2
)))

, (9)

c2 = (1 + c0u)
(

1 + 2uK+1 (1 + 3u)
)

εf , (10)

then

Er ≤ (c1 + c2) d + 2u (1 + 3u) |res| .
holds.

Proof. Clearly it follows from the definition of res that

Er ≤ E1 + E2,

where E1 and E2 denote

E1 ≤
∣

∣

∣

∣

∣

∑

i1

∑

i2

· · ·
∑

is

wi1,···,is
fi1,···,is

−
∑

i1

∑

i2

· · ·
∑

is

pi1,···,is

∣

∣

∣

∣

∣

, (11)

E2 ≤
∣

∣

∣

∣

∣

∑

i1

∑

i2

· · ·
∑

is

pi1,···,is
− res

∣

∣

∣

∣

∣

,

respectively.

It follows clearly from Eq. (11),

E1 ≤
∣

∣

∣

∣

∣

∑

i1

∑

i2

· · ·
∑

is

(wi1,···,is
fi1,···,is

− pi1,···,is
)

∣

∣

∣

∣

∣

.

Now, from the error analysis for interval multiplication shown in subsection 2.1.1, it
is seen that

|wi1,···,is
fi1,···,is

− pi1,···,is
| ≤ fl+ (εf |Jw | + εw|Jf | + u |Jw · Jf |)

≤ (1 + u)3 (εf |Jw | + εw|Jf | + u |Jw · Jf |) ,

where Jw denotes an interval satisfying

inf Jw ≤ fl (wi1,···,is
) ≤ supJw . (12)

Reliable Computing 15, 2011 163

Since εw, |Jw| and |Jw · Jf | satisfy from Eq. (8) and Eq. (12),

εw ≤ c0u |wi1,···,is
| ,

|Jw | ≤ (1 + c0u) |wi1,···,is
| ,

|Jw · Jf | ≤ (1 + c0u)2 sup |Jf | |wi1,···,is
| ,

we have
|wi1,···,is

fi1,···,is
− pi1,···,is

| ≤ c1 |wi1,···,is
| .

Here, assuming all of weights of an integration algorithm are positive, clearly it is seen
that

∑

i1

∑

i2

· · ·
∑

is

|wi1,···,is
| =

∑

i1

wi1

∑

i2

wi2 · · ·
∑

is

wis
≤ d,

then we have
E1 ≤ c1d.

Secondly, we consider the upper bound of E2. From the error analysis of PrecSum,
we have

E2 ≤ uK
∑

i1

∑

i2

· · ·
∑

is

|pi1,···,is
| + 2u

∣

∣

∣

∣

∣

∑

i1

∑

i2

· · ·
∑

is

pi1,···,is

∣

∣

∣

∣

∣

.

Here since the upper bound of |s| in Theorem 1 satisfies from Eq. (4),

|s| ≤ (1 + 3u)
(

uKS + |res|
)

,

and the upper bound of S satisfies,

S = uK
∑

i1

∑

i2

· · ·
∑

is

|pi1,···,is
| ≤ uK sup |Jf |

∑

i1

∑

i2

· · ·
∑

is

sup |Jw |

≤ εf (1 + c0u) d,

then we have
E2 ≤ c2d + 2u (1 + 3u) |res| .

Combining these results proves the required inequality. �

Based on Theorem 2, we propose a concrete algorithm for evaluating Er.

Algorithm 4 (Rounding Error Evaluation Algorithm) Computation of an ap-
proximation value res of Eq. (1) and an error bound e on rounding errors incurred
when calculating res satisfying e = e1 + e2.

Input f , Ω
Output res, e1, e2

Step 1 Calculate εf and Jf , which are the upper bound on the error incurred when
calculating fi1,···,is

and the inclusion interval of fi1,···,is
respectively, using

Algorithm 2.

Step 2 Choose a minimum integer K satisfying

u
K sup |Jf | ≤ εf .

Step 3 Calculate c1 and c2 defined by Eq. (9) and Eq. (10) respectively.

164 N. Yamanaka et al., A Note on Verified Automatic Integration

Step 4 Calculate
e1 = (c1 + c2)d.

Step 5 Calculate

res = PrecSum

(

∑

i1

∑

i2

· · ·
∑

is

pi1,···,is
, K

)

,

by the floating point arithmetic.

Step 6 Calculate
e2 = 2u (1 + 3u) |res| .

2.3 Fast Verified Automatic Integration Algorithm

Summarizing the above discussions, we propose the following fast verified numerical
inclusion algorithm for the definite integral (1) :

Algorithm 5 (Fast Verified Automatic Integration Algorithm) Consider the
definite integral (1). Assume that a relative tolerance for the numerical integration
error εrel is given. If |I | is greater than a certain upper bound on the rounding errors,
then this verified automatic integration algorithm outputs an approximate value Ic

satisfying
∣

∣

∣

∣

I − Ic

I

∣

∣

∣

∣

≤ εrel.

Otherwise, it outputs Ic satisfying

|I − Ic| ≤ C.

Here, C is a certain constant proportional to a certain bound on the rounding errors.
To describe this function, we use MATLAB-like programming constructs.

function [Ic, e, s] = AutoIntegralRel(f, Ω, εrel)

Er = RoundErrorStep4(f, Ω);

ε = Er;

while 1,

Ic = AutoIntegral(f, Ω, ε);

e = fl+(ε + Er + RoundErrorStep6(f, Ω));

If |Ic| > e,

ε = εrel (|Ic| − e) ;

If ε > Er,

Ic = AutoIntegral(f, Ω, ε);

s = 1;

else,

Ic = AutoIntegral(f, Ω, Er);

s = 0;

end;

Reliable Computing 15, 2011 165

e = fl+(ε + Er + RoundErrorStep6(f, Ω));

break;

else,

ε = ε · εrel

If Er > ε,

Ic = AutoIntegral(f, Ω, Er);

e = fl+(ε + Er + RoundErrorStep6(f, Ω));

s = 0;

break;

end;

end;

end;

Remarks:

(R1) AutoIntegral function

I = AutoIntegral (f, Ω, ε)

is a function calculating an approximation value I of Eq. (1) over Ω by floating
point arithmetic using the number of points n satisfying rigorously |Et (n)| ≤ ε,
where Et is defined by Eq. (3). For example, Petras’s algorithm based on Gauss-
Legendre quadrature [2] is useful algorithm as AutoIntegral. See details in [2].

(R2) RoundErrorStep4 and RoundErrorStep6

e1 = RoundErrorStep4(f, Ω)

e2 = RoundErrorStep6(f, Ω)

are functions calculating e1 and e2 in Algorithm 4, respectively.

(R3) If the function AutoIntegralRel returns s = 1, then

∣

∣

∣

∣

I − Ic

I

∣

∣

∣

∣

≤ εrel

holds. If s = 0 is returned, the following holds:

|I − Ic| ≤ e.

3 Numerical results

In this section, we present the numerical experiments. These experiments have been
done by a computer having an Intel Core 2 Extreme 3.0 GHz CPU with 8G Byte
Memory. We use the C++ language (GCC 4.1.2 with CRlibm 1.0 beta [5]) under
the Fedora Core 8 Linux operating system. We use only 1-core of the CPU. Gauss-
Legendre quadrature is employed as one-dimensional quadrature.

We compare the computational costs of the following two algorithms:

(A) proposed algorithm (Algorithm 4),

166 N. Yamanaka et al., A Note on Verified Automatic Integration

(B) an algorithm calculating the upper bound on

Î − fl
(

Î
)

by interval arithmetic.

Both algorithms (A) and (B) give the upper bound of the rounding errors of the
approximation value res of Eq. (1). The differences between Algorithms (A) and (B)
are as follows: res of Algorithm (B) is

res = fl
(

Î
)

.

On the other hand, res of Algorithm (A) is

res = PrecSum

(

∑

i1

∑

i2

· · ·
∑

is

fl (wi1,···,is
fi1,···,is

) , K

)

.

Furthermore, Algorithm (B) uses interval arithmetic to evaluate the rounding errors.
Algorithm (A) is based on Kashiwagi’s method and the error analysis of PrecSum.

Examples

I1 =

∫

1

−1

exp
(π

2
exp (x)

)

dx,

I2 =

∫ 1

−1

∫ 1

−1

exp
(π

2
exp (xy)

)

dxdy

Figure 1 shows a comparison of the execution time of (A) and (B) for I1 and I2,
respectively. From these figures, it is seen that the computational time for (A) is 3-5
times faster than that for (B), provided that the same relative tolerance is used.

2 4 6 8 10 12
2

4

6

8

10

12

14

16
x 10

−6

Relative Tolerance [10−x]

E
xe

cu
tio

n
T

im
e

[s
]

(A)
(B)

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

x 10
−4

Relative Tolerance [10−x]

E
xe

cu
tio

n
T

im
e

[s
]

(A)
(B)

Figure 1: The execution time of I1 (left) and that of I2 (right).

Reliable Computing 15, 2011 167

References

[1] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press,
New York, 1975.

[2] K. Petras, Self-validating integration and approximation of piecewise analytic
functions, J. Comput. Appl. Math., vol. 145, pp. 345–359, 2002.

[3] S.M. Rump, T. Ogita, S. Oishi, Fast high precision summation, (submitted).

[4] T. Ogita, S. M. Rump, S. Oishi, Accurate sum and dot product, SIAM J. Sci.
Comput., vol. 26, pp. 1955–1988, 2005.

[5] Correctly Rounded Mathematical Library,
http://lipforge.ens-lyon.fr/www/crlibm/

