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Abstract

We consider the general nonlinear program. Both linear and nonlinear
programs are often approximately ill-posed, with an entire continuum of
approximate optimizing points. As an example, we take a linear program
derived from a simple investment scenario. In this problem, any point
along the portion of a line is a solution to this problem. If we perturb the
coefficients of this problem slightly, the resulting problem has a unique
solution. However, the perturbed problem inherits a set of approximate

solutions along a portion of the line. In both the exactly singular case and
the approximately singular case, we obtain the parametric representation
of the solution set (or the approximate solution set) from a singular value
decomposition of the matrix of gradients of the objective and active con-
straints, although, in the approximately singular case, more constraints
are active, and we need to explore by selectively removing some constraints
to find directions in which feasibility is maintained.

Although it can be practical to know, commercial software doesn’t
always detect such manifolds of solutions. We report progress in this
area.

Keywords: global optimization, singular nonlinear programs
AMS subject classifications: 65G20, 90C26, 90C30, 49M37, 65K05

1 General Context and Notation

The general problem we are considering is

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . , m1,

gi(x) ≤ 0, i = 1, . . . , m2,

where the objective function ϕ(x) : x → R and the constraints ci, gi : x → R are
possibly nonlinear, and x ∈ R

n is the box where xi ∈ [xi, xi] for i = 1, . . . , n defines
the search region in a branch and bound algorithm. The constraints in the problem
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are active constraints at a point if they hold with equality; for example, an inequality
constraint gi (i = 1, . . . , m2) is active at a feasible point x if gi(x) = 0. An inequality
constraint gi is considered to be approximately active if |gi(x)| ≤ ǫg for some tolerance
ǫg > 0, and it is considered to be approximately inactive if gi(x) < −ǫg.

In problems posed in operations research and other fields, lines, planes, hyper-
planes, or hypersurfaces that are feasible (or approximately feasible) and that have
approximately optimal objective function values often occur. For these problems, tra-
ditional software usually finds one approximately optimal point without any indication
more solutions exist. Software with rigorous search or automatic result verification fails
to complete by taking excessive amounts of time in the branch and bound process, and
by returning considerable numbers of small boxes that possibly contain the solution.

Our interest is in computing rigorous enclosures of all of the approximately feasible,
approximately optimal points. To do this we first need to define “approximate singular
solution set” in a way that it is practical to rigorously enclose.

2 Approximate Singular Solution Sets

2.1 Main Idea

Let x̌ be a feasible point such that ϕ(x̌) is approximately optimal. If there are di-
rections from x̌ in which the objective function ϕ and the active constraints do not
change much, we can construct a region α based on these directions, within which ϕ
is guaranteed to be within some tolerance ǫϕ of ϕ(x̌) and within which the constraints
are guaranteed to be within some tolerance of feasible. These skewed approximate
solution boxes do not necessarily contain all points that are within ǫϕ of optimal, but
by construction, all points in the boxes are within ǫϕ of optimal.

2.2 Rejection of Adjacent Regions

To incorporate the skewed ǫ-approximate solution boxes in a branch and bound pro-
cess, we also can construct boxes adjacent to these solution boxes within which either
the constraints are guaranteed to be infeasible or ϕ is guaranteed to be greater ϕ(x̌)+ǫ,
where ǫ can be chosen to be sufficiently less than ǫϕ for the rejection process to work
smoothly.

An illustration of an enclosed ǫ-approximate skewed solution box α and adjacent
rejection regions is given in Figure 1. In this illustration, X(C) represents the box
in the original coordinate system that contains the skewed box α. The direction V
represents the direction in which the objective function and active constraints are
not changing much, and the direction W represents the direction in which either the
objective function value increases or one of the constraints becomes infeasible.

2.3 Finding the Directions Parallel to the Solution Set

Let x̌ be an approximately feasible point where the objective function ϕ is approxi-
mately optimal. Let na be the number of approximately active inequality constraints
at x̌. Reorder the inequality constraints so that {gi}

na

i=1 are the approximately active
inequality constraints at x̌ and {gi}

m2

i=na+1 are the approximately inactive inequality
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Figure 1: Illustration of enclosed ǫ-approximate solution box and adjacent re-
jection regions
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This matrix G is a matrix whose first m1+na+1 rows are the transposes of the gradients
of the objective function and the active constraints evaluated at x̌ and remaining n
rows consist of the Hessian matrix ∇2ϕ evaluated at x̌. To obtain an orthonormal
basis for the null space of G, we can use a singular value decomposition of the matrix
(such as with Matlab’s svd function).

We initially include all of the active gi (i = 1, . . . , na), but if many of the inequality
constraints are active, the singular value decomposition of the matrix G may not reveal
any directions in which the points remain optimal. In other words, there may not be
any lines passing through x̌ in which the points remain optimal in both directions
along the lines. For example, traveling in one direction along the line may correspond
to traveling out of the feasible region. This does not mean there are not any other
optimal points near x̌. There may be lines passing through x̌ along which points
remain optimal in only one direction (or along a ray pointing into the feasible region
from x̌). To find these directions, we can look at the singular value decomposition of
each reduced matrix Gi (i = 1, . . . , na) constructed so that Gi is the matrix G with
the ith active inequality constraint gradient removed. For each of these matrices Gi,
let Vi denote the matrix of vectors pointing into the feasible region that correspond
to the smallest singular values in the singular value decomposition of Gi. The Vi

vectors that we need to consider are those which correspond to approximately zero
singular values in the singular value decompositions of the respective Gi matrices. The
direction in which we can travel the farthest into the feasible region is the direction
associated with the active inequality constraint gi whose gradient we can remove from
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the G matrix. Therefore, we possibly can use the matrix Gi instead of G to find
an approximately singular direction. This process can be continued by computing
further reduced matrices corresponding to the deletion of additional active inequality
constraint gradients from the matrix G.

In practice, there are some “tuning” considerations. The “approximate null space”
is determined by a tolerance that determines when a singular value of G can be ignored
as zero. Also ǫϕ and ǫ in the definition of the approximate solution set affect the
method. If they are set too small with inaccuracies in the coefficients of the problem,
approximate null sets will not be detected. If they are set too large, the entire search
region will be marked, and the result will be meaningless. The appropriateness of the
settings depends on the problem.

3 Examples

3.1 A Simple Linear Example

An investment company needs to find out how to invest $200,000 in four stocks with
the expected rates of return and measures of risk given Table 1. The company wants

Table 1: Expected rates of return and risk for the four stocks

stock A B C D
price per share $100 $50 $80 $40
return per share 0.12 0.08 0.06 0.10
risk measure per dollar 0.10 0.07 0.05 0.08

to minimize the risk subject to the following conditions: the annual rate of return
must be at least 9%, and no one stock can account for more than 50% of the total
investment. This gives the linear program:

Minimize 10A + 3.5B + 4C + 3.2D
Subject to:

100A + 50B + 80C + 40D ≤ 200, 000,
12A + 4B + 4.8C + 4D ≥ 18, 000,
0 ≤ 100A ≤ 100, 000,
0 ≤ 50B ≤ 100, 000,
0 ≤ 80C ≤ 100, 000,
0 ≤ 40D ≤ 100, 000.

Any point along the portion of the line given parametrically by
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,

with 0 ≤ t ≤ 897.46, is a solution to this problem. A graph of this solution set is given
in Figure 2. The computations for this solution set were done almost instantaneously
using Matlab and INTLAB (for information about INTLAB, see [3] and [2]).
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Figure 2: ǫ-approximate solution set for the simple linear example

3.2 An Approximately Singular Linear Example

The techniques described above also can be applied to problems that are only approxi-
mately singular. For example, if the coefficients of the previous problem are perturbed
slightly, we can still compute an approximate solution set that is similar to the ap-
proximate solution set for the exactly singular problem. To illustrate this, consider
the linear program:

Minimize 9.98205404139819A + 3.5B + 4.08C + 3.2D
Subject to:

100A + 50B + 80C + 40D ≤ 200, 000,
12.0833808879827A + 4B + 4.88C + 4D ≥ 18, 000,
0 ≤ 100A ≤ 100000,
0 ≤ 50B ≤ 100000,
0 ≤ 80C ≤ 100000,
0 ≤ 40D ≤ 100000.

This problem was created by taking a very small random perturbation of both the
return per share and the risk measure per dollar for stock A. An approximately
optimal solution to this problem occurs when A ≈ 662.066, B ≈ 0, C ≈ 0, and
D ≈ 2500 which is close to one of the solutions to the original problem.

This approximately singular problem has a set of approximate solutions along a
portion of the line given parametrically by
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for 0 ≤ t ≤ 52.17 (where ǫϕ = 0.1). This is a somewhat smaller solution set that is
close to the solution set of the exactly singular problem,
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for 0 ≤ t ≤ 897.46.

3.3 An Example from the Standard Netlib Test Problems

The techniques described above for determining an ǫ-approximate solution set were
applied to the AFIRO Netlib test problem [1]. This problem has 32 variables and 59
constraints (19 inequality constraints, 8 equality constraints, 32 boundary constraints).
One feature of this problem is that many of the constraints are linearly dependent.
An approximately feasible, approximately optimal solution set computed using Matlab
and INTLAB with ǫϕ = 1.0 is
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for −128.1484 ≤ t ≤ 256.1484 and −8.1674 ≤ s ≤ 8.1674.

4 Enclosing Nonlinear Solutions

For solution sets that are nonlinear, we can find a “tube of solutions,” that is, a chain
of skewed boxes in different coordinate systems that contain ǫ-approximate optimal
points. To do this, we first construct an ǫ-approximate solution box around an initial
approximately optimal point by the previously mentioned methods. If the approximate
null space has dimension 1, we can use a predictor-corrector type method to construct
an approximate solution curve and a set of enclosing boxes. More specifically, we can
consider points along the faces of the initial approximate solution box in the directions
in which this box is wide, and then use a floating point minimization process to
minimize ϕ along each of these faces of the box. We then can construct new ǫ-optimal
solution boxes about these points. This process is continued until either no more new
boxes can be constructed or a maximum number of iterations is obtained.

4.1 Some Illustrative Nonlinear Examples

The following two examples are simple unconstrained nonlinear examples. These ex-
amples are provided to illustrate the method described for finding the enclosures to
nonlinear solution sets. Computations for the approximately optimal solution sets only
took minutes using Matlab and INTLAB, and would probably be one or two orders
of magnitude faster using a compiled language, where there is less overhead in nested
loops. The computations would probably take much longer with a general branch and
bound algorithm without these techniques.

1. Minimize ϕ(x) = (sin(x1) − x2)
2

The global minimum is ϕ = 0. All points on the curve x2 = sin(x1) are exact
optimal solutions to this problem. A “tube” of approximately feasible, approx-
imately optimal solutions was computed using an initial optimal, feasible point
x̌ = [2π, 0]T ≈ [6.28318530717959, 0]T . A graph of the results is given in Figure
3. The central curve represents the exact solution set for this problem (the curve
x2 = sin(x1)). The two curves on each side of the exact solution set represent
upper and lower bounds for all points within ǫϕ of the exact solution set. The
inner boxes containing the central curve represent sets of points that are within
ǫϕ ≈ 0.1 of optimal (i.e., for all x in the skewed box, ϕ(x) ≤ ϕ+ ǫϕ where ϕ = 0
is an upper bound for the global minimum). These skewed boxes do not contain
all points that are within ǫϕ of optimal, but by construction, all points in the
boxes are within ǫϕ of optimal. The outer boxes are guaranteed to have no other
solutions other than the central one in them. These outer boxes are boxes that
could be rejected in the branch and bound process.

2. Minimize ϕ(x) = (x2
1 − 3x2)

2

The global minimum is ϕ = 0. All points on the parabola x2 = x2
1/3 are exact

optimal solutions for this problem. Using an initial optimal, feasible point x̌ =
[3, 3]T , the “tube” of approximately feasible, approximately optimal solutions
is shown in Figure 4 and in Figure 5. As in the previous example, the curves
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Figure 3: ϕ(x) = (sin(x1) − x2)
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Figure 5: ϕ(x) = (x2
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2 – a closer look

represent the exact solution set and the upper and lower bounds for the ǫ-
approximate set where ǫ ≈ 0.1. The inner boxes are boxes constructed to be
guaranteed to lie within the ǫ-approximate set where ǫ ≈ 0.1. The outer boxes
are guaranteed to have no other solutions other than the central one in them.

5 Future Work

Presently, we are investigating heuristics to best determine the dimension of the ap-
proximate optimizing set, and also to reject regions adjacent to the approximate op-
timizing set. The goal is to incorporate these techniques into a branch and bound
method for global optimization.

References

[1] Netlib Repository, http://www.netlib.org/lp/data/afiro.

[2] S.M. Rump, INTLAB - INTerval LABoratory website,
http://www.ti3.tu-harburg.de/rump/intlab/.

[3] S.M. Rump, INTLAB - INTerval LABoratory, Developments in Reliable Com-
puting (Tibor Csendes, ed.), Kluwer Academic Publishers, Dordrecht, 1999,
http://www.ti3.tu-harburg.de/rump/, pp. 77–104.


