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Abstract

The work considers solution of various problems for interval linear
systems with nonnegative matrices. Relying on shape monotonicity of
the solution sets to such interval systems, we develop a new technique for
constructing maximal (with respect to inclusion) inner estimates of the
solution sets to nonnegative interval linear equations systems. The main
result is extended to general AE-solution sets for interval linear systems.
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1 Introduction

We consider interval linear systems of equations






















a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

...
...

. . .
...

...

am1x1 + an2x2 + . . . + amnxn = bm,

(1)

or, briefly,
Ax = b (2)

with an interval matrix A = ( aij) and an interval right-hand side vector b = ( bi).
The system Ax = b is understood as a family of point linear systems Ax = b with
A ∈ A and b ∈ b. For interval systems of equations various solutions and solution
sets can be defined, and the most popular of them is united solution set

Ξ(A, b) =
{

x ∈ R
n | (∃A ∈ A)(∃ b ∈ b)( Ax = b )

}

(3)

formed by all solutions to point linear systems Ax = b with the coefficients A ∈ A and
right-hand sides b ∈ b. Usually, it is called just “solution set”, if that does not lead to
confusion. In Section 5, we will consider another types of solution sets.
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Exact and complete description of the solution sets is practically impossible due
to its enormous complexity, but, on the other hand, it is not necessary in reality. In
most cases, it suffices to know an approximate description, or estimate of the solution
set by simpler sets, i.e., having smaller constructive complexity. We are going to touch
the problems of its outer estimation —

Find (as tight as possible) interval box that contains
the solution set Ξ(A, b) of interval linear system Ax = b,

which makes sense for bounded solution sets, as well as the problem of its inner
estimation —

Find (as wide as possible) interval box that is contained
in the solution set Ξ(A, b) of interval linear system Ax = b.

Practically, inclusion maximal inner estimates are most valuable.

In the latter, we do not suppose that the interval matrix A is square, and, in the
square case, A need not be regular.

2 Theoretical basis

Our theory starts from the following observation: if, in the interval linear equations

system Ax = b, all the entries of the matrix A are nonnegative, the solution set

Ξ(A, b) has monotonic shape.

x1

x2

l(r)

Ξ(A, b)

Figure 1: “Axial cut” of the solution set.

Let us specify what is meant by “monotonic shape”. We fix an index ν ∈ { 1, 2, . . . , n }
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and consider in R
n a straight line l, with the parametric equation



















































x1 = r1,
...

xν−1 = rν−1,

xν = t ,

xν+1 = rν+1,
...

xn = rn (t ∈ R is a parameter),

(4)

which is parallel to the ν-th coordinate axis. Every such line is determined by a vector
r ∈ R

n−1, r = ( r1, . . . , rν−1, rν+1, . . . , rn)⊤, and can be denoted as l(r). We define

Ων(r) = min
{

xν | x ∈ Ξ(A, b) ∩ l(r)
}

,

Ων(r) = max
{

xν | x ∈ Ξ(A, b) ∩ l(r)
}

— minimum amd maximum values of the ν-th coordinate of the points from the
intersection of l(r) with the solution set Ξ(A, b). Ων(r) and Ων(r) will be called
boundary functions of the solution set along the νth coordinate direction, from below
and from above, inasmuch as they really “trace” the boundary of the solution set.
Overall, our observation about “monotonicity” of the solution set can be formalized
as follows:

Proposition 1. If the matrix A = (aij) of the interval linear m×n-system Ax = b

is nonnegative, i.e. all aij ≥ 0, then the boundary functions Ων(r) and Ων(r), ν =
1, 2, . . . , n, are nonincreasing with respect to every variable on their effective domains.

How can the values of Ων(r) and Ων(r) be computed? We can follow the way first
outlined in [10].

Let us “substitute” the equation (4) of the line l(r) into the system (1)–(2):































a1ν t +
∑

j 6=ν

a1j rj = b1,

...
...

...
...

...

amν t +
∑

j 6=ν

amj rj = bm.

(5)

The solution set of the i-th equation is

(

bi −
∑

j 6=ν

aijrj

)

/

aiν , (6)

where “/” means division in extended Kahan interval arithmetic [4] that allows zero-
containing divisors. We can separately solve each of the one-dimensional equations
comprising the system (5), and then intersect m resulting solution sets given by the
formula (6). The set S thus obtained is exactly the set of values of the ν-th coordinate
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of the points from Ξ(A, b) ∩ l(r). It may be empty, if the system (5) is incompatible,
but in any case

Ων(r) = min S and Ων(r) = max S .

If the intervals aiν , i = 1, 2, . . . , m, do not contain zero in the interior, in particular, if
A is nonnegative, then all the solution sets to one-dimensional equations are connected

intervals of the form [p, q] or [−∞, p] or [q, +∞] or [−∞, +∞].
In the points r of the effective domain of the function Ων , there holds

Ων(r) = max
1≤i≤m













 bi −
∑

j 6=ν

aijrj





/

aiν











.

In the points r of the effective domain of the function Ων , there holds

Ων(r) = min
1≤i≤m













 bi −
∑

j 6=ν

aijrj





/

aiν











.

Proof of Proposition 1. It is based on the fact that both lower and upper envelopes
of any family of nonincreasing (nondecreasing) functions is nonincreasing (nondecreas-
ing) too.

-100 100

200

Figure 2: The solution set for Hansen system (8)
is not convex, but has monotonic configuration

If A = (aij) ≥ 0 , then, for all i, j and ν, the expressions

(

endpoint of bi

)

−
∑

j 6=ν

(

endpoint of aij

)

rj

endpoint of aiν

(7)
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x3

x1

x2

Figure 3: Despite the seemingly chaotic shape, the solution set
to Neumaier system (9) is bounded by monotonic surfaces

are monotonically nonincreasing with respect to every argument rj (providing that
the rest arguments are fixed). Therefore, the functions

ωiν(r) =



 bi −
∑

j 6=ν

aijrj



 / aiν , i = 1, 2, . . . , m,

being the lower envelopes of the functions (7), and the functions

ωiν(r) =



 bi −
∑

j 6=ν

aijrj



 / aiν , i = 1, 2, . . . , m,

being the upper envelopes of (7), are nonincreasing with respect to rj .

Since Ων(r) = maxi ωiν(r) and Ων(r) = mini ωiν(r), the proposition follows.

Notice that the boundary functions Ων(r) and Ων(r) may be discontinuous, which
is due to zero endpoints of some interval entries in the matrix A of the system.
However, if A = (aij) is positive, i.e. aij > 0 for every i and j, then the boundary
functions Ων(r) and Ων(r), ν = 1, 2, . . . , n, are continuous.

The examples illustrating Proposition 1 are well-known Hansen system

(

[2, 3] [0, 1]

[1, 2] [2, 3]

)

x =

(

[0, 120]

[60, 240]

)

, (8)
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whose solution set is depicted on Fig. 2, and Neumaier system





3.5 [0, 2] [0, 2]

[0, 2] 3.5 [0, 2]

[0, 2] [0, 2] 3.5



 x =





[−1, 1]

[−1, 1]

[−1, 1]



 , (9)

with the solution set as in Fig. 3 (it is shown at the jacket of the book [6], but in
another projection).

Discovering nice geometric properties of the solution sets to nonnegative interval
linear systems at the end of last century stimulated attempts to construct efficient
numerical methods for computing enclosures of these solution sets, such as gradient
search along the boundary, etc. However, they all turned out to be unsuccessful, and
the issue was closed only after publication of the complexity result [2] stating that
both recognition and outer estimation of the solution sets to interval linear systems is
NP-hard even if their matrices are positive.

The seeming paradox is explained by the fact that, despite monotonicity of the
boundary functions Ων(r) and Ων(r), their domains may have nonconvex star-shaped
configuration (as in Fig. 3), which makes the overall optimization process extremely
hard.

Fast outer estimation thus fails, but inner estimation proves more successful.

x1

x2

q
y

qz

x1

x2

� -
?

6
qd

x̃
q

q

y

z

Figure 4: Illustrations of Theorem and of idea of algorithm INonNeg.

3 Inner estimation

Theorem. If, in the interval linear system Ax = b, the matrix A is nonnegative,

then for any two points y, z ∈ Ξ(A, b), such that y ≤ z, the interval box [y, z] is a

subset of the solution set Ξ(A, b).

Proof. It follows from the definition of the boundary functions Ων(r) and Ων(r) that,
for any r ∈ R

n−1 and every ν ∈ { 1, 2, . . . , n }, there holds

Ων(r) ≤
{

xν | x ∈ Ξ(A, b) ∩ l(r)
}

≤ Ων(r).
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Algorithm INonNeg for inner estimation
of solution sets to interval linear systems

Input

Interval linear system Ax = b with the nonnegative matrix.
A point x̃ from the solution set Ξ(A, b) under estimation.
Parameters λ, µ ∈ ]0, 1].

Output

Lower y and upper z bounds of the interval vector [y, z]
contained in the solution set Ξ(A, b).

Algorithm

y ← x̃ ; z ← x̃ ;

DO FOR k = 1 TO n

Y ← [−∞,∞] ; Z ← [−∞,∞] ;

DO FOR i = 1 TO m

Y ← Y ∩

(

(

bi −
n
∑

j=1,j 6=k

aij yj

)

/

aik

)

;

Z ← Z ∩

(

(

bi −

n
∑

j=1,j 6=k

aij zj

)

/

aik

)

;

END DO

IF ( k < n ) THEN

yk ← λ Y + (1− λ) x̃k ; zk ← (1− µ) x̃k + µ Z ;

ELSE

yk ← Y ; zk ← Z ;

END IF

END DO

If the matrix A is nonnegative, then

{

xν | x ∈ Ξ(A, b) ∩ l(r)
}

=
[

Ων(r), Ων(r)
]

,

since the set { xν | x ∈ Ξ(A, b) ∩ l(r) } is connected. Therefore, the solution set
Ξ(A, b) is the intersection of the epigraph of Ων(r) and hypergraph of Ων(r). The
assertion of the theorem stems from the fact that the functions Ων(r) and Ων(r) are
nonincreasing.

As the result, we can come up with an algorithm for inner estimation of the solution
sets (first published in [12]), whose pseudocode is presented in the table above (the
symbol “←” means assignment operator). It constructs the lower y and upper z
bounds of the box [y, z] ⊆ Ξ(A, b), starting from a point x̃ ∈ Ξ(A, b). Initially, we
assign y ← x̃ and z ← x̃, and then the k-th, k = 1, 2, . . . , n, step of the algorithm
moves the points y and z apart along the k-th coordinate direction.

Auxiliary scalar parameters λ and µ, 0 < λ, µ ≤ 1, help adjusting the form of
the interval estimate [y, z] and its location within the solution set Ξ(A, b). These
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parameters control the relative values of the shifts of yk and zk with respect to x̃k

during the k-th algorithm step, k < n. To ensure that the inner box [y, z] is inclusion
maximal, it makes sense to take the points y and z on the boundary of the solution
set, and this is why y and z are pushed apart by maximum possible amount at the
last n-th step of the algorithm.

4 Choosing initial point

In order to get a solid inner estimate in the algorithm INonNeg, it is desirable to have
the initial point x̃ lying in the interior intΞ(A, b) of the solution set Ξ(A, b). In
this section, we discuss how to test whether x̃ ∈ int Ξ(A, b), and how to correct the
position of the point x̃.

If the linear system is square and the matrix A is known to be regular, then a point
y from Ξ(A, b) can be found by solving a system Ay = b with a ∈ A and b ∈ b. But in
the most general situation, finding points from the solution set Ξ(A, b) is not an easy
problem, since the recognition of whether Ξ(A, b) 6= ∅ is NP-complete [2]. Then the
following technique based on the so-called “recognizing functional” may prove helpful.

Let mid a and rad a be the midpoint and radius of a, while 〈a〉 means the migni-
tude of a, that is, the smallest distance from the points of the interval a to zero:

mid a = 1

2
(a + a),

rad a = 1

2
(a − a),

〈a〉 =

{

min{ |a|, |a| }, if a 6∋ 0,

0, if a ∋ 0.

Then, for an interval m×n-matrix A and an interval m-vector b, the expression

Uni(x, A, b) = min
1≤i≤m

{

rad bi −

〈

mid bi −
n
∑

j=1

aijxj

〉

}

defines a functional Uni : R
n → R, such that the membership of the point x in the

solution set of the interval linear systems Ax = b is equivalent to nonnegativity of the
functional Uni in x:

x ∈ Ξ(A, b) ⇐⇒ Uni(x,A, b) ≥ 0.

As a consequence, the solution set Ξ(A, b) of the interval linear system is “level” set
{x ∈ R

n | Uni(x,A, b) ≥ 0 } of the functional Uni.
The functional Uni is not smooth, but it is concave in each orthant of the space

R
n, and if the interval matrix A has point columns, then Uni(x, A, b) is concave

on unions of several orthants. Additionally, the functional Uni(x,A, b) attains finite
maximum on the whole of the space R

n. If Uni(x, A, b) > 0, then x is a point from
the topological interior intΞ(A, b) of the solution set. Under some mild restrictions
upon A, b and x, the reverse is also true. Namely, if A does not have zero rows and
b does not have degenerate interval (i.e., point) components, then, for any orthant O
from R

n, the membership x ∈ int
(

Ξ(A, b) ∩O
)

implies Uni(x, A, b) > 0.
As the result we naturally arrive to the following procedure for correcting the

initial point x̃ of the algorithm INonNeg. If x̃ does not satisfy us due to some reasons,
then we can use optimization procedures (e.g., the simplest search methods from [1]
or subgradient ascent from [13], and so on) to get a better value of the recognizing
functional Uni. If the new value x̃ is such that Uni(x̃) > 0, then we can be sure that
x̃ ∈ intΞ(A, b).
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5 Generalized solution sets

Generalized solution sets originate from the observation that interval uncertainty has
dual character. Usually, we use an interval v only in connection with a property P (v)
that may be fulfilled or not fulfilled for their point members v ∈ v, and

◮ either the property P (v) holds for all v ∈ v,

◮ or the property P (v) holds for some v ∈ v,
not necessarily all, maybe, even for only one.

The above distinction between the interpretations of the interval uncertainty is well
rendered by logical quantifiers —

• in the first case, we write “(∀v ∈ v) P (v) ”
speaking of interval uncertainty of A-type,

• in the second case, we write “(∃v ∈ v) P (v) ”
speaking of interval uncertainty of E-type.

As the result, when formulating this or that interval problem statement, we should
clearly point out which type of the interval uncertainty corresponds to every interval
parameter.

In particular, for an interval system of equations F (a, x) = b, the most general
definition of the solution set looks like

{

x ∈ R
n | ( Q1vπ1

∈ vπ1
) · · · ( Ql+mvπl+m

∈ vπl+m
)(F (a, x) = b )

}

, (10)

where Q1, Q2, . . . , Ql+m are logical quantifiers “∀” or “∃”,

( v1, v2, . . . , vl+m) := (a1, a2, . . . , al, b1, b2, . . . , bm) ∈ R
l+m

is aggregated vector of the parameters of the system,

( v1, v2, . . . , vl+m) := ( a1, a2, . . . , al, b1, b2, . . . , bm) ∈ IR
l+m —

is aggregated vector of intervals of their values,

( π1, π2, . . . , πl+m) is a permutation of the integers 1, 2, . . . , l + m.

The solution sets (10) are called generalized solution sets to the interval system of
equations F (a, x) = b [11].

The definition of generalized solution sets is extremely general. It makes sense
to somehow restrict ourselves, and in what follows we are going to consider only the
solution sets for which all the occurrences of the universal quantifier “∀” precede those
of the existential quantifier “∃” in the logical formula that stands after the vertical line
in (10) and “selects” points of the solution set (it is usually called selecting predicate).
Generalized solution sets to interval equations systems for which the selecting predicate
has such special AE-form will be referred to as AE-solution sets or sets of AE-solutions

[11]. For interval linear systems of equations, the above formulated constructions are
concretized as follows.

Let, for an interval linear m× n-system Ax = b, a quantifier m× n-matrix α and
a quantifier m-vector β be given as well as associated decompositions of the index sets
of the matrix and vector of the same sizes to nonintersecting subsets Γ̂ = { γ̂1, . . . , γ̂p}
and Γ̌ = { γ̌1, . . . , γ̌q}, p + q = mn, ∆̂ = { δ̂1, . . . , δ̂r} and ∆̌ = { δ̌1, . . . , δ̌s}, r + s = m.
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The set

Ξαβ(A, b) :=
{

x ∈ R
n |

(∀aγ̂1
∈ aγ̂1

) · · · (∀aγ̂p ∈ aγ̂p) (∀bδ̂1
∈ bδ̂1

) · · · (∀bδ̂r
∈ bδ̂r

)

(∃aγ̌1
∈ aγ̌1

) · · · (∃aγ̌q ∈ aγ̌q ) (∃bδ̌1
∈ bδ̌1

) · · · (∃bδ̌s
∈ bδ̌s

)

( Ax = b )
}

is referred to as AE-solution set of the type αβ (or set of AE-solutions of the type αβ)
to the interval linear system Ax = b.

Equivalently, AE-solutions sets can be defined as

Ξαβ(A, b) :=
{

x ∈ R
n | (∀Â ∈ A

∀)(∀b̂ ∈ b
∀)

(∃Ǎ ∈ A
∃)(∃b̌ ∈ b

∃)( ( Â + Ǎ)x = b̂ + b̌ )
}

,

where A = A
∀ +A

∃ and b = b
∀+b

∃ are corresponding disjunct decompositions of the
matrix and of the right-hand side vector of the system, i.e. such that, for the matrices
A

∀ = (a∀
ij) and A

∃ = (a∃
ij), there holds a

∀
ija

∃
ij = 0 and, for the vectors b

∀ = (b∀
i ) and

b
∃ = (b∃

i ), there holds b
∀
i b

∃
i = 0.

Notice that the united solution set (3) to the interval linear systems (1)–(2) is an
AE-solution set too.

It turns out that, for the interval linear equations system Ax = b whose entries
of the matrix A are nonnegative, AE-solution sets Ξαβ(A, b) have monotonic shape.
More precisely, if we redefine the boundary functions

Ων(r) = min
{

xν | x ∈ Ξαβ(A, b) ∩ l(r)
}

,

Ων(r) = max
{

xν | x ∈ Ξαβ(A, b) ∩ l(r)
}

,

then there holds

Proposition 2 If the matrix A of the interval linear system Ax = b is nonnegative,

then the boundary functions Ων(r) and Ων(r), ν = 1, 2, . . . , n, are nonincreasing with

respect to every variable on their effective domains.

The proof is very similar to that for Proposition 1 and can be found in [8]. Fig. 5
illustrates our result.

Unfortunately, we cannot avail ourselves of this monotonicity for enclosing AE-
solution sets, since A.V.Lakeyev in [3] proved that, in case of “sufficiently many”
existential quantifiers “∃”, both recognition and outer estimation of AE-solution sets
to interval linear systems is NP-hard even if their matrices are strictly positive.

As for inner estimation, Theorem of Section 3 remains valid for AE-solution sets,
and the algorithm INonNeg, properly adapted, is readily applicable for computing
inner boxes of AE-solution sets to nonnegative interval linear systems. Unfortunately,
choosing an initial point x̃ is much harder problem now.

Still, there exists a special case of easily recognizable AE-solution set. It is tolerable

solution set

Ξtol(A, b) =
{

x ∈ R
n | (∀A ∈ A)(∃b ∈ b)(Ax = b)

}

,

formed by all such points x that the product Ax falls into the right-hand side box b

for every A ∈ A. A detailed survey and extensive references on the subject can be
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Figure 5: Some AE-solution sets for Hansen system (8)

found in [9]. In particular, in automatic control theory, tolerable solution set and its
inner estimation are used in modal regulator synthesis under interval uncertainty [14]
and in investigation of asymptotic stability of intervally determined systems [15].

The following characterization of the tolerable solution set Ξtol(A, b) is known:

Rohn theorem [7]. A point x ∈ R
n belongs to the tolerable solution set of interval

linear system Ax = b if and only if x = x′ − x′′ for vectors x′, x′′ ∈ R
n that satisfy

the linear inequalities system











Ax′ −Ax′′ ≤ b,

−Ax′ + Ax′′ ≤ −b,

x′, x′′ ≥ 0.

(11)

Therefore, tolerable solution sets for interval linear systems are convex polyhedral

sets, and finding a starting point for the algorithm INonNeg amounts to searching for
an interior point from the solution set to the linear inequalities systems (11). Efficient
numerical methods for the solution of this problem are very developed nowadays, and
one can look at the related references e.g. in [5]. Next, we can compute inclusion
maximal inner interval estimates of the tolerable solution set to an interval linear
system with nonnegative matrix by an analog of algorithm INonNeg for polynomial
time.
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