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Abstract

Most result-verifying solvers for nonlinear systems include a branch-
and-bound algorithmic backbone, complemented with accelerating meth-
ods such as constraint propagation, interval Newton, and many others.
Often the effectiveness of the accelerators can be improved if one works
not only with the given system but also with expanded systems, which
are obtained by introducing additional variables for suitable subterms.
While reducing the overall number of boxes that must be considered dur-
ing the solution, applying the accelerators to the (often much larger) ex-
panded systems can increase significantly the time spent on a single box.
Therefore a good strategy for deciding which methods to apply to which
expanded system is essential for the performance and robustness of the
whole solver.

We propose a heuristic that selects expanded systems based on per-
formance information gathered during the computations. Numerical ex-
periments show that this new dynamical strategy tends to be superior to
a fixed small-to-large traversal (with restarts) of the expanded systems,
which has been the default strategy in our nonlinear solver and optimizer
SONIC.
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1 Introduction

Nonlinear systems arise in a variety of applications, including kinematics, process
analysis and design, and automated theorem proving. Often it is desirable or even
vital to be sure that all solutions are detected; hence, result-verifying solvers are used
[7, 12, 13, 14].

Given a function f : Rn ⊇ D → Rm and a search box xs ⊆ D, a result-verifying
solver determines a covering of the solution set, i.e., a collection of boxes xi ⊆ xs,
i ∈ I, such that all solutions are retained, {x ∈ x | f(x) = 0} ⊆

⋃
i x

i, and a prescribed
precision εj > 0 is achieved in each coordinate j, width (xi

j) ≤ εj ∀i, j.
Throughout this note, a box (or interval vector) x denotes a tuple (x1, . . . ,xk) ⊆

Rk of appropriate dimension, where the xj = [xj , xj ] are real intervals. The width of
an interval is width (xj) = xj − xj , and if width (xj) = 0 then xj is also called a thin
component of x.

Interval-based result-verifying nonlinear solvers are usually based on a simple
branch-and-bound algorithm, which works as follows. For each component, an en-
closure f i for the range of the ith function over the box x is determined, e.g., by plain
interval evaluation or more sophisticated methods [1, 11, 15]. If 0 6∈ f i for even one
enclosure then x cannot contain a solution and therefore is discarded. Otherwise, x
is subdivided into two or more subboxes, and these are handled in the same way. The
recursion terminates when the current box meets the precision requirement, in which
case the box becomes part of the covering. If desired, additional tests may be applied
to check whether the box indeed does contain a solution.

In practice, the efficiency of the branch-and-bound algorithm must be improved
by adding acceleration techniques such as the interval Newton method [8, 11] or Con-
straint Propagation [8]. These accelerators often allow contracting the boxes before
the recursive calls or even discarding boxes.

Further improvement comes from applying these techniques not only to the given
system f(x) = 0, but also to expanded systems, which are obtained by introducing
additional variables for some intermediate quantities, together with their “defining
equations.” To give an example, we might introduce an additional variable xn+1 for
the expression x21+x22 and replace each occurence of this expression in the given system
with xn+1, while adding the equation xn+1 = x21 + x22 (or for further computations
xn+1 − x21 − x22 = 0) to the system.

Depending on which expressions are replaced with new variables, different ex-
panded systems can be constructed, and the accelerators may be applied to all or only
to some of them. We will call an expanded system smaller than another one if it has
fewer variables, and larger if it has more variables. This does not imply that the larger
system must contain all the variables of the smaller system, but all systems contain
at least the variables of the Original (given) system.

The GlobSol nonlinear solver [9] makes use of the Original and FullSplit sys-
tems. The FullSplit system [10, 11] is obtained by replacing all intermediate quan-
tities until only elementary constraints with just one unary or binary operator are left;
see Fig. 1 for an example.

Since expanded systems can contain significantly more variables and equations
than the Original system, the costs for applying the accelerators to them tend to
be substantially higher. On the other hand, accelerators such as the Interval Newton
method may be much more effective if applied to expanded systems. In [10] Kearfott
gives two reasons for this: The expanded system is less nonlinear than the Original
system, and the Jacobian is sparse.
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Original corresponding FullSplit

0 = sin(x21 + x22) x4 = x21
0 = (x21 + x22) ∗ x23 x5 = x22
0 = x21 + x22 + x23 x6 = x4 + x5

x7 = sin(x6)
x8 = x23
x9 = x6 ∗ x8
x10 = x6 + x8

0 = x7
0 = x9
0 = x10

Figure 1: Example for a FullSplit expanded system. See also Fig. 2 for a
graphical representation.

Besides Original and FullSplit, our result-verifying nonlinear solver SONIC
(Solver and Optimizer for Nonlinear problems based on Interval Computations) can
make use of three additional “intermediate” expanded systems,

CommonSubterms: Here we add intermediate variables for all “largest” subterms
with multiple occurences. This strategy also reduces the number of identical
entries in the Jacobian.

CommonSubtermsAndNeighbors: This is a larger version of the CommonSub-
terms system. Not only common subterms are replaced with new variables,
but also their siblings and parents in the term net.

Linearizing: This strategy is motivated by the observation that one advantage of
expanded systems is their lower nonlinearity. To achieve this it is sufficient
to define intermediate variables just for those subterms that are not atomic or
linear.

See Fig. 2 for an example. Even more expanded systems have been considered in [16].
SONIC makes use of constraint propagation, Taylor methods of first and second

order, and a hybrid version of the interval Newton method (see [2]) as accelerating
devices. Further features of SONIC are a hybrid subdivision strategy, verification
methods and a constrained optimizer using the nonlinear solver via the Fritz John
conditions. The implementation also provides parallel versions for shared and dis-
tributed memory architectures and portability by the possibility to use several basic
interval libraries. For more information on SONIC see, e.g., [3] or [2].

As hinted at above, the efficiency of the overall method is determined to a large
degree by the choice of which expanded systems to consider at all and which acceler-
ators to apply to each of them. Running just the basic branch-and-bound scheme (no
expanded systems, accelerators only on the Original system or not at all) maximizes
the number of boxes that can be considered per second, but this strategy often leads to
prohibitively large overall numbers of boxes. By contrast, running all accelerators on
all expanded systems tends to minimize the overall number of boxes to be considered,
at the cost of much increased computational effort per box.

Both extreme strategies can make sense. For the Trigonometric test problem from
Sect. 4, running all accelerators on all expanded systems leads to an overall time of
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Figure 2: “Term net” for the system from Fig. 1. The labels to the left of each
node indicate that the node corresponds to an additional variable in the respec-
tive expanded system, CommonSubterms (CST), CommonSubtermsAnd-
Neighbors (CSTN), or Linearizing (LIN). Thus, the CommonSubterms
system contains the original variables x1, x2, x3, and two additional variables
x4 = x21 + x22, and x5 = x23. In the FullSplit, each node corresponds to a new
variable.

149.77 seconds, spent on a total of 12, 241 boxes, whereas turning all accelerators off
lets the box count and time explode: 46, 919, 939 boxes and 27, 945.10 seconds. Here,
the accelerators are essential for success. By contrast, for some of the harder min-t-N
systems (representing N -point spherical t-designs) from [4] it was better to go for mere
box throughput by disabling the accelerators.

The present note is concerned with strategies for finding an effective compromise
between the two extremes. In Sect. 2 we briefly review SONIC’s current selection
strategy, which relies only on information from the box under consideration. In Sect. 3
a new heuristic is introduced, which also makes use of information gathered during
the computations that led to the current box. Numerical experiments presented in
Sect. 4 show that this allows us to use the advantages of expanded systems even more
effectively.

2 A strategy based on box-internal information

As the cost of the accelerators tends to increase with the size of the system, a promising
strategy for applying expensive accelerators selectively is to proceed from small to large
expanded systems until “sufficient success” is achieved. Thus, the most expensive
methods are tried only if the box cannot be contracted significantly with cheaper
methods.

This has been the default strategy in SONIC, complemented with the option to
restart the traversal of the hierarchy of expanded systems if the box has been con-
tracted by a user-defined amount; cf. [16, in particular p. 114]. Allowing restarts is
motivated by the observation that after a substantial contraction the smaller systems
may be helpful again.
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The success of contraction is monitored via the “relative volume” of the box,

RelVol(x) :=
∏

width (xj)6=0

width (xj),

and the default threshold for a restart in SONIC is a reduction by a factor of κ =
100.025 ≈ 1.06. Two points should be noted here. First, in practice one computes
log10(RelVol(x)) instead of RelVol(x) to avoid underflow. Second, thin components do
not contribute to the relative volume. Reduction of a non-thin component to a thin
interval is considered “sufficent success,” and therefore the traversal is also restarted
whenever the number of thin components, Thin, increases.

Finally, the traversal is aborted if either the box has been contracted to the desired
size for a solution box, or the contraction methods have been applied to this box
for a prescribed maximum number of times. (In the latter case the box will first
be bisected in the overall branch-and-bound algorithm before trying to apply any
contraction methods again. This bisecton is done independently from the strategy in
use.) The default configuration limits the total number of contraction steps for all
expanded systems to 2 times the number of available expanded systems. Thus, the
largest system is considered at most twice per box, whereas smaller systems may be
contracted more often, depending on when restarts occur.

The resulting algorithm is summarized in Alg. 1, and the sequence of exclusion
tests and accelerators applied to each box is given in Alg. 2. Constraint Propagation
may be done repeatedly, due to its low cost. Figure 3 depicts the possible branches in
Alg. 1 and compares it to a new scheme that will be presented in Sect. 3.

One drawback of Alg. 1 is that it does not make much use of earlier computations.
Except for restarts, all available expanded systems are considered for each box x in
the same small-to-large order. As Willems already mentioned in [16] this may not be
the best heuristic. In the following section we extend the basic strategy such that the
selection of expanded systems for the current box x is guided by “experience” with
boxes that have been processed before reaching x.

3 A success-guided heuristic

This heuristic was motivated by a test in which we measured the success in contraction
for five test problems and the Original, CommonSubterms, and FullSplit systems.
The percentage of computations for which the contraction methods were successful in
the father box, but not in the child box, or vice versa, has always been less than
45%, often even less than 20%. This indicates that it may be sensible to choose
expanded systems depending on the computations done before in the father box or
even ancestor boxes. On the other hand the same experiment showed that for different
problems different expanded systems may be most promising, so no uniform strategy
can be used for all problems.

To guide the selection, a “gauge” quantity γ is associated with each expanded
system. The gauge keeps track of the “performance” (product of contraction ratio
and computation time) of the accelerators for that particular expanded system.

Note that γ measures the success of contraction and the time needed for the whole
expanded system, including Constraint Propagation and Taylor methods. Usually
these are cheap, but for some problems they also needed a noticeable part of the
computation time, and therefore we control not only calls of the Newton method but
also of all methods used for contraction on an expanded system.
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Algorithm 1 Box-based strategy for traversing the hierarchy of
expanded systems
1: System := FirstSystem

/* If Newton is enabled for the Original system then FirstSystem =
Original, otherwise it is the next larger expanded system */

2: repeat
3: Determine Thinold, RelVolold
4: Run exclusion tests and accelerators on current System (Alg. 2)

5: /* Which system to consider next? */
6: if System 6= FirstSystem and

(RelVolnew ∗ κ < RelVolold or Thinnew > Thinold) then
7: /* Sufficient contraction for restart */
8: System := FirstSystem, Thinold := Thinnew, RelVolold := RelVolnew
9: else if the current box x meets the precision requirements or

System is already the largest system then
10: /* Box is small enough, or sufficient contraction was impossible */
11: Terminate repeat loop
12: else
13: System := next larger expanded system
14: end if
15: until the loop body has been executed a maximum number of times

Algorithm 2 Exclusion tests and accelerators for the current ex-
panded system
1: Do Constraint Propagation if enabled
2: if additional order-1 and/or order-2 Taylor contraction is enabled then
3: Do Taylor contraction(s)
4: Do Constraint Propagation if enabled
5: end if
6: Do direct evaluation and continuity check
7: if Interval Newton is enabled then
8: Do (hybrid) Newton
9: Do Constraint Propagation if enabled

10: end if
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Figure 3: Flow of the box-centered strategy (left) and the success-driven heuris-
tic (right) for using expanded systems. The charts reflect the default setup with
three expanded systems (Original, CommonSubterms, and FullSplit).

If the decision whether or not to use a certain expanded system for the current
box is to be based on these performance indicators then the γ values from previous
runs must be used, i.e., these must be inherited from the parent box in the branch-
and-bound recursion. To obtain smoother behavior we take into account not only the
performance in the parent box but also in all boxes along the bisection path from the
root to the current box, giving “older” values less weight than more recent ones. This
is achieved by averaging the new γ value with the inherited value,

γ := β · γnew + (1− β) · γold for some fixed β ∈ [0, 1].

(In our experiments β = 0.75 yielded good results.) If an expanded system is not used
in the current box then the value inherited from the parent box is taken, γ := γold.
To initialize the weighting scheme we let γold = 0 at the root of the branch-and-bound
tree (the original search box xs) and disable the selection heuristic within the three
topmost recursion levels. That is, in the first three boxes on each path from the
bisection root all available expanded systems are used.

For the other boxes, the smallest available system is used if its earlier performance
was not worse than that of the next larger system, whereas an expanded system is
used if its earlier performance was at most α times worse than the performance of the
smallest system (default: α = 4).

Apart from taking previous success into account, our success-driven heuristic differs
from Alg. 1 mainly in two aspects. First, our experiments indicated that restarts do not
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yield significant additional improvements with the new selection criterion. Therefore
we have abandoned them to simplify the algorithmic logic. Second, thin components do
not necessarily mark real progress if the user’s precision requirements for the respective
components are moderate. Therefore we rely on (the logarithm of) a “thresholded
volume”

ThVol(x) :=
∏
j

width∗(xj), where width∗(xj) :=


θj if xj − x ≤ θj
xj − x if θj ≤ xj − x ≤ Θj

Θj if xj − x ≥ Θj

,

taking, e.g., θj and Θj “sufficiently” small resp. large. With this notion of volume
neither thin components nor unbounded components (xj = −∞ and/or xj = ∞ are
allowed in SONIC) require special treatment, and only one real number per expanded
system must be added to the data structure for a box.

The resulting algorithm is summarized in Alg. 3; see also Fig. 3 for a graphical
comparison to Alg. 1.

Algorithm 3 Success-driven heuristic for using expanded systems
for a given box
1: /* FirstSystem is determined as in Alg. 1, and the available expanded systems

are numbered consecutively from small to large */
2: for System := FirstSystem to largest system in small-to-large order do
3: if (recursion level < 4) or

(System = FirstSystem and γ[FirstSystem] ≤ γ[FirstSystem + 1]) or
(System 6= FirstSystem and γ[System] < α · γ[FirstSystem]) then

4: Determine ThVolold and Tstart := current time
5: Run exclusion tests and accelerators on current System (Alg. 2)
6: Determine ThVolnew and Tend := current time
7: γnew := (Tend − Tstart) · (ThVolnew/ThVolold)
8: γ[System] := β · γnew + (1− β) · γ[System] for some fixed β ∈ [0, 1]
9: end if

10: end for

The success-driven heuristic implies a somewhat non-deterministic behavior. Since
the time spent for each expanded system depends – besides other factors – on the
actual work load of the machine, different runs will lead to different gauge values, and
therefore different expanded systems may be chosen. Thus the box counts and times,
and even the size and number of solution boxes may be different in each run with this
strategy. In all of our tests, however, times and box numbers differed just slightly
(usually less than 1 per cent, never more than 5 per cent). If a deterministic behavior
is desired, e.g. for debugging purposes, one can still resort to the old strategy via
SONIC’s runtime configuration file.

4 Numerical experiments

Numerical experiments with a test set consisting of 14 problems of widely varying
difficulty were made to compare SONIC’s selection strategy (with default parameter
settings) to our new heuristic; see Table 1. For both strategies we used the default
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hierarchy of SONIC, that is, Original, CommonSubterms, and FullSplit. As
this note focuses on the “exclusion and contraction” phase, the subsequent checks for
verifying the existence of zeros were turned off. The timings were obtained by a serial
computation on an Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz with C-XSC
2.2.4.

Problem boxes considered overall time in s
SONIC new scheme SONIC new scheme

min-04-06 [4] 785 809 12.17 8.64
Griewank [2] 2175 2175 12.60 6.55
Reactor [2] 549 577 27.92 12.40
Agrawal Hopf 1 5889 6907 48.85 37.51
Brent, n = 7 [6] 51851 55421 79.09 29.28
Eco9 [2], [6] 30109 30929 85.78 55.19
Trigexp1 [6] 1385 1405 105.57 31.73
Trigonometric, n = 10 [6] 18569 31751 132.70 133.87
Agrawal SaddleNode 2 49195 49201 185.85 88.16
DirectKinematics [2] 9157 10401 189.83 53.32
DesignProblem9 [2], [6] 27949 44497 195.02 112.15
7erSystem [2] 11523 17375 446.28 79.67
min-04-07 [4] 68185 68699 1894.40 1408.86
Agrawal Hopf 2 2959459 2976919 32902.30 13886.70

Table 1: Comparison of SONIC’s default scheme and the new heuristic for using
three expanded systems. (The Agrawal systems come from modelling different
singularities in process design, cf. [13].)

We see that we achieved a major decrease in running time for some problems and
that there is no problem for which the computation time increases much. By contrast,
box numbers usually increase. This was to be expected because we do not always
use the most powerful methods and therefore may have to consider more boxes, but
with potentially cheaper methods. For some problems such as DesignProblem9 we
see a significantly higher box number, but still we get faster execution with our new
heuristic.

Over the whole test set, the arithmetic mean of the ratio of new and old values is
1.17 for the box numbers and 0.53 for the time. Thus, on average we need to consider
roughly 20 per cent more boxes, but we can save nearly 50 per cent computation time.

The experiments therefore gave evidence that our new heuristic is as good as or
superior to the original traversal of the expanded systems using only box-internal
information.

We also ran SONIC with all five expanded systems enabled, together with the
new heuristic. For most of the problems from the test set, the results differed little
from those in Table 1, with a slight superiority of the 3-systems variant. However,
this does not imply that the CommonSubtermsAndNeighbors and Linearizing
systems were never called, or not successful. More detailed timings revealed that for
the Trigonometric problem these two expanded systems led to dismissal or substantial
contraction of the boxes in most cases they were used, but the overall time spent in
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System Variables Strategy Calls Dismissals Contractions Time
Original 10 new(3) 20670 3576 4171 20.22

new(5) 18447 824 2980 20.03
CST 23 new(3) 13216 4657 8276 45.67

new(5) 12553 4573 7903 39.19
Linearizing 30 new(3) – – – –

new(5) 580 25 386 1.67
CSTN 81 new(3) – – – –

new(5) 1214 155 1058 6.56
FullSplit 86 new(3) 7693 32 5599 17.49

new(5) 2719 269 1923 6.76

Table 2: Comparison of the new heuristic, applied to three or five expanded
systems (Original, CommonSubterms, FullSplit, plus Linearizing and
CommonSubtermsAndNeighbors for the 5-systems runs) of the Trigonomet-
ric problem.

the accelerators remained almost identical to that of the 3-systems run; see Table 2.

While SONIC’s 3-system default hierarchy performed consistently close to opti-
mum in these tests, there are other problems for which the new heuristic with a
combination of Original, FullSplit, and one of the other intermediate expanded
systems was even better – but so far we are able to detect such behavior only a pos-
teriori.

Systematic comparisons with other solvers are out of the scope of this paper. Tests
with GlobSol ([9], using the version of 2003 and a constant objective function) and
the benchmarks of ALIAS [5] suggest that SONIC with the success-driven strategy is
competitive with respect to overall timings and box numbers.

5 Conclusions and perspectives

We have compared two different methods for selecting which expanded systems should
be used to apply contraction methods.

In our new heuristic this decision is based on former success in contracting the
ancestors of the current box. Numerical experiments gave evidence that this strategy
is superior to just relying on box-internal information.

As already mentioned our investigations have concentrated mainly on a setup with
three expanded systems: Original, CommonSubterms, and FullSplit. Besides
further improvements of the success-driven heuristic, future work might address the
question of which expanded systems should be considered at all for a given problem:
Should we use more (or others) than those three, should the available expanded systems
be kept constant or be allowed to change during the computations, and which features
of the given system or the behavior of the algorithm can be used to make these decisions
in an automated way?
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