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Abstract

We discuss properties of continuity notions for multi-valued mappings
which allow disconnected images, but still have a useful zero property.
The starting point is the notion of c-continuity introduced by the second
author in the book Interval Methods for Systems of Equations to study
enclosure properties of interval Newton operators. It was claimed in that
book that c-continuity possesses a zero property. However, we provide a
counterexample. Two other continuity notions are introduced and exam-
ined, and applied in a logical context.

Keywords: Multi-valued mappings, continuity, fixed point theorem, Miranda theo-
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1 Introduction

The book Interval Methods for Systems of Equations ([22]) sets out to prove a set-
valued version of Miranda’s well-known intermediate value theorem for systems of
equations, fundamental for interval analysis, by means of induction over the dimen-
sion of the system [22, Theorem 5.3.7.]. Unfortunately, as pointed out by Alexandre
Goldsztejn, the proof contained a gap (for more detail see below page 92). The present
paper shows that the gap cannot be filled by giving a counterexample (Example 3.2
below) and provides new concepts and theory that justify a set-valued intermediate
value theorem.

A multi-valued mapping (sometimes called set-valued map) F from X to Y
(in symbols, F : X ( Y ) maps a point in X to a nonempty subset of Y . For a
multi-valued mapping F : X ( X, a fixed point is a point x∗ ∈ X with x∗ ∈ F (x∗),
and for a multi-valued mapping F : X ( Y a zero is a point x∗ ∈ X with 0 ∈ F (x∗).
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Our goal is to generalize the following two well-known theorems for single-valued
mappings to multi-valued mappings with possibly disconnected images:

Fixed-Point Theorem (Brouwer [5]) Let S be an closed, convex and nonempty
subset of Rn, let f : S → S be a continuous single-valued mapping. Then f has a
fixed point, i.e., a point x∗ with f(x∗) = x∗.

We use the following notation: IR is the set of all closed intervals in R, and IRn
the set of all n-dimensional boxes x, i.e., Cartesian products of n closed intervals;
xi := [xi,xi].

Multivariate Intermediate Value Theorem (Miranda [21], Poincaré [24])
Let x ∈ IRn, let f : x → x be a continuous single-valued mapping such that for
i = 1, . . . , n,

fi(x) ≤ 0 for all x ∈ x with xi = xi,
fi(x) ≥ 0 for all x ∈ x with xi = xi.

Then f has a zero, i.e., there exists a point x∗ ∈ x such that f(x∗) = 0.

We introduce some common continuity notions for multi-valued mappings:

If for a multi-valued mapping F : X ( Y there exists a continuous single-valued
mapping f : X → Y with f(x) ∈ F (x) for every x ∈ X, we say that f is a selection
of F and that F is selectionable. If we apply the fixed-point theorem or the multi-
variate intermediate value theorem to f , we obtain a fixed-point or a zero property for
selectionable multi-valued mappings, see [16, 19, 20, 23]. If for a multi-valued mapping
F : X ( Y and every ε > 0 there is a continuous single-valued mapping f : X → Y
with graph(f) ⊆ Oε(graphF ), we say that F is approxable. There exist various fixed
point theorems for approxable multi-valued mappings, see [12].

We say that F : X ( Y is upper semicontinuous (in short u.s.c.) at x0 ∈ X
if for any neighborhood N (F (x0)) of F (x0) there exists a neighborhood N (x0) of x0
such that F (N (x0)) ⊆ N (F (x0)). We say that F is u.s.c. if F is u.s.c. at every
x0 ∈ X.

We say that F : X ( Y is lower semicontinuous (in short l.s.c.) at x0 if for
any sequence (xn)n∈N converging to x0, and for any point y0 ∈ F (x0) there exists a
sequence (yn)n∈N with yn ∈ F (xn) such that (yn)n∈N converges to y0. We say that F
is l.s.c. if F is l.s.c. at every x0 ∈ X.

In view of fixed-point properties, we cannot obtain strong results for mere u.s.c. or
l.s.c. multi-valued mappings, unless we make assumptions to the topological properties
of the sets F (x) (see [1, 3, 6, 18]). For example, if for the u.s.c. multi-valued mapping
F : X ( X the set F (x) is convex for all x ∈ X, we have the well known fixed
point theorem of Kakutani, see [17, 10, 29]. If for all x ∈ X the set F (x) is acyclic,
i.e., it has the same homology groups as the one point space (and hence F (x) is
connected for every x) we obtain fixed-pint properties via a theorem by Eilenberg-
Montgomery [9, 2, 13]. For details about homology theory see [15] and [28]. There
exist certain fixed point properties for multi-valued mappings with non-acyclic images,
see [4, 7, 8]. A recent overview of the fixed-point theory for multi-valued mappings
gives Gôrniewicz in [12], which also contains a current bibliography of publications
concerning the fixed point theory of multi-valued mappings.

However, if the set F (x) is disconnected for at least one x, none of the fixed point
theorems above apply in general. Not even for a multi-valued mapping as simple as
F : [−1, 1] ( [−1, 1] defined by F (x) := {y | 3y3−y = x} (see Figure 1) we can obtain
a zero or a fixed point from the theorems above, although x∗ = 0 is obviously both a
zero and a fixed-point of F .

In this paper, we are concerned with continuity notions which are not defined by
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Figure 1: The graph of F

a topological property of the image of each point, but by a property of the graph of
the multi-valued mapping. In particular, we are only interested in continuity notions
which allow disconnected images. Furthermore, for all continuity notions discussed
here, we demand that if f is a continuous single-valued mapping, then the multi-valued
mapping defined by F (x) := {f(x)} is continuous in the multi-valued sense. Hence
all continuity notions considered here are generalizations of the usual continuity of
single-valued mappings. We remind that by the definition of a multi-valued mapping,
F (x) is nonempty for all x.

Overview. The discussion of the continuity notions in Section 1 is guided by prop-
erties of multi-valued mappings which were suggested by Alexandre Goldsztejn and
the second author. These are:

(SETFP) a multi-valued version of the fixed point theorem,
(SETIV) a multi-valued version of the multivariate intermediate value theorem,
(REDOM) the preservation of continuity on a restricted domain,
(ENDOM) the preservation of continuity on an enlarged domain,
(PROD) the preservation of continuity on the Cartesian product,
(PROJ) the preservation of continuity under projection,
(COMP) the preservation of continuity under composition of multi-valued

mappings, and
(GEN) generalization of single-valued mapping.

The multivalued version of the multivariate intermediate value theorem is a concept
by the second author in [22], the other properties are ideas of Goldsztejn in [11].
After introducing precise versions of these properties, we show that some of these
properties imply others.

The second author in [22] introduced a continuity notion for multi-valued map-
pings, called ‘c-continuity’. A multi-valued mapping F : x ( y is called c-continuous
if for every continuum C in x and τ, τ ′ ∈ C, the set graph(F |C) connects {τ} × y
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with {τ ′} × y. In Section 2, we show that c-continuity has two of the properties
above, namely (REDOM) and (PROJ), but fails to satisfy the others. Most impor-
tant, (SETIV) does not hold, although it was stated by Neumaier in [22]. We give a
counterexample.

In Section 3, we introduce a continuity notion called ‘is-continuity’ which has
many desirable properties, but others are still open questions. A multi-valued mapping
F : x ( y is called is-continuous if there exists a continuous single-valued mapping f :
x× y → Rdim(y) such that f−1(0) is a subset of graphF , plus additional assumptions
to prevent that f−1(0) is empty.

Section 4: We introduce a continuity notion by Goldsztejn called ma-continuity.
Multi-valued mappings are ma-continuous if their graph can be approximated by a
sequence of smooth manifolds with boundary. Goldsztejn proved a generalization of
(SETFP) in [11].

Section 5: Ratschan [26] applied the second author’s (false) multi-valued version
of the multivariate intermediate value theorem for c-continuous multi-valued map-
pings. Unfortunately, this makes the central theorem in [26] false too. (For a coun-
terexample, see [27].) We introduce and prove a modified version of Ratschan’s theo-
rem: instead of continuous single-valued mappings, we use is-continuous multi-valued
mappings.

Table 1: Summary

S
E
T
F
P

S
E
T
IV

R
E
D
O
M

E
N
D
O
M

P
R
O
D

P
R
O
J

C
O
M
P

G
E
N

ma-continuity yes ∗ ∗ ∗ ∗ yes
c-continuity no no yes no no yes no yes
is-continuity yes ∗∗ yes yes yes yes

∗ These are conjectured to be true by Goldsztejn [11].
∗∗ We prove a weaker version of SETIV for is-continuous mappings.

Notation. In general, we use lower-case letters f, g, h, . . . for single-valued mappings
and upper-case letter F,G,H, . . . for multi-valued mappings. Lower-case Greek letters
ϕ,ψ, . . . usually denote paths. We use the upper-case letters X,Y, Z for spaces (usually
subsets of Rn, if not asserted otherwise). For a multi-valued mapping F : X ( Y let
graphF := {(x, y) | x ∈ X, y ∈ F (x)}, and for C a continuum in X, i.e., a compact
and connected subset of X, let graph(F |C) := {(x, y) | x ∈ C, y ∈ F (x)}. For a space
X, we write dist(x, y) for the distance of the points x and y. For a set A ⊆ X,
dist(x,A) := inf{dist(x, y) | y ∈ A} is the distance of x and A.

Other often used symbols are: Br(x) := {y ∈ X | ‖x − y‖ < r}, the open ball
with center x and radius r, Oε(A) :=

⋃
a∈ABε(a), an ε-neighborhood of the set A,

projX A is the projection of the set A to the space X, and for the multi-valued mapping
F : X ( Y , the set Fi(x) is the projection of the set F (x) to the ith component of Y .
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2 Properties

Since we deal with different continuity notions, we will formulate the properties gen-
erally for ω-continuity.

We introduce some properties desirable for a continuity notion ω for multi-valued
mappings.

(SETFP) A parametric version of the fixed-point theorem: Let F : x× y ( y be
ω-continuous. Then the multi-valued mapping H : x ( y defined by

H(x) := {y ∈ y | y ∈ F (x, y)}

is ω-continuous.

(SETIV) This is a multi-valued version of the multivariate intermediate value the-
orem: Let F : x×y ( z with dimy = dim z be a ω-continuous multi-valued mapping,
and let

sup(Fi(x, y)) ≤ 0 if yi = y
i
,

inf(Fi(x, y)) ≥ 0 if yi = yi.

Then the multi-valued mapping H : x ( y defined by

H(x) := {y ∈ y | 0 ∈ F (x, y)}

is ω-continuous.

(REDOM) The preservation of ω-continuity on a smaller domain: If F : x ( y is
ω-continuous on a continuum C ⊆ x, then F is also ω-continuous on any continuum
contained in C.

(ENDOM) The preservation of ω-continuity on a larger domain: Let F : x ( z
be ω-continuous. Then the multi-valued mapping H : x× y ( z defined by

H(x, y) := F (x)

is ω-continuous.

(PROD) The preservation of ω-continuity on the Cartesian product of two multi-
valued mappings: Let F : x ( u and G : y ( v be two ω-continuous multi-valued
mappings. Then the multi-valued mapping H : x× y ( u× v defined by

H(x, y) := F (x)×G(y)

is ω-continuous.

(PROJ) The preservation of ω-continuity with respect to arbitrary projections:
Let F : x ( y be a ω-continuous multi-valued mapping. Then for any sequence
I = {i1, . . . , ik} of integers 1 ≤ i1 < . . . < ik ≤ dimy, the multi-valued mapping
H : x ( yi1 × . . .× yik defined by

H(x) := proj
yI

(F (x))

is ω-continuous.
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(COMP) The preservation of ω-continuity with respect to composition of multi-
valued mappings. Let F : x ( y and G : y ( z be two ω-continuous multi-valued
mappings. Then the multi-valued mapping H : x ( z defined by

H(x) = (G ◦ F )(x) :=
⋃

y∈F (x)

G(y)

is ω-continuous.

(GEN) A continuous single-valued mapping regarded as multi-valued mapping is ω-
continuous: Let f : x→ y a continuous single-valued mapping, then the multi-valued
mapping F : x ( y defined by

F (x) := {f(x)}

is ω-continuous.

Some implications

Without further assumptions on a continuity notions ω for multi-valued mappings,
some properties imply others. In the following list of implications, we do not claim
completeness. Proposition 2.1 is due to Goldsztejn. Let x ∈ IRn, y ∈ IRm for
n,m ≥ 1.

Proposition 2.1 The property (COMP) together with (GEN) implies (ENDOM).

Proof: We assume an ω-continuous multi-valued mapping F : x ( z, and we
define a multi-valued mapping G : x × y ( x by G(x, y) := {x}. Then by (GEN) G
is ω-continuous. We apply (COMP) and obtain that H : x× y ( z defined by

H(x, y) := (F ◦G)(x, y)
=

⋃
z∈G(x,y) F (z)

= F (x),

is ω-continuous.

Proposition 2.2 The property (COMP) together with (GEN) implies (PROJ).

Proof: We assume an ω-continuous multi-valued mapping F : x ( y. For some
sequence I = {i1, . . . , ik} of integers 1 ≤ i1 < . . . < ik ≤ dimy, define the multi-valued
mapping G : y ( yi1 × . . .× yik by

G(y) := proj
yI

(y).

ThenG is the multivalued version of a continuous single-valued mapping and by (GEN)
it is ω-continuous. We apply (COMP) and obtain that

H(x) := (G ◦ F )(x)
=

⋃
y∈F (x)G(y)

= projyI
(F (x))

is ω-continuous.
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Proposition 2.3 The properties (PROD) together with (PROJ) and (GEN) imply
(ENDOM).

Proof: We assume an ω-continuous multi-valued mapping F : x ( z, and define
the multi-valued mapping G : y ( {0} by G(y) := {0}. Then by (GEN) G is
ω-continuous. Now we apply (PROD) to F and G and obtain an ω-continuous multi-

valued mapping Ĥ : x× y ( z × {0} defined by

Ĥ(x, y) := F (x)× {0}.

Now we apply (PROJ) and obtain that the multi-valued mapping H : x × y ( z
defined by

H(x, y) = projz(F (x)× {0})
= F (x),

is ω-continuous, which completes the proof.

2.1 ma-Continuous Multi-Valued Mappings

Many of the properties discussed here were introduced by Goldsztejn in [11]. The
same paper also introduces and discusses a continuity notion called ma-continuity:

Definition 2.1 Let x ∈ IRn. A multi-valued mapping F : x ( Rm is called ma-
continuous ( manifold approximated) if there exists

• a closed ball d ⊆ Rn such that x ⊆ intd,

• a sequence (Mk)k∈N of C∞ compact n-manifolds with boundary such that ∂Mk

is homeomorphic to Sn−1, where Sn−1 denotes the n − 1-dimensional sphere,
and

• a sequence (gk : Mk → Rn+m)k∈N of C∞ maps such that gk restricted to ∂Mk

is a C∞ diffeomorphism between ∂Mk and ∂d× {0},
such that for any sequence (xk)k∈N of points in Mk,

• the sequence (gk(xk))k∈N is bounded, and

• if gk(xk) ∈ x × Rn for every k ∈ N, then every accumulation point (x∗, y∗) of
the sequence (gk(xk))k∈N satisfies y∗ ∈ F (x∗).

Goldsztejn proves the properties (GEN) (Proposition 4.1 in [11]) and and a
generalization of (SETFP) (Theorem 3.1 in [11]).

3 c-Continuous Multi-Valued Mappings

The concept of c-continuity was introduced by Neumaier in [22]. It was used there
in a context of interval arithmetic. We show that c-continuous multi-valued mappings
have the properties (REDOM) and (PROJ) but do not have the properties (SETFP),
(SETIV), (ENDOM), (PROD), (COMP) and (GEN). As pointed out before, the neg-
ative answer to the property (SETIV) is the most important one because in [22],
c-continuous multi-valued mappings were claimed to possess the property (SETIV).
Note that for single-valued mappings, there exists a notion related to the idea of
c-continuity called ‘connectivity maps’, see Hamilton [14] and Jordan & Nadler
[16].
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Definition 3.1 Let A,B ⊆ x. A continuum C ⊆ x connects the sets A with B if
the sets A ∩ C and B ∩ C are both nonempty.

Definition 3.2 We say that the multi-valued mapping F : x ( y is c-continuous
( connection continuous) on a set E ⊆ x if for every continuum C ⊆ E and any two
points τ, τ ′ ∈ C, the set graph(F |C) contains a continuum K ⊆ x × y such that K
connects the sets {τ} × y with {τ ′} × y.

The next proposition gives a sufficient condition for a multi-valued mapping to be
c-continuous.

Proposition 3.1 Let x ∈ IRn and let y ∈ IRm. Let F : x ( y be a multi-valued
mapping such that graph(F |C) is closed for every continuum C ⊆ x, and F (x) is
connected for every x ∈ x. Then F is c-continuous.

Proof: Choose an arbitrary continuum C ⊆ x and τ, τ ′ ∈ C. Then graph(F |C)
is closed by assumption. Suppose that graph(F |C) does not connect τ × Rm with
τ ′ × Rm. Since graph(F |C) is closed, there exist closed, disjoint sets A1, A2 ⊆ x × y
such that A1 ∪A2 = graph(F |C). Since for every x ∈ C the set F (x) is connected by
assumption, the set {x} × F (x) is either contained in A1 or in A2. Let

B1 := {x ∈ C | x× F (x) ⊆ A1} and B2 := {x ∈ C | x× F (x) ⊆ A2}.

Then B1 and B2 are disjoint sets that cover C. Since Bi is the projection of Ai to x for
i = 1, 2, the sets B1 and B2 are also closed, hence C is not connected, a contradiction.

(SETFP) Not every c-continuous multi-valued mapping satisfies the property
(SETFP), as the following example shows.

Corollary 3.1 Let x = [−1, 1], let y := [−1, 1] × [−1, 1]. For r > 0 and δ < r
2

we
define the multi-valued mapping G : x× y ( y by

G(x, y) := Br(0) \Bδ(y).

Then G is c-continuous.

Proof: Note that G(x, y) ⊆ y is connected and nonempty for all (x, y) ∈ x × y
because δ < r

2
. To apply Proposition 3.1 it remains to show that graph(G|C) is closed

for every continuum C.

graph(G) = {(x, y)×G(x, y) | x ∈ x, y ∈ y}
= {(x, y)×Br(0) | x ∈ x, y ∈ y} \ {(x, y)×Bδ(y) | x ∈ x, y ∈ y}.

We define R := {(x, y)×Br(0) | x ∈ x, y ∈ y} and S := {(x, y)×Bδ(y) | x ∈ x, y ∈ y},
hence graph(G) = R \ S. Since R = x × y × Br(0), the set R is closed. Via the
homeomorphism h : (x, y, z) 7→ (x, y, z− y), S is homeomorphic to x×y×Bδ(0), and
hence S is open, and R \ S = graph(G) is closed. The set graph(G|C) can be written
as an intersection of closed sets graph(G) ∩ C × y and is therefore closed.

Example 3.1 Let G be defined as in Corollary 3.1. By definition of H,

H(x) = {y ∈ y | y ∈ G(x, y)}
= ∅

and H is not c-continuous, it is not even a multi-valued mapping.
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(SETIV) In Neumaier [22], c-continuous multi-valued mappings were claimed to
possess the property (SETIV) (Theorem 5.3.7) We give a counterexample.

Corollary 3.2 Let x = [−1, 1], let y := [−1, 1] × [−1, 1]. For r > 0 and δ < r
2

we
define the multi-valued mapping G : x× y ( z by

G(x, y) := Br(x) \Bδ(0).

Then G is c-continuous.

Proof: As in Corollary 3.1, G(x, y) is connected and nonempty for all x ∈ x, y ∈ y.
Again, it only remains to show that graph(G|C) is closed for every continuum C.

graph(G) = {(x, y)×G(x, y) | x ∈ x, y ∈ y}
= {(x, y)×Br(x) | x ∈ x, y ∈ y} \ {(x, y)×Bδ(0) | x ∈ x, y ∈ y}.

We define R := {(x, y)×Br(x) | x ∈ x, y ∈ y} and S := {(x, y)×Bδ(0) | x ∈ x, y ∈ y},
hence graph(G) = R \ S. Via the homeomorphism h : (x, y, z) 7→ (x, y, z − y), R is
homeomorphic to x× y×Br(0), hence closed, and S = x× y×Bδ(0) is open. Hence
R\S = graph(G) is closed. Since graph(G|C) = graph(G)∩C×y is closed, Proposition
3.1 applies.

Example 3.2 Let G be defined as in Corollary 3.2, and choose 0 < r < 1 such that

sup(Gi(x, y)) ≤ 0 if yi = y
i
,

inf(Gi(x, y)) ≥ 0 if yi = yi.

By definition of H,

H(x) = {0 ∈ y | y ∈ G(x, y)}
= ∅

and H is not c-continuous.

The counterexample shows that the proof given by the second author in [22] cannot
be correct. In fact, the stated equivalence of the term in line 15 with the term in line
16 on page 197 in [22] is incorrect. However, the error has only consequences for the
following three theorems in [22], since the rest of the book only uses the well-known
theorem of Leray & Schauder. Other parts than Section 5.3 of [22] are not concerned
by the error.

(REDOM)

Proposition 3.2 Every c-continuous multi-valued mapping has the property (RE-
DOM).

Proof: This property follows immediately from the definition of c-continuity.

(ENDOM) Not every c-continuous multi-valued mapping satisfies the property
(ENDOM). We give a counterexample, but first need two Lemmas by Neumaier [22]
and a proposition that proves a certain multi-valued mapping to be c-continuous.
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Lemma 3.1 (Neumaier [22, Lemma 5.3.1.(iii)])
Let A,B be closed subsets of E ⊆ Rn. If E is compact and Cl(l = 0, 1, 2, . . .) is an
infinite sequence of subsets of E such that each Cl connects A with B then the set C
of all accumulation points of all sequences tl(l = 0, 1, 2, . . .) with tl ∈ Cl for l ≥ 0
connects A with B.

Lemma 3.2 (Neumaier [22, Lemma 5.3.2.])
Let a, b be closed intervals and let Σ be a closed subset of a× b. If for every continuous
mapping ϕ : [0, 1] → a × b with projb(ϕ(0)) ∈ b, projb(ϕ(1)) ∈ b there is a number
s ∈ [0, 1] such that ϕ(s) ∈ Σ then Σ connects {a} × b with {a} × b.

Proposition 3.3 Let x = [−2, 2] × [−2, 2],z = [−2, 2]. Let ϕ : [0, 1] → x × z be
defined by

ϕ(t) := (cos(3πt), cos(2πt), 2t− 1).

For 0 < ε < 1
2

define the set Γ ⊆ x× z by

Γ := x× z \ Oε(Imϕ).

Now let the multi-valued mapping F : x ( z be defined by

F (x) := proj
z

({x} × z ∩ Γ).

Then F is c-continuous.

-

6
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Figure 2: The projection of Imϕ to x

Proof:
(i) We first show that there exists no path α connecting x × z with x × z, and
Imα ∩ graphF = ∅ such that projx(Imα) is not homeomorphic to [0, 1]:
Suppose that there exists such a path α : [0, 1] → x × z. Then Imα ⊆ Oε(Imϕ),
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and for ε small enough, the projection of Imα to x has at least one double-point (cf.
Figure 2). Hence projx(Imα) is not homeomorphic to [0, 1].

(ii) Next, by assuming that F is not c-continuous on the image of a path, we
construct a path that contradicts (i):
Suppose that there exists a path β : [0, 1] → x and two points τ, τ ′ ∈ Imβ such
that graph(F | Imβ) does not connect {τ} × z with {τ ′} × z. W.l.o.g., the path β
is double point-free, and hence the mapping hom : [0, 1] × z → Imβ × z defined by
(t, z) 7→ (β(t), z) is a homeomorphism. Since the homeomorphic image of a continuum
is a continuum, the set hom(graph(F | Imβ)) ⊆ [0, 1] × z does not connect {0} × z
with {1} × z by assumption. Therefore, Lemma 3.2 applies (graphF = Γ and Γ is
closed) and there exists a path γ : [0, 1]→ [0, 1]×z connecting [0, 1]×z with [0, 1]×z.
But then the path δ := hom−1(γ) : [0, 1]→ Imβ × z is a path connecting x× z with
x × z, and Im δ ∩ graphF = ∅. Consequently, by (i), the set projx(Im δ) cannot be
homeomorphic to [0, 1] and neither can its superset Imβ, a contradiction.
Hence for every path β : [0, 1] → x connecting τ, τ ′ ∈ Imβ, the set graph(F | Imβ)
connects {τ} × z with {τ ′} × z.

(iii) Since F is c-continuous on the image of any path, we derive that F is c-
continuous:
Suppose that there exists a continuum C ⊆ x and τ, τ ′ ∈ C such that graph(F |C) does
not connect {τ}× z with {τ ′}× z. Let Cε := Oε(C) hence (C1/n)n∈N is a sequence of
open, connected sets such that τ, τ ′ ∈ C1/n for all n ∈ N. Since every C1/n is also path-
connected, graph(F |C1/n) connects {τ}×z with {τ ′}×z by (ii). Since the sets {τ}×z
and {τ ′} × z are closed, we Lemma 3.1 applies for the sequence (graph(F |C1/n))n∈N.
We obtain that the set of all accumulation points connects {τ} × z with {τ ′} × z.
Furthermore, this set is a subset of graph(F |C), a contradiction to the assumption
that graph(F |C) does not connect {τ}× z with {τ ′}× z. Hence no such C exists and
F is c-continuous.

Now we give the counterexample to (ENDOM).
In 3.3 we saw that each continuum in the projection of the ‘hole’ in graph(F ) to the
(two dimensional) domain of F has a double-point. The idea is to enlarge the domain
of the c-continuous multi-valued mapping F to three dimensions, such that such a
double-point can be avoided, proving that this ‘enlarged’ multi-valued mapping is not
c-continuous.

Example 3.3 Let x,z and F : x ( z be the multi-valued mapping defined in 3.3, let
y = [0, 1]. Then the multi-valued mapping H : x× y ( z defined by

H(x, y) := F (x)

is not c-continuous.

Proof: Let ψ : [0, 1]→ x× y be defined by

ψ(s) := (cos(3πs), cos(2πs), s).

Let C := Imψ ⊆ x× y and τ = ψ(0), τ ′ = ψ(1) points in C.
We show that the set D := {(ψ(s), 2s− 1) | s ∈ [0, 1]} ⊆ x× y × z does not intersect
graph(H|C):
For an arbitrary s ∈ [0, 1],

H(ψ(s)) = F (cos(3πs), cos(2πs))
= projz(cos(3πs), cos(2πs)× z ∩ Γ)
= z \ projz(Oε(2s− 1)).
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Hence for all s ∈ [0, 1], the point (ψ(s), 2s− 1) is not contained in H(ψ(s)), and con-
sequently D ∩ graph(H|C) = ∅.
Since ψ is injective, hom : [0, 1] × z defined by hom(s, z) = (ψ(s), z) is a homeo-
morphism. The set hom(D) connects [0, 1] × z with [0, 1] × z without intersecting
hom(graph(H|C)), hence hom(graph(H|C)) cannot connect {0} × z with {1} × z.
Therefore graph(H|C) does not connect {τ} × z with {τ ′} × z, and H is not c-
continuous.

(PROD)

Corollary 3.3 Not every c-continuous multi-valued mapping has the property (PROD).

Proof: By Proposition 2.3, (PROD) together with (PROJ) would imply (ENDOM).

(PROJ)

Proposition 3.4 (Neumaier [22, Corollary 5.3.6])
All c-continuous multi-valued mappings have the property (PROJ).

(GEN)

Proposition 3.5 (Neumaier [22, Proposition 5.3.3]) All c-continuous multi-valued
mappings have the property (GEN).

(COMP)

Corollary 3.4 Not every c-continuous multi-valued mapping has the property (COMP).

Proof: By Proposition 2.1, (COMP) together with (GEN) would imply (ENDOM).

4 is-Continuous Multi-Valued Mappings

We introduce a continuity notion called is-continuity. A multi-valued mapping is is-
continuous if there exists a continuous single-valued mapping f such that the set of
the zeros of f is a subset of graphF , plus assumptions to make sure that the set of
the zeros of f is not empty. (We remind that if F (x) would be empty for some x, then
F would not be a multi-valued mapping.) We show that is-continuous multi-valued
mappings have the properties (SETFP), (REDOM), (ENDOM), (PROD) and (GEN).
Instead of (SETIV), which remains an open question, we prove the weaker version
(SETIV’). The properties (PROJ) and (COMP) also remain open questions.

Definition 4.1 Let X ⊆ Rn and y ∈ IRm. A multi-valued mapping F : X ( y is
called is-continuous ( implicit selectionable) on a continuum C ⊆ X if there exists
a continuous single-valued mapping f : C × y → Rm, called an implicit selection,
such that

fi(x, y) ≥ 0 for yi = yi, x ∈ C,
fi(x, y) ≤ 0 for yi = y

i
, x ∈ C

and
f−1(0) ⊆ graph(F |C).
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If X = x is a box and if F : x ( y is is-continuous on the continuum C = x, we
simply say that F is is-continuous.

Remark 4.1 For an is-continuous multi-valued mapping F : X ( y and for a fixed
x ∈ X we can apply the single-valued multivariate intermediate value theorem [21] to
the continuous single-valued mapping f , and obtain that the set {y ∈ y | f(x, y) = 0}
is nonempty. This implies that F (x) is nonempty for every x ∈ X.

(SETFP)

Theorem 4.1 Every is-continuous multi-valued mapping has the property (SETFP).

Proof: Let f : x×y×y → Rm be the implicit selection for the given multi-valued
mapping F : x× y ( y. We define the single-valued mapping h : x× y → Rm by

h(x, y) := f(x, y, y).

The mapping h is continuous because f is continuous, and

hi(x, y) = fi(x, y, y) ≥ 0 for yi = yi,
hi(x, y) = fi(x, y, y) ≤ 0 for yi = y

i
.

Hence it only remains to show that h−1(0) ⊆ graphH:
If h(x, y) = 0 then by definition f(x, y, y) = 0 and hence y ∈ F (x, y) and y ∈ H(x).

(SETIV’) Let F : x×y ( z with dimy = dim z be an is-continuous multi-valued
mapping, and let

sup(Fi(x, y)) < 0 if yi = y
i
,

inf(Fi(x, y)) > 0 if yi = yi.

Then the multi-valued mapping H : x ( y defined by

H(x) := {y ∈ y | 0 ∈ F (x, y)}

is is-continuous.
Proof: Let f : x × y × z → Rdim z be an implicit selection of F . Since f−1(0) ⊆

graph(F ) and f is continuous, there is an ε > 0 such that f(x, y, z) 6= 0 if for all i
either yi − y

i
< ε and zi ≤ 0 or yi − yi < ε and zi ≥ 0.

We define a the linear mapping tr : y → z by tr(y)i := zi +
yi−y

i
yi−y

i
(zi − zi).

We define yεi := [y
i

+ ε,yi − ε], and we define zε = tr(yε).
For z ∈ z \ 0 we define λz to be the positive number with λz · z ∈ ∂z and λεz to

be the positive number with λεz · z ∈ ∂zε. Note that such numbers exist since 0 ∈ zε,
and furthermore λz > λεz for all z. We define the mapping l : z \ zε → z \ 0 by
l(z) := λ−λελ

λ−λε z (see illustration in Figure 3).

Now we can explicitly define an implicit selection h : x× y → Rdimy for H by:

h(x, y) =

{
f(x, y, 0) for y ∈ yε,

f(x, y, l(tr(y))) otherwise.

(i) Since f , tr and l are continuous, f(x, y, l(tr(y))) is continuous. Assume a
sequence (x, y)n that converges to (x∗, y∗) with tr(y∗) ∈ ∂zε. Then λεtr(yn) → 1 and
l(tr(yn))→ 0, hence h is continuous.
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Figure 3: Illustration of the mapping l

(ii) For y with yi = y
i
, tr(y)i = zi, and h(x, y) ≤ 0. Analogously h(x, y) ≥ 0 for

yi = yi.

(iii) For y ∈ yε, h(x, y) = 0 implies f(x, y, 0) = 0. If y /∈ yε, then either yi−y
i
< ε

or yi − yi < ε for some i. In the first case, tr(y)i < 0, hence also l(tr(y))i < 0, and
therefore f(x, y, l(tr(y))) 6= 0, analogously for the second case. Therefore h(x, y) = 0
is only possible if f(x, y, 0) = 0, hence 0 ∈ F (x, y), and h−1(0) ⊆ graph(H).

Note that the continuity of h is not guaranteed for the limit ε→ 0. Therefore we
cannot prove (SETIV) as a limit of (SETIV’).

(REDOM)

Proposition 4.1 Every is-continuous multi-valued mapping has the property (RE-
DOM)

Proof: Let f : C × y → Rm be an implicit selection of F . Let C′ be a continuum
contained in C. Then the single-valued mapping h : C′ × y → Rm defined by h :=
f|C′×y (i.e., the restriction of f to the set C′ × y) satisfies:

hi(x, y) = fi(x, y) ≥ 0 for yi ∈ yi, x ∈ C′
hi(x, y) = fi(x, y) ≤ 0 for yi ∈ y

i
, x ∈ C′

and
h−1(0) = f−1(0) ∩ C′ × y

⊆ graph(F |C) ∩ C′ × y
= graph(F |C′).

Obviously h is continuous, hence F is is-continuous on the continuum C′ ⊆ C.

(ENDOM)

Proposition 4.2 Every is-continuous multi-valued mapping has the property (EN-
DOM)

Proof: Let x ∈ IRn, y ∈ IRm, z ∈ IRk and let F : x ( z be is-continuous. Let
f : x × z ( Rk be an implicit selection of F . We define the single-valued mapping
h : x× y × z → Rk by

h(x, y, z) := f(x, z).



98 Schodl and Neumaier, Continuity notions for multi-valued mappings

Then h is obviously continuous and satisfies

hi(x, y, z) = fi(x, z) ≥ 0 for zi ∈ zi,
hi(x, y, z) = fi(x, z) ≤ 0 for zi ∈ zi.

It remains to show that h−1(0) ⊆ graphH:
If h(x, y, z) = 0 then f(x, z) = 0 and hence z ∈ F (x) and z ∈ H(x, y).

(PROD)

Proposition 4.3 Every is-continuous multi-valued mapping has the property (PROD)

Proof: For dim(u) = k and dim(v) = l there exist by assumption single-valued
mappings f : x × u → Rk and g : y × v → Rl with f−1(0) ⊆ graphF and g−1(0) ⊆
graphG. We define a single-valued mapping h : x× y × u× v → Rk × Rl by

h(x, y, u, v) := f(x, u)× g(y, v).

Then h is continuous since f and g are both continuous. By definition, for i = 1, . . . , k
we have

hi(x, y, u, v) = fi(x, u), (u, v)i = ui, (u× v)i = ui,

and for i = k + 1, . . . , k + l we have

hi(x, y, u, v) = gi−k(y, v), (u, v)i = vi−k, (u× v)i = vi−k.

Hence hi(x, y, u, v) ≥ 0 for (u, v)i ∈ (u× v)i because

hi(x, y, u, v) =

{
fi(x, u) ≥ 0 for ui ∈ ui,

gi−k(y, v) ≥ 0 for vi−k ∈ vi−k.

Similarly, we obtain that hi(x, y, u, v) ≤ 0 for (u, v)i ∈ (u× v)i.
Again, it only remains to show that h−1(0) ⊆ graphH:
From h(x, y, u, v) = 0 we infer f(x, u) = 0 and g(y, v) = 0 and furthermore u ∈

F (x) and v ∈ G(y) and finally (u, v) ∈ H(x, y).

(GEN)

Proposition 4.4 Every is-continuous multi-valued mapping has the property (GEN).

Proof: Let m := dimy. Define the single-valued mapping g : X × y → Rm by

g(x, y) := y − f(x).

For yi ∈ yi we have fi(x) ≤ yi and hence g(x, y) = yi − fi(x) ≥ 0, and
for yi ∈ y

i
we have fi(x) ≥ yi and hence g(x, y) = yi − fi(x) ≤ 0.

Obviously, g(x, y) = 0 if and only if y ∈ F (x) := {f(x)}, and hence g−1(0) = graphF .
Therefore, F is is-continuous.

The properties (SETIV), (PROJ) and (COMP) are open questions.
We give an additional proposition which will be applied in Section 5.

Proposition 4.5 Let F : x×z ( y and G : y×z ( x be is-continuous multi-valued
mappings. Then the multi-valued mapping H : z ( x× y defined by

H(z) := graph(F |{z}) ∩ graph(G|{z})

is is-continuous.
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Proof: Let f : x × z × y → Rdimy and g : y × z × x → Rdimx be the implicit
selections for F and G respectively. We define the mapping h : z×x×y → Rdimx+dimy

by

h(z, x, y) = (f(x, z, y), g(y, z, x))

and show that h is an implicit selection for H.

Obviously, h is continuous, and for (x, y) ∈ x× yi we obtain

hi(z, x, y) =

{
fi(x, z, y) ≥ 0 if 1 ≤ i ≤ dimy,

gi(y, z, x) ≥ 0 if dimy < i ≤ dimx + dimy

and analogous we obtain that hi ≤ 0 for z ∈ x× y
i
.

Hence it remains to show that h−1(0) ⊆ graphH:
h(z, x, y) = 0 implies both f(x, z, y) = 0 and g(y, z, x) = 0. Hence y ∈ F (x, z) and
x ∈ G(y, z) and therefore (x, y) ∈ H(z).

5 An Application in Logic

This section is concerned with the article Ratschan [26], which uses Theorem 5.3.7 in
[22] (that is (SETIV) for c-continuous multi-valued mappings) which is, as we saw in
Chapter 2, not valid in general. We give a theorem analogous to the central theorem
in [26], but we use is-continuous multi-valued mappings instead of c-continuous ones.

Ratschan’s articles [25] and [26] deal with constraints, i.e., formulas in first-
order predicate language.

Let ϕ be a constraint with variable x = (x1, . . . , xn) and depending on parameters
z = (z1, . . . , zk). Let the possible values of x and z be restricted to boxes x ∈ IRn
and z ∈ IRk respectively. We assume that for every parameter z there exists a point
x such that ϕ is true, but not necessarily vice versa.

A witness function for a constraint ϕ is a mapping f such that ϕ is true for every
point in Im f . The central statement in [26] is that if there exists a witness function for
the constraint ϕ1 and one for the constraint ϕ2, then there exists a witness function
for the constraint ϕ1 ∧ ϕ2. We reformulate Ratschan’s theorem using is-continuous
multi-valued mappings and give a proof.

Definition 5.1 Given a constraint ϕ with variables in x and parameters in y, we
say that F : y ( x is an is-continuous witness multimapping for ϕ if F is
is-continuous, and ϕ is true for all (x, y) ∈ graphF .

Theorem 5.1 If for the constraints ϕ1 with variables in x and parameters in y × z
and for ϕ2 with variables in y and parameters in x×z there exist is-continuous witness
multimappings, then there also exists an is-continuous multimapping for the constraint
ϕ1 ∧ ϕ2 with variables in x× y and parameters in z.

Proof: Given witness multimappings F for ϕ1 and G for ϕ2, we apply Proposition
4.5 and obtain an is-continuous multi-valued mapping H : z ( x × y. Since by
definition, H(z) = graph(F |{z}) ∩ graph(G|{z}), for all (x, y, z) ∈ graph(H), both
(x, y, z) ∈ graph(F ) and (x, y, z) ∈ graph(G) hold. Hence ϕ1 and ϕ2 are true for
points in graphH. Hence H is a witness multimap for ϕ1 ∧ ϕ2.
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