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Abstract

In stationary iterative methods for solving linear systems Ax = b, the
iteration x(k+1) = Hx(k) + c, where H and c are the iteration matrix
derived from A and the vector derived from A and b, respectively, is
executed for an initial vector x(0). We present a theorem which yields
componentwise error estimates for x(k), and clarify the relation between
our result and a previous result.
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1 Introduction

In this paper, we are concerned with stationary iterative methods for solving linear
systems

Ax = b, A ∈ Rn×n, x ∈ Rn, b ∈ Rn. (1)

The basic iterative scheme for (1) is

Mx(k+1) = Nx(k) + b, k = 0, 1, . . . (2)

where an initial vector x(0) is given, A = M −N and M is nonsingular. The iteration
(2) can also be written as

x(k+1) = Hx(k) + c, k = 0, 1, . . . (3)

where H := M−1N is the iteration matrix and c := M−1b. The iteration (3) converges
to the unique solution x∗ = A−1b if and only if ρ(H) < 1, where ρ(H) denotes the
spectral radius of H. The matrix H and the vectors c and x∗ satisfy the relation
x∗ = Hx∗ + c.

Usually A is decomposed into A = D+L+U , where D, L and U are the nonsingular
diagonal, strictly lower triangular and strictly upper triangular parts of A, respectively.
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In the Jacobi, Gauss-Seidel and SOR methods (e.g. [1]), M and N are formed as
M = D and N = −L − U , M = D + L and N = −U , and M = (1/ω)(D + ωL) and
N = (1/ω)((1− ω)D − ωU) for a nonzero real number ω, respectively.

In this paper, we consider error estimation for x(k). Yamamoto [3] established a
theorem which yields nonnegative real numbers ε and ε satisfying ‖x(k)−x∗‖ ≤ ε ≤ ε.
Namely this theorem gives a normwise error estimate for x(k).

The purpose of this paper is to present a theorem which gives componentwise error
estimates for x(k). This theorem supplies real n-vectors r and r satisfying |x(k)−x∗| ≤
r ≤ r, where |v| is the vector of componentwise absolute values of v ∈ Rn. We prove
max1≤i≤n ri ≤ ε and max1≤i≤n ri ≤ ε, where vi is the i-th component of v, if ‖ · ‖ is
∞-norm.

2 A Normwise Error Estimate

In this section, we present Theorem 1, which gives a normwise error estimate for x(k)

in the iteration (3).

Theorem 1 (Yamamoto [3]) Let ‖ · ‖ be a norm satisfying ‖Fv‖ ≤ ‖F‖‖v‖ for
F ∈ Rn×n and v ∈ Rn. In (3), if ‖H‖ < 1, then it follows that

‖x(k) − x∗‖ ≤ ε ≤ ε,

where

ε :=
‖x(k) − x(k+1)‖

1− ‖H‖ and ε :=
‖H‖k‖x(0) − x(1)‖

1− ‖H‖ .

Proof From x(k+1) − x∗ = (Hx(k) + c)− (Hx∗ + c) = H(x(k) − x∗), we have

‖x(k) − x∗‖ ≤ ‖x(k) − x(k+1)‖+ ‖x(k+1) − x∗‖
≤ ‖x(k) − x(k+1)‖+ ‖H‖‖x(k) − x∗‖,

which proves ‖x(k) − x∗‖ ≤ ε. Since

x(k) − x(k+1) = (Hx(k−1) + c)− (Hx(k) + c) = H(x(k−1) − x(k))
= · · · = Hk(x(0) − x(1)), (4)

it follows that

‖x(k) − x(k+1)‖ = ‖Hk(x(0) − x(1))‖ ≤ ‖H‖k‖x(0) − x(1)‖, (5)

showing ε ≤ ε. 2

3 Componentwise Error Estimates

In this section, we establish theory yielding componentwise error estimates for x(k) and
clarify the relation between the established theory and Theorem 1. Denote the n× n
identity matrix by I. For M = {Mij} ∈ Rm×n, MT := {Mji} and |M | := {|Mij |}.
Let e := (1, . . . , 1)T ∈ Rn. For v ∈ Rn, vi denotes the i-th component of v.

We construct Theorem 2, which gives componentwise error estimates for x(k).
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Theorem 2 In (3), if ‖H‖∞ < 1, then it follows that

|x(k) − x∗| ≤ r ≤ r,

where

r := |x(k) − x(k+1)|+ ‖x
(k) − x(k+1)‖∞
1− ‖H‖∞

|H|e

r := |H|k|x(0) − x(1)|+ ‖H‖
k
∞‖x(0) − x(1)‖∞
1− ‖H‖∞

|H|e.

Proof We have

x(k) − x∗ = x(k) − x(k+1) + x(k+1) − x∗

= x(k) − x(k+1) +Hx(k) + c− (Hx∗ + c)

= x(k) − x(k+1) +H(x(k) − x∗),

so that (I −H)(x(k) − x∗) = x(k) − x(k+1). This and the nonsingularity of I −H give
x(k)−x∗ = (I−H)−1(x(k)−x(k+1)). From this, ‖H‖∞ < 1 and Neumann series (e.g.,
[2]), we obtain

|x(k) − x∗|
≤ |(I −H)−1||x(k) − x(k+1)|
= |I +H +H2 + · · · ||x(k) − x(k+1)|
≤ (I + |H|+ |H|2 + · · · )|x(k) − x(k+1)|
= |x(k) − x(k+1)|+ |H||x(k) − x(k+1)|+ |H|(|H||x(k) − x(k+1)|) + · · ·
≤ |x(k) − x(k+1)|+ ‖x(k) − x(k+1)‖∞|H|e+ ‖|H||x(k) − x(k+1)|‖∞|H|e+ · · ·
= |x(k) − x(k+1)|+ (‖x(k) − x(k+1)‖∞ + ‖|H||x(k) − x(k+1)|‖∞ + · · · )|H|e
≤ |x(k) − x(k+1)|+ (‖x(k) − x(k+1)‖∞ + ‖H‖∞‖x(k) − x(k+1)‖∞ + · · · )|H|e
= |x(k) − x(k+1)|+ ‖x(k) − x(k+1)‖∞(1 + ‖H‖∞ + ‖H‖2∞ + · · · )|H|e
= r.

From (4), it follows that

|x(k) − x(k+1)| = |Hk(x(0) − x(1))| ≤ |H|k|x(0) − x(1)|. (6)

The inequalities (5) and (6) prove r ≤ r. 2

We present Theorem 3, which clarifies the relationship between Theorems 1 and
2, in the case when ‖ · ‖ in Theorem 1 is ∞-norm.

Theorem 3 Let ε and ε be defined as in Theorem 1, and r and r be defined as in
Theorem 2. If ‖ · ‖ in Theorem 1 is ∞-norm and ‖H‖∞ < 1, then max1≤i≤n ri ≤ ε
and max1≤i≤n ri ≤ ε.
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Proof The assumptions imply that

max
1≤i≤n

ri = ‖r‖∞

≤ ‖x(k) − x(k+1)‖∞ +
‖x(k) − x(k+1)‖∞

1− ‖H‖∞
‖|H|e‖∞

= ‖x(k) − x(k+1)‖∞ +
‖x(k) − x(k+1)‖∞‖H‖∞

1− ‖H‖∞

= ε (7)

and

max
1≤i≤n

ri = ‖r‖∞

≤ ‖|H|k|x(0) − x(1)|‖∞ +
‖H‖k∞‖x(0) − x(1)‖∞

1− ‖H‖∞
‖|H|e‖∞

= ‖|H|k|x(0) − x(1)|‖∞ +
‖H‖k+1

∞ ‖x(0) − x(1)‖∞
1− ‖H‖∞

≤ ‖H‖k∞‖x(0) − x(1)‖∞ +
‖H‖k+1

∞ ‖x(0) − x(1)‖∞
1− ‖H‖∞

= ε. 2

4 Mathematically Rigorous Implementation

Let M , N , D, L and U be as in Section 1, ‖ · ‖ and ε be as in Theorem 1, and r be
as in Theorem 2, and assume ‖ · ‖ = ‖ · ‖∞, M = D and N = −L − U (the case of
the Jacobi method). Then x(0) − x(1) = D−1(Ax(0) − b) and H = −D−1(L + U), so
rigorous upper bounds for ‖H‖, |H|, ‖x(0) − x(1)‖ and |x(0) − x(1)| can be computed
with O(n2) flops via directed rounding, i.e., rigorous upper bounds for ε and r can be
obtained on a computer with low computational cost. For example, let

A =

(
1 −0.5
−0.5 1

)
, b =

(
1
0

)
, x(0) =

(
0
0

)
, and k = 50.

We computed ε and r on a computer with Intel Xeon 2.66GHz Dual CPU, 4.00GB
RAM and MATLAB 7.5 with Intel Math Kernel Library and IEEE 754 double preci-
sion. Then we obtained ε = 1.8e–15 and r = (1.8e–15,8.9e–16)T .

5 Conclusion

We have constructed Theorem 2 for obtaining an upper bound for |x(k) − x∗|. The-
orem 3 was presented for clarifying the relationship between Theorem 1 and 2. Our
future work will be to develop an algorithm for efficiently and effectively computing
upper bounds for |H|e when M and N are not formed as in the Jacobi method.
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