Componentwise Error Estimates for Solutions Obtained by Stationary Iterative Methods*

Shinya Miyajima

Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan

Abstract

In stationary iterative methods for solving linear systems $A x=b$, the iteration $x^{(k+1)}=H x^{(k)}+c$, where H and c are the iteration matrix derived from A and the vector derived from A and b, respectively, is executed for an initial vector $x^{(0)}$. We present a theorem which yields componentwise error estimates for $x^{(k)}$, and clarify the relation between our result and a previous result.

Keywords: stationary iterative methods, linear systems, error estimation AMS subject classifications: 15A06, 65F10, 65G99

1 Introduction

In this paper, we are concerned with stationary iterative methods for solving linear systems

$$
\begin{equation*}
A x=b, \quad A \in \mathbb{R}^{n \times n}, \quad x \in \mathbb{R}^{n}, \quad b \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

The basic iterative scheme for (1) is

$$
\begin{equation*}
M x^{(k+1)}=N x^{(k)}+b, \quad k=0,1, \ldots \tag{2}
\end{equation*}
$$

where an initial vector $x^{(0)}$ is given, $A=M-N$ and M is nonsingular. The iteration (2) can also be written as

$$
\begin{equation*}
x^{(k+1)}=H x^{(k)}+c, \quad k=0,1, \ldots \tag{3}
\end{equation*}
$$

where $H:=M^{-1} N$ is the iteration matrix and $c:=M^{-1} b$. The iteration (3) converges to the unique solution $x^{*}=A^{-1} b$ if and only if $\rho(H)<1$, where $\rho(H)$ denotes the spectral radius of H. The matrix H and the vectors c and x^{*} satisfy the relation $x^{*}=H x^{*}+c$.

Usually A is decomposed into $A=D+L+U$, where D, L and U are the nonsingular diagonal, strictly lower triangular and strictly upper triangular parts of A, respectively.

[^0]In the Jacobi, Gauss-Seidel and SOR methods (e.g. [1]), M and N are formed as $M=D$ and $N=-L-U, M=D+L$ and $N=-U$, and $M=(1 / \omega)(D+\omega L)$ and $N=(1 / \omega)((1-\omega) D-\omega U)$ for a nonzero real number ω, respectively.

In this paper, we consider error estimation for $x^{(k)}$. Yamamoto [3] established a theorem which yields nonnegative real numbers ε and $\bar{\varepsilon}$ satisfying $\left\|x^{(k)}-x^{*}\right\| \leq \varepsilon \leq \bar{\varepsilon}$. Namely this theorem gives a normwise error estimate for $x^{(k)}$.

The purpose of this paper is to present a theorem which gives componentwise error estimates for $x^{(k)}$. This theorem supplies real n-vectors r and \bar{r} satisfying $\left|x^{(k)}-x^{*}\right| \leq$ $r \leq \bar{r}$, where $|v|$ is the vector of componentwise absolute values of $v \in \mathbb{R}^{n}$. We prove $\max _{1 \leq i \leq n} r_{i} \leq \varepsilon$ and $\max _{1 \leq i \leq n} \bar{r}_{i} \leq \bar{\varepsilon}$, where v_{i} is the i-th component of v, if $\|\cdot\|$ is ∞-norm.

2 A Normwise Error Estimate

In this section, we present Theorem 1, which gives a normwise error estimate for $x^{(k)}$ in the iteration (3).

Theorem 1 (Yamamoto [3]) Let $\|\cdot\|$ be a norm satisfying $\|F v\| \leq\|F\|\|v\|$ for $F \in \mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^{n}$. In (3), if $\|H\|<1$, then it follows that

$$
\left\|x^{(k)}-x^{*}\right\| \leq \varepsilon \leq \bar{\varepsilon}
$$

where

$$
\varepsilon:=\frac{\left\|x^{(k)}-x^{(k+1)}\right\|}{1-\|H\|} \quad \text { and } \quad \bar{\varepsilon}:=\frac{\|H\|^{k}\left\|x^{(0)}-x^{(1)}\right\|}{1-\|H\|} .
$$

Proof From $x^{(k+1)}-x^{*}=\left(H x^{(k)}+c\right)-\left(H x^{*}+c\right)=H\left(x^{(k)}-x^{*}\right)$, we have

$$
\begin{aligned}
\left\|x^{(k)}-x^{*}\right\| & \leq\left\|x^{(k)}-x^{(k+1)}\right\|+\left\|x^{(k+1)}-x^{*}\right\| \\
& \leq\left\|x^{(k)}-x^{(k+1)}\right\|+\|H\|\left\|x^{(k)}-x^{*}\right\|
\end{aligned}
$$

which proves $\left\|x^{(k)}-x^{*}\right\| \leq \varepsilon$. Since

$$
\begin{align*}
x^{(k)}-x^{(k+1)} & =\left(H x^{(k-1)}+c\right)-\left(H x^{(k)}+c\right)=H\left(x^{(k-1)}-x^{(k)}\right) \\
& =\cdots=H^{k}\left(x^{(0)}-x^{(1)}\right) \tag{4}
\end{align*}
$$

it follows that

$$
\begin{equation*}
\left\|x^{(k)}-x^{(k+1)}\right\|=\left\|H^{k}\left(x^{(0)}-x^{(1)}\right)\right\| \leq\|H\|^{k}\left\|x^{(0)}-x^{(1)}\right\|, \tag{5}
\end{equation*}
$$

showing $\varepsilon \leq \bar{\varepsilon}$.

3 Componentwise Error Estimates

In this section, we establish theory yielding componentwise error estimates for $x^{(k)}$ and clarify the relation between the established theory and Theorem 1. Denote the $n \times n$ identity matrix by I. For $M=\left\{M_{i j}\right\} \in \mathbb{R}^{m \times n}, M^{T}:=\left\{M_{j i}\right\}$ and $|M|:=\left\{\left|M_{i j}\right|\right\}$. Let $e:=(1, \ldots, 1)^{T} \in \mathbb{R}^{n}$. For $v \in \mathbb{R}^{n}, v_{i}$ denotes the i-th component of v.

We construct Theorem 2, which gives componentwise error estimates for $x^{(k)}$.

Theorem 2 In (3), if $\|H\|_{\infty}<1$, then it follows that

$$
\left|x^{(k)}-x^{*}\right| \leq r \leq \bar{r}
$$

where

$$
\begin{aligned}
r & :=\left|x^{(k)}-x^{(k+1)}\right|+\frac{\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}}{1-\|H\|_{\infty}}|H| e \\
\bar{r} & :=|H|^{k}\left|x^{(0)}-x^{(1)}\right|+\frac{\|H\|_{\infty}^{k}\left\|x^{(0)}-x^{(1)}\right\|_{\infty}}{1-\|H\|_{\infty}}|H| e
\end{aligned}
$$

Proof We have

$$
\begin{aligned}
x^{(k)}-x^{*} & =x^{(k)}-x^{(k+1)}+x^{(k+1)}-x^{*} \\
& =x^{(k)}-x^{(k+1)}+H x^{(k)}+c-\left(H x^{*}+c\right) \\
& =x^{(k)}-x^{(k+1)}+H\left(x^{(k)}-x^{*}\right)
\end{aligned}
$$

so that $(I-H)\left(x^{(k)}-x^{*}\right)=x^{(k)}-x^{(k+1)}$. This and the nonsingularity of $I-H$ give $x^{(k)}-x^{*}=(I-H)^{-1}\left(x^{(k)}-x^{(k+1)}\right)$. From this, $\|H\|_{\infty}<1$ and Neumann series (e.g., [2]), we obtain

$$
\begin{aligned}
& \left|x^{(k)}-x^{*}\right| \\
& \leq\left|(I-H)^{-1}\right|\left|x^{(k)}-x^{(k+1)}\right| \\
& =\left|I+H+H^{2}+\cdots\right|\left|x^{(k)}-x^{(k+1)}\right| \\
& \leq \quad\left(I+|H|+|H|^{2}+\cdots\right)\left|x^{(k)}-x^{(k+1)}\right| \\
& =\left|x^{(k)}-x^{(k+1)}\right|+|H|\left|x^{(k)}-x^{(k+1)}\right|+|H|\left(|H|\left|x^{(k)}-x^{(k+1)}\right|\right)+\cdots \\
& \leq\left|x^{(k)}-x^{(k+1)}\right|+\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}|H| e+\left\||H|\left|x^{(k)}-x^{(k+1)}\right|\right\|_{\infty}|H| e+\cdots \\
& =\left|x^{(k)}-x^{(k+1)}\right|+\left(\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}+\left\|\left|H\left\|x^{(k)}-x^{(k+1)} \mid\right\|_{\infty}+\cdots\right)|H| e\right.\right. \\
& \leq\left|x^{(k)}-x^{(k+1)}\right|+\left(\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}+\|H\|_{\infty}\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}+\cdots\right)|H| e \\
& =\left|x^{(k)}-x^{(k+1)}\right|+\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}\left(1+\|H\|_{\infty}+\|H\|_{\infty}^{2}+\cdots\right)|H| e \\
& =r .
\end{aligned}
$$

From (4), it follows that

$$
\begin{equation*}
\left|x^{(k)}-x^{(k+1)}\right|=\left|H^{k}\left(x^{(0)}-x^{(1)}\right)\right| \leq|H|^{k}\left|x^{(0)}-x^{(1)}\right| . \tag{6}
\end{equation*}
$$

The inequalities (5) and (6) prove $r \leq \bar{r}$.
We present Theorem 3, which clarifies the relationship between Theorems 1 and 2 , in the case when $\|\cdot\|$ in Theorem 1 is ∞-norm.

Theorem 3 Let ε and $\bar{\varepsilon}$ be defined as in Theorem 1, and r and \bar{r} be defined as in Theorem 2. If $\|\cdot\|$ in Theorem 1 is ∞-norm and $\|H\|_{\infty}<1$, then $\max _{1 \leq i \leq n} r_{i} \leq \varepsilon$ and $\max _{1 \leq i \leq n} \bar{r}_{i} \leq \bar{\varepsilon}$.

Proof The assumptions imply that

$$
\begin{align*}
\max _{1 \leq i \leq n} r_{i} & =\|r\|_{\infty} \\
& \leq\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}+\frac{\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}}{1-\|H\|_{\infty}}\||H| e\|_{\infty} \\
& =\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}+\frac{\left\|x^{(k)}-x^{(k+1)}\right\|_{\infty}\|H\|_{\infty}}{1-\|H\|_{\infty}} \\
& =\varepsilon \tag{7}
\end{align*}
$$

and

$$
\begin{aligned}
\max _{1 \leq i \leq n} \bar{r}_{i} & =\|\bar{r}\|_{\infty} \\
& \leq\left\||H|^{k}\left|x^{(0)}-x^{(1)}\right|\right\|_{\infty}+\frac{\|H\|_{\infty}^{k}\left\|x^{(0)}-x^{(1)}\right\|_{\infty}}{1-\|H\|_{\infty}}\||H| e\|_{\infty} \\
& =\left\||H|^{k}\left|x^{(0)}-x^{(1)}\right|\right\|_{\infty}+\frac{\|H\|_{\infty}^{k+1}\left\|x^{(0)}-x^{(1)}\right\|_{\infty}}{1-\|H\|_{\infty}} \\
& \leq\|H\|_{\infty}^{k}\left\|x^{(0)}-x^{(1)}\right\|_{\infty}+\frac{\|H\|_{\infty}^{k+1}\left\|x^{(0)}-x^{(1)}\right\|_{\infty}}{1-\|H\|_{\infty}} \\
& =\bar{\varepsilon} . \quad \square
\end{aligned}
$$

4 Mathematically Rigorous Implementation

Let M, N, D, L and U be as in Section $1,\|\cdot\|$ and $\bar{\varepsilon}$ be as in Theorem 1, and \bar{r} be as in Theorem 2, and assume $\|\cdot\|=\|\cdot\|_{\infty}, M=D$ and $N=-L-U$ (the case of the Jacobi method). Then $x^{(0)}-x^{(1)}=D^{-1}\left(A x^{(0)}-b\right)$ and $H=-D^{-1}(L+U)$, so rigorous upper bounds for $\|H\|,|H|,\left\|x^{(0)}-x^{(1)}\right\|$ and $\left|x^{(0)}-x^{(1)}\right|$ can be computed with $\mathcal{O}\left(n^{2}\right)$ flops via directed rounding, i.e., rigorous upper bounds for $\bar{\varepsilon}$ and \bar{r} can be obtained on a computer with low computational cost. For example, let

$$
A=\left(\begin{array}{cc}
1 & -0.5 \\
-0.5 & 1
\end{array}\right), \quad b=\binom{1}{0}, \quad x^{(0)}=\binom{0}{0}, \quad \text { and } \quad k=50
$$

We computed $\bar{\varepsilon}$ and \bar{r} on a computer with Intel Xeon 2.66 GHz Dual CPU, 4.00GB RAM and MATLAB 7.5 with Intel Math Kernel Library and IEEE 754 double precision. Then we obtained $\bar{\varepsilon}=1.8 \mathrm{e}-15$ and $\bar{r}=(1.8 \mathrm{e}-15,8.9 \mathrm{e}-16)^{T}$.

5 Conclusion

We have constructed Theorem 2 for obtaining an upper bound for $\left|x^{(k)}-x^{*}\right|$. Theorem 3 was presented for clarifying the relationship between Theorem 1 and 2. Our future work will be to develop an algorithm for efficiently and effectively computing upper bounds for $|H| e$ when M and N are not formed as in the Jacobi method.

Acknowledgements

The author wish to thank the referee for helpful comments. This research was partially supported by Grant-in-Aid for Scientific Research (C) (23560066, 2011-2015) from the Ministry of Education, Science, Sports and Culture of Japan.

References

[1] G.H. Golub and C.F. Van Loan. Matrix Computations, third edition. The Johns Hopkins University Press, Baltimore and London, 1996.
[2] C.D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM Publications, Philadelphia, 2000.
[3] T. Yamamoto. Introduction to Numerical Analysis, an enlarged version. Saiensusha, Tokyo, 2003 (in Japanese).

[^0]: *Submitted: October 2, 2011; Revised: March 26, 2012; Accepted: March 26, 2012; Posted: April 6, 2012.

