
YalAA

Yet Another Library for Affine Arithmetic∗

Stefan Kiel
Department of Computer Science and Applied Cogni-
tive Science - University of Duisburg-Essen

kiel@inf.uni-due.de

Abstract

In this paper, we present YalAA, a new library for affine arithmetic.
Recently, affine arithmetic has been given increased attention even from
outside the traditional verified computing community, for example, in
the areas of circuit design, GPU based rendering of implicit objects and
global optimization. Furthermore, several improvements to the original
affine model were proposed. However, a fully verified, object-oriented
implementation supporting at least some of the extensions is currently
not available.

The goal of YalAA is to provide a wide range of elementary functions
and to allow the user to incorporate improvements for the original affine
model easily. In contrast to other available libraries, YalAA also pro-
vides verified implementations of non-convex or non-concave elementary
functions. Our library has a policy based design. That is, the user can
alter different aspects in the library’s behavior to reflect variations of the
original model while relying on the same code base. Because affine arith-
metic is often used in combination with interval arithmetic, we followed
the principles of the upcoming P1788 interval standard during the design
process. Therefore, YalAA can be integrated seamlessly into an existing
interval arithmetic environment.

Keywords: affine arithmetic, library, interval analysis, yalaa, policy based design
AMS subject classifications: 65-04

1 Introduction

Common interval arithmetic (IA) [1] can provide a verified range enclosure for func-
tions constructed of basic operations and elementary functions. However, these enclo-
sures are not always tight and can overestimate the true range. This is mainly due to
the dependency problem and wrapping effect. IA treats every occurrence of a variable
as independent during the computation process, resulting in the former. The latter is

∗Submitted: September 12, 2011; Revised: September 8, 2012; Accepted: September 10,
2012.

114

Reliable Computing, 2012 115

caused by the fact that every interval is axis-aligned. Geometrically speaking, if an
interval box is rotated, for example, by 45 degrees, the result has to be wrapped into
an axis-aligned box, increasing the area of the original box by a factor of

√
2.

Overestimation can yield unusable results due to their wide range. Furthermore, it
can increase the computation times in the often used interval branch-and-bound algo-
rithms significantly. Several more sophisticated methods for verified range bounding
were proposed in order to reduce such overestimation. Among these are such tech-
niques as mean-value forms [22], Taylor models [2], ellipsoid arithmetic [23], generalized
interval arithmetic (GIA) [10] or affine arithmetic (AA) [5].

GIA, proposed by E. Hansen in 1975, tracks the result’s first order dependency on
the input variables. AA is a very similar model presented in 1990 by Comba and Stolfi.
In contrast to GIA, it does not only track the dependency on the input variables but
also introduces variables for errors occurring during the computation. Furthermore, it
uses real values instead of intervals for storing the dependencies. Originally, AA was
promoted as a verified arithmetic tailored for computer graphics. Today it is applied
to a wide range of problems such as GPU based raytracing of implicit surfaces [16],
[8], circuit design [18] or global optimization [25], [20].

2 Affine Arithmetic

In this section, we give a short overview of AA. Having introduced the basic model,
we discuss some of the recently suggested improvements for it. After that, we describe
the two publicly available implementations libaa and libaffa.

2.1 Basic Model

In AA, a partially unknown quantity x̂ is represented as an affine combination of a
central value x0 and error terms xiεi

x̂ = x0 +

n∑
i=1

xiεi. (1)

The xi are real numbers1 and called partial deviations, whereas the εi are symbolic
noise variables. They model linear dependencies between affine forms and are assumed
to lie inside the interval [−1, 1]. If two affine forms share the same noise symbol εi,
there is a partial linear dependency between them. The joint range of affine forms is
visualized as a center symmetric polytope.

We can express affine operations (that is, addition, scaling and translation) natu-
rally inside the AA model:

x̂± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + . . .+ (xn ± yn)εn ,
αx̂ = (αx0) + (αx1)ε1 + . . .+ (αxn)εn ,
α± x̂ = (x0 ± α) + x1ε1 + . . .+ xnεn .

A non-affine function f(x̂) cannot be expressed directly in terms of AA. Instead we
have to choose an affine approximation fa(x̂), with which we calculate the affine
part of f and enclose the approximation error. The error is added as a new term
xn+1εn+1 to the resulting affine form. Here, εn+1 should be a previously unused noise

1or floating-point numbers on a computer

116 S. Kiel, YalAA

variable. Rounding errors, occurring irrespectivly of whether f is affine or non-affine,
are handled similarly. In the non-affine case, the rounding errors are usually added to
the approximation error.

2.2 Improvements to the Original Model

We can group most AA improvements into three categories. The first category contains
all suggestions which do no alter the model itself but propose a different implementa-
tion technique. An example is the talk [24], which describes an approach for rounding
control differing from the original implementation [6], or the paper [17]. In the latter,
the authors employ a better routine for the multiplication of affine forms. The second
category consists of improvements which alter the model but still produce an affine
form. For example the AF1 and AF2 forms are introduced in [20]2. They feature a new
way of handling approximation errors. Changes creating a non-affine model belong in
the third and last category. For example, the authors in [21], [4] and [15] propose to
preserve higher order noise symbols εni to keep track of higher order dependencies.

We restrict the further discussion to affine models because YalAA only support
those at present. In AA, the number of error terms in an affine form increases during
the computation process. Usually, one extra error term is added with each basic
operation or elementary function call. None of these extra terms model any affine
dependency on the input variables3. Therefore, they often do not offer any advantage
but increase the computational cost. The AF1 form changes the original model by
introducing a special error term xn+1εn+1 where all the uncertainty introduced into
the computation process by approximation and rounding errors is stored.

The AF2 model extends AF1 by splitting the special error term xn+1εn+1 into
three terms xn+1εn+1, x

+
n+1ε

+
n+1 and x−n+1ε

−
n+1 describing general, positively signed

and negatively signed errors, respectively. Signed errors usually occur during multi-
plication and integer power operations, as these produce noise variables of the form
ε2ki , k ∈ N. Consider, for example, the square of x̂ = x0 + x1ε1 resulting in (x̂)2 =
x20 + 2x0x1ε1 + x21ε

2
1. The term x21ε

2
1 is nonlinear, thus we have to approximate it by a

new noise symbol. However, we know that ε21 ∈ [0, 1], that is, the approximation error
is positively signed.

In [28], the authors introduced a variant of AA which they call revised affine
arithmetic (RevAA). An affine form in RevAA consists of an affine part and an interval
part enclosing the nonlinear noise x̂ = x0 + x1ε1 + . . .+ xnεn + ex[−1, 1]. Therefore, a
computation between two revised forms consists of two operations: The operation on
the affine part and the interval computation. Similar to the forms AF1/AF2 introduced
by Messine, the length of the affine part can not grow larger than the number of input
variables.

The publicly available implementations of AA take into account rounding errors
as described in [6]. That is, the exact floating-point error is computed during an
affine operation by performing the same calculation with three rounding modes: to
nearest, to +∞, to −∞. In [24], Ninin et al. propose a new method for calculating
the rounding error. The authors suggest using small interval coefficients and letting
IA take care of the rounding errors, which makes the model very similar to GIA. The
second method proposed there is an a posteriori error correction similar to that used

2There is a minor mistake in the multiplication routine for two AF2 forms presented in
this paper, see [28] for a corrected version.

3They depend on the input nonlinearly.

Reliable Computing, 2012 117

Figure 1: Basic structure of YalAA’s design.

for Taylor models in COSY [3], [26].

2.3 Existing Implementations

Currently, there are two publicly available implementations of the AA intended for
verified computations: libaa [27] and libaffa [9]. The former is the reference im-
plementation created by the inventors of AA. It is written in C and is based on a
non-object-oriented stack approach. It supports only a very limited set of elementary
functions not including non-convex or non-concave functions like the sine and the co-
sine. Libaffa is implemented in C++, provides an object-oriented interface and at
least the basic trigonometric functions. However, the derivation of the approximation
error and the handling of rounding errors is not always correct. Both libraries follow
the model description and implementation outlined in [6]. Hence, they only implement
the original affine model.

The goal of YalAA is to provide a fully verified, object-oriented AA implementa-
tion with a complete set of elementary functions. Furthermore, a user should be able
to modify YalAA’s behavior easily in order to implement extended models without
rewriting major parts of the library. The set of supported elementary functions in
YalAA is based on the set required by the upcoming P1788 interval standard [7]. To
provide the intended flexibility, we chose a policy based design. That is, the behav-
ior can be altered by one small policy class, which does not affect other parts of the
library.

3 Design of YalAA

Basically, YalAA is constructed of one main class and five policy classes as shown in
Fig. 1. The library can be customized further with the two types T and IV. The former
is used for representing the partial deviations and the central value. It is called the base
type and allows users to customize types for deviations. For example, they can employ
exact rational numbers instead of floating-point numbers. The underlying interval type
is specified by IV. As YalAA uses a trait class for accessing it, any existing interval
library can be integrated seamlessly. Furthermore, users can mix affine forms with the

118 S. Kiel, YalAA

Figure 2: The AffinePolicy class in detail.

types T and IV in the basic operations. This is important because AA is often employed
inside existing IA environments. In the remainder of this section, we describe each of
the classes in Fig. 1 in detail.

ErrorTerm The policy class ErrorTerm represents the i-th error term xiεi. It
provides an ordering on the error terms and is responsible for generating new noise
variables. The latter operation has to be thread-safe if the library is used in a multi-
threaded environment. Furthermore, it stores the unique identifier for noise symbols
and thus limits their maximum number. Such operations are possibly performance
critical. Therefore, users can adapt them to their current needs by changing the
policy.

AffineCombination The AffineCombination policy class is responsible for stor-
ing an affine combination of the central value and the error terms. Further, it provides
the affine operations addition, scaling and translation. Any operation performed in
YalAA is broken down into these. Note that no rounding control, error correction or
handling is done at this particular level, only the plain basic operations.

ArithmeticKernel The core component of YalAA is the ArithmeticKernel pol-
icy. It provides an implementation of all supported operations and elementary func-
tions and performs the affine part of them. Furthermore, it calculates bounds on the
approximation and rounding error and tracks exceptional situations occurring during
the computation, for example domain violations or overflows. This information is prop-
agated through the ArithmeticError class which acts as a uniform interface between
possibly different implementations of ArithmeticKernel and the rest of YalAA. As
the verified implementation of an operation depends heavily on the underlying type,
ArithmeticKernel has to be specialized for each base type T.

AffinePolicy The AffinePolicy class shown in Fig. 2 is responsible for handling
rounding and approximation errors, creating new affine forms and introducing un-
certainty into the computation. The three methods look similar, but have different
semantics. The method add errors is called for adding a particular way of handling
rounding and approximation errors to affine combinations. New form is called if a new
affine form is created, that is, a new input variable is introduced. Add uncert is called
if uncertainty is introduced into the computation process, for example, an affine form is
combined with an interval. Utilizing the three methods, we can implement the usual

Reliable Computing, 2012 119

Figure 3: The ErrorPolicy in detail.

Table 1: Supported state propagation flags in YalAA.
Flag Description
DISCONT Function is discontinuous over the arguments.
UNBOUND Function is not bounded over the arguments.
P D VIOL Function is partially undefined over the arguments.
C D VIOL Function is undefined over the arguments.
OFLOW An overflow occurred.
I ERROR An internal error occurred.

affine model and the extended AF1 and AF2 models just by exchanging the policy
class4.

ErrorPolicy The ErrorPolicy shown in Fig. 3 is responsible for providing spe-
cial value types special t for affine forms, for example, the empty set or the whole
real line, and for handling information about exceptional situations passed on by the
ArithmeticKernel. YalAA supports propagation of mutual combinations of the six
states shown in Tab. 1.

The pre op methods are called prior to an operation. They can prevent YalAA
from actually performing the operation, if the result is always a special value in the
current error policy. The post op method is called after the actual operation and
handles exceptional situations occurring during the operation. With the ErrorPolicy

approach, we can implement different concepts for error handling, for example, the
common error handling for AA described in [6] or even a decoration-like approach as
currently discussed for intervals in the P1788 standardization group.

The complete process for evaluating an elementary function or a basic operation
on an affine form is outlined in Fig. 4. In the first step, the user calls an oper-
ation. Then a check for special affine forms in the input arguments is performed
by ErrorPolicy::pre op. If none are present, the actual operation is called in the
ArithmeticKernel class. The AffinePolicy adds the rounding and approximation
errors. In the last step, ErrorPolicy::post op checks for errors which possibly oc-
cured during the operation.

4The special noise symbols introduced by AF1/AF2 also need support at the level of the
basic operations, which the AffineCombination policy class provides.

120 S. Kiel, YalAA

Figure 4: Interaction of YalAA’s policy classes in a function call.

4 Policy Classes

In the following section we describe the policy classes supplied with YalAA. These
classes let users either to employ the library directly or to customize it according to
their needs.

4.1 Affine Policies

Currently, we supply three implementations of the AffinePolicy in YalAA. Following
[20], we name them AF0, AF1 and AF2. AF0 is the usual affine computation model,
whereas AF1 and AF2 implement the respective extended models. In the following,
we describe these three policies in detail.

AF0 All operations in AffinePolicy introduce a new noise variable εn+1. Signed
errors are handled by scaling the central value. If e+ is a positively signed error, then
the scaled central value and the respective deviation are computed according to

x0 = x0 + 0.5e+ ,
xn+1 = 0.5e+ .

AF1 In contrast to AF0, the AF1 policy maps all errors into one single special error
term. Only the new form method in AffinePolicy introduces a new noise symbol in
this model. The two other methods add the error/uncertainty to the special error
term. Signed errors are handled as in AF0.

AF2 AF2 is very similar to AF1 but splits the special error term. Therefore it
is necessary to alter the handling of signed errors. The policy adds them to their
respective special error terms xn+1εn+1, xn+1ε

+
n+1 and xn+1ε

−
n+1.

4.2 Error Policies

The ErrorPolicy classes allow the user to customize the behavior of the library in
case of domain violations, overflows or internal errors. Currently, YalAA provides
policies implementing the error handling technique used in libaffa and libaa and a
decoration-like model. In the following subsection, we describe the implementation of
this two policies in detail.

Reliable Computing, 2012 121

Table 2: Combinations of special forms in the common error model.
◦ NONE R EMPTY

NONE NONE R EMPTY

R R R EMPTY

EMPTY EMPTY EMPTY EMPTY

Figure 5: Computational graph for the inductively defined function 3.0(x2−
√
x).

4.2.1 Common Error Model

The standard model for error handling in AA was introduced in [6] and is used in libaa
and libaffa. It employs two special affine forms R and ∅. The former represents the
whole real line and indicates an unbounded or overflowed result. The latter is the
empty set ∅ and used if the operation is not defined. Table 2 shows the outcomes of
combinations of special values. They are used by the ErrorPolStd, which implements
this model in YalAA, for the pre op operation.

4.2.2 Decoration Model in YalAA

A more sophisticated approach to error handling called decorations is currently dis-
cussed by the P1788 interval standardization group [13], [11], [12]. The key idea is
to propagate a decoration through the computational graph of an inductively defined
function. A function is inductively defined if it is a composition of a finite number of
basic operations and elementary functions like that shown in Fig. 5. In particular, any
function calculated using the natural affine extension5 is inductively defined. That is,
each function that can be directly computed using YalAA fulfills this requirement.

The P1788 decoration support is still work in progress and is tailored towards IA.
We use a similar but not completely identical mechanism. In YalAA, decorations
are supplied by the ErrorPolDec policy and are either features of the function or
error states. YalAA tracks three attributes through decorations: “domain tetrit” D,
“defined and continuous” C and “defined and bounded” B.

Let Df ⊆ Rn be the natural domain of f : Rn → R. Then the domain tetrit

5If all real operations, quantities and elementary functions in an expression are replaced
by their respective AA counterparts, we obtain the natural affine extension.

122 S. Kiel, YalAA

Table 3: Decorations supported by YalAA.
D+ D− C B Dec. Meaning
T F T T D5 f is cert. defined, cont. and bounded over x
T F T F D4 f is cert. defined and cont. over x
T F F F D3 f is cert. defined over x
T T F F D2 f is possibly defined over x
F T F F D1 f is certainly undefined over x
F F F F D0 x is the empty set
? ? ? ? D−1 an error occurred

Table 4: Connection between affine part and decoration.
Decoration Meaning for the affine part Central value (IEEE754 types)
D5 Has a result valid
D4 Overflowed ±∞
D3 Possibly has a result valid or ±∞
D2 Possibly has a result valid or ±∞
D1 Is the empty set NaN
D0 Is the empty set NaN
D−1 Undefined NaN

D(f,x) = (D+, D−) for an interval x ∈ IRn is defined as

D+ ⇔ (∃x ∈ x) : x ∈ Df

D− ⇔ (∃x ∈ x) : ¬(x ∈ Df).

The two other flags are defined as:

C(f,x)⇔ The restriction of f to x is defined and continuous.

B(f,x)⇔ The restriction of f to x is defined and bounded.

The possible combinations of these attributes and the resulting decorations are
listed in Tab. 3. Each decoration except D−1 and D0 describe properties of the function.
They are retrieved for the interval box enclosing the affine form and ordered, that is,
Di < Di−1 for 5 ≥ i ≥ 0. A decoration of a function f(x̂) is the minimum decoration
of its arguments and the function’s decorations over [a, b] enclosing x̂.

Based on the result’s decoration, the user can deduce whether the affine part has
a meaningful value as shown in Tab. 4. The current approach to decorations is not
ideal as it is unclear from the decorations D3 and D2 whether the affine part is valid.

YalAA allows the direct composition of affine forms with intervals or scalars.
As currently neither of them have a decoration, we either have to force the user to
perform an explicit conversion to a decorated affine form or to provide some automatic
mechanism. The rules for automatic conversion are given in Tab. 5. In short, we
assign to an interval or a scalar the best decoration D5 if it is not a special value
or empty. In IEEE754, special values are NaN or ±∞. Although assigning the best
decoration automatically is disputable, in our experience the intervals or scalars used
for composition are mostly constants and as such can be considered safe. If not, the
user still has the opportunity to perform a manual conversion.

Reliable Computing, 2012 123

Table 5: Automatic conversion rules for intervals and scalars in composition
with decorated affine forms.

Type Value Dec.
Scalar ¬special D5

Scalar special D−1

Interval ¬(empty ∨ special) D5

Interval empty ∧¬special D0

Interval special D−1

5 Floating-Point Implementation

YalAA is supplied with a specialization of the ArithmeticKernel class for the floating-
point types float, double and long double. Where suitable, YalAA works with the
algorithms described in [6]. In particular, it uses the exact calculation of the round-
ing error for affine functions and min-range approximation for non-affine elementary
functions. However, the latter is only applicable to convex or concave functions. We
handle other elementary functions by a Chebyshev interpolation based approach.

For constructing verified affine approximations of elementary functions, both min-
range and Chebyshev interpolation need lower and upper bounds on the elementary
functions. As the standard math libraries provided by the C++ environment neglect
user-defined rounding modes, YalAA uses IA for evaluating all elementary functions
except the square root during the approximation process.

5.1 Chebyshev Interpolation

For computing a non-affine function f in AA, we need an affine approximation which
can be derived on the basis of the Chebyshev interpolation. Following [6], we limit
our discussion to univariate affine approximations of the form αx+ ζ. The Chebyshev
nodes xk are defined as

xk = cos

(
π(2k + 1)

2n+ 2

)
, k = 0 . . . n,

and are the roots of the Chebyshev polynomials

Ti(x) = cos iθ , if x = cos θ ,

see [19]. A function f : [−1, 1] → R can be approximated using the n-th degree
Chebyshev interpolant

pn(x) =
c0
2

+

n∑
k=1

ckTk(x)

with the Chebyshev coefficients

ci =
2

n+ 1

n∑
k=0

f(xk)Ti(xk).

For approximating a function on a general finite interval [a, b], a linear transformation
to [−1, 1] is necessary. The new Chebyshev nodes are obtained through the inverse
transformation as

x′k =
1

2
((b− a)xk + a+ b)

124 S. Kiel, YalAA

so that the coefficients are equal to

c′i =
2

n+ 1

n∑
k=0

f(x′k)Ti(xk).

The new interpolant is given as

pn(x) =
c0
2

+

n∑
k=0

c′kTk(x)

for x ∈ [−1, 1]. We can transform any x′ ∈ [a, b] using a linear transformation t :
[a, b]→ [−1, 1] with

t(x′) =

(
2x′ − (a+ b)

b− a

)
.

Therefore, the final polynomial for x′ is

pn(x′) =
c0
2

+

n∑
k=0

c′kTk

(
2x′ − (a+ b)

b− a

)
.

We want to compute an affine approximation of the form αx̂ + ζ ± δ over the
domain x = [a, b] of x̂. This is a polynomial of degree one, so that we have to compute
only the coefficients c′0 and c′1. We calculate enclosures

α =
2c′1
b− a

and

ζ =
c′0
2
− a+ b

b− a
for α and ζ in IA. We take the midpoints of α, ζ and shift the rounding error into δ
according to

δ =
1

2
(len(x̂)widthα+ width ζ) .

Here, len(x̂) denotes the number of noise symbols in x̂. For rigorous results, we have to
use rounding towards +∞ for δ. A bound for the approximation errors can be derived
with Lagrange’s remainder formula:

R(x) =
(widthx)2f (2)(x)

16
,

if the second derivative is available.
As the central value x0 is always the midpoint of the interval [a, b] enclosing the

affine form, the linear transformation t will always map x0 to zero in exact arithmetic.
Therefore, instead of the direct affine transformation ŷ = αx̂+ ζ we use the following
formula:

y0 = ζ
yi = αx′i

In order to bound R(x), we usually use the natural interval extension of f (2)(x).
Because of the dependency effect, we sometimes have to exploit other features of f (2),
like monotonicity, in order to get sharp bounds on R(x) (e.g. for the inverse tangent).
Another problem occurs if a function is not two times differentiable over its domain.
In this case, we cannot use the Lagrange remainder formula. In our library, this is only

Reliable Computing, 2012 125

the case for the inverse sine and cosine functions. Both functions have the domain
[−1, 1], their respective second derivatives ± x

(1−x2)3/2
are undefined at the endpoints.

For both functions, we calculate

e(x) = |f(x)− p1(x)|∞ = max
∀x∈[a,b]

|f(x)− p1(x)|,

that is the exact error of our approximation. The maximum error can occur either
at the endpoints of [a, b] or at a local maximum. The local maximum is x∗ such that

f ′(x∗)− p′1(x∗) = 0. If we solve this equation we get x1|2 = ±
√

1− 1
c21

as candidates

for the maximum. We have to evaluate e(x) at all 4 points a, b, x1, x2 with IA in order
to derive a verified upper bound. This technique is much more expensive than the
ordinary Lagrange remainder, hence we only apply it near the endpoints, where the
derivatives behave poorly.

5.2 Integer Power Function

In our implementation, the integer power function pown(x̂, n) is a direct extension of
the squaring approach used in GIA:

x̂n =

(
x0 +

m∑
i=1

xiεi

)n

= xn0 + nxn−1
0

(
m∑
i=1

xiεi

)
+(

n
2

)
xn−2
0

(
m∑
i=1

xiεi

)2

+
(
n
3

)
xn−3
0

(
m∑
i=1

xiεi

)3

+ . . .+

(
m∑
i=1

xiεi

)n

.

The first two terms of the sum are the affine part of the power function. The nonlinear
terms are enclosed by a new error term. If we denote the radius of x̂ by

rad x̂ =

m∑
i=1

|xi| ,

we can bound the error as

e =

n∑
k=2

(
n

k

)
(rad x̂)k.

We split the error into the unsigned part e+ for all terms with an even k and the
signed part e± for all odd terms.

6 Comparison: YalAA vs. Other Implementa-
tions

In Tab. 6, we list the elementary functions required in the upcoming interval standard
and compare their support status in AA libraries. According to P1788, the power
function pow has to be the general power function. Neither libaffa nor YalAA
support it. Instead, both use the usual definition xy = expy ln x. Additionally, YalAA

provides the rational power function x
p
q and the n-th root x

1
p , p ∈ Z, q ∈ N to

complement pow. Both libaffa and YalAA support a wide range of elementary
functions. However, the implementation for at least the sine and cosine functions is

126 S. Kiel, YalAA

Table 6: Support of P1788 required elementary functions in AA libraries.
Function libaa libaffa YalAA
sqr X X X
pown × X X
pow × X X
sqrt X X X
exp X X X
exp2, exp10 × × X
log × X X
log2, log10 × × X
expm1, exp2m1, exp10m1 × × X
logp1, lo2p1, log10p1 × × X
sin × X X
cos × X X
tan × X X
asin × × X
acos × × X
atan × × X
atan2 × × ×
sinh × X X
cosh × X X
tanh × X X
asinh × X X
acosh × X X
atanh × X X
abs X X ×
rSqrt × × ×
hypot × × ×
compoundm1 × × ×

Reliable Computing, 2012 127

not verified in libaffa as it does not derive verified bounds on the remainder. Also,
it uses directed rounding with floating-point elementary functions, which does not
guarantee correct results.

All libraries implement the usual error model for exception handling. In addition,
YalAA provides a limited support for decorations. Furthermore, YalAA can be used
with arbitrary base types in contrast to the other libraries, which rely on fixed data
types for representing affine forms. YalAA can use external interval libraries through
trait classes, for example, C-XSC [14] or filib++. Therefore, it can easily interact
with them whereas libaffa has a built-in IA library and libaa always employs a
fixed external library.

7 Conclusion and Outlook

In this paper, we presented YalAA, a new library for affine arithmetic. To our knowl-
edge, YalAA provides the first verified publicly available implementation of non-
convex or non-concave elementary functions in affine arithmetic along with a wide
range of P1788 recommended elementary functions. Its policy based design allows
easy adaption to the users’ needs. In contrast to existing libraries, YalAA can be in-
tegrated seamlessly into existing interval environments allowing for mixed operations
with intervals.

In the future, we plan to add support for all elementary functions required or
recommended by P1788 standard. Another goal is to implement an a posteriori error
correction such as the one suggested in [24]. As the GIA and the AA computation
models are very similar, it is also interesting to support GIA inside YalAA. This
would make a fair comparison of these two computation models possible.

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, New York, 1983.

[2] M. Berz. Modern map methods for charged particle optics. Nuclear Instruments
and Methods A363, pages 100–104, 1995.

[3] M. Berz and K. Makino. Cosy infinity 9.0. Technical Report MSUHEP 060803,
Michigan State University, 2006.

[4] G. Bilotta. Self-verified extension of affine arithmetic to arbitrary order. Le
Matematiche, 63(1):15–30, 2008.

[5] J.L.D. Comba and J. Stolfi. Affine arithmetic and its applications to computer
graphics. Presented at SIBGRAPI’93, Recife, PE (Brazil), 1993.

[6] L.H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods and Applica-
tions. IMPA, Rio de Janeiro, 1997.

[7] J. Pryce (Tech. Eds.). P1788: IEEE Standard for Interval Arithmetic Version
02.2.

[8] Oleg Fryazinov, Alexander Pasko, and Peter Comninos. Fast reliable interrogation
of procedurally defined implicit surfaces using extended revised affine arithmetic.
Computers & Graphics, 34(6):708 – 718, 2010.

128 S. Kiel, YalAA

[9] O. Gay, D. Coeurjolly, and N.J. Hurst. libaffa. http://www.nongnu.org/

libaffa/, accessed on 06.09.2012.

[10] E. Hansen. A generalized interval arithmetic. In Karl Nickel, editor, Inter-
val Mathematics, volume 29 of Lecture Notes in Computer Science, pages 7–18.
Springer Berlin / Heidelberg, 1975.

[11] N. T. Hayes. Trits to tretrits, 2010. P1788, Motion 18.

[12] N. T. Hayes. Property tracking with decorations, May 2011. P1788, Proposed
Motion.

[13] N. T. Hayes and A. Neumaier. Exception handling for interval arithmetic. P1788,
Motion 8.

[14] W. Hofschuster and W. Krämer. C-XSC 2.0 A C++ library for extended scientific
computing. In Ren Alt, Andreas Frommer, R. Kearfott, and Wolfram Luther,
editors, Numerical Software with Result Verification, volume 2991 of Lecture Notes
in Computer Science, pages 259–276. Springer Berlin / Heidelberg, 2004.

[15] S. Huahao, L. Hongwei, M. Ralph, and W. Guojin. Modified affine arithmetic is
more accurate than centered interval arithmetic or affine arithmetic. In Michael
Wilson and Ralph Martin, editors, Mathematics of Surfaces, volume 2768 of Lec-
ture Notes in Computer Science, pages 355–365. Springer Berlin / Heidelberg,
2003.

[16] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen. Fast ray
tracing of arbitrary implicit surfaces with interval and affine arithmetic. Computer
Graphics Forum, 28(1):26–40, 2009.

[17] V. L. Kolev. Optimal multiplication of g-intervals. Reliable Computing, 13:399–
408, 2007.

[18] A. Lemke, L. Hedrich, and E. Barke. Analog circuit sizing based on formal meth-
ods using affine arithmetic. In Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pages 486–489. ACM, 2002.

[19] J. C Mason and D. C. Handscomb. Chebyshev Polynomials. CRC Press, 2003.

[20] F. Messine. Extentions of affine arithmetic: Application to unconstrained global
optimization. Journal of Universal Computer Science, 8(11):992–1015, 2002.

[21] F. Messine and A. Touhami. A general reliable quadratic form: An extension of
affine arithmetic. Reliable Computing, 12:171–192, 2006.

[22] A. Neumaier. Interval methods for systems of equations. Cambridge University
Press, 1990.

[23] A. Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confidence
regions. Computing (Suppl.), 9:175–190, 1993.

[24] J. Ninin and F. Messine. Reliable affine arithmetic, 2011. International Sym-
posium on Scientific Computing, Computer Arithmetic, and Validated Numerics
(SCAN 2010).

[25] J. Ninin, F. Messine, and P. Hansen. A reliable affine relaxation method for global
optimization. Technical report, IRIT, 2010.

[26] N. Revol, K. Makino, and M. Berz. Taylor models and floating-point arithmetic:
proof that arithmetic operations are validated in cosy. Journal of Logic and
Algebraic Programming, 64(1):135–154, 2005.

Reliable Computing, 2012 129

[27] J. Stolfi. libaa. http://www.ic.unicamp.br/~stolfi/, accessed on 06.09.2012.

[28] Xuan-Ha Vu, Djamila Sam-Haroud, and Boi Faltings. Enhancing numerical con-
straint propagation using multiple inclusion representations. Annals of Mathe-
matics and Artificial Intelligence, 55:295–354, 2009.

