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Abstract

A new iterative method of Ostrowski’s type for the inclusion of one
isolated simple or multiple complex zero of a polynomial is established in
circular complex arithmetic. Cubic convergence is proved and computa-
tionally verifiable initial condition that guarantees the convergence of this
inclusion method is stated. In order to demonstrate convergence behavior
of the proposed method, two numerical examples are given.
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1 Introduction

Moore’s interval version of Newton’s method [4, 5] for the inclusion of a simple real
zero of a differentiable function can be applied only to real simple zeros, which lim-
its the application of this method. In this paper we consider an iterative method of
Ostrowski’s type for the inclusion of one simple or multiple complex zero of a poly-
nomial in circular complex arithmetic. Ostrowski-like algorithms for the simultaneous
inclusion of all zeros of a polynomial, realized in circular complex arithmetic, are first
investigated by I. Gargantini in [2] and by M. Petković in [6]. The proposed method
produces disks that contain the sought zero in each iteration. In this manner, the
information on the upper error bound of zero approximations, presented by centers
of inclusion disks, is provided automatically, which is a significant advantage relative
to other methods for finding a single zero. We also state computationally verifiable
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initial condition that guarantees the convergence of the proposed method, which is of
practical interest.

A general principle for constructing interval methods for finding polynomial zeros
is based on inclusion isotonicity property (actually, subset property) and a suitable
zero-relation which gives a relationship among polynomial zeros. Let ζ1, . . . , ζn be
the zeros of a given polynomial and assume that we have found an array of disks (or
rectangles, real intervals) Z1, . . . , Zn such that ζi ∈ Zi (i = 1, . . . , n). A general form
of a zero-relation is given by

ζi = F (ζ1, . . . , ζn; z1, . . . , zn), zj = midZj , i, j ∈ {1, . . . , n}. (1)

Not all zeros or midpoints necessarily appear on the right side of (1). The zero-relation
used in this paper is given by (10).

Substituting the zeros on the right side of (1) by their inclusion intervals and using
the inclusion property , we obtain

ζi ∈ Ẑi := F (Z1, . . . , Zn; z1, . . . , zn), zj = midZj , i, j ∈ {1, . . . , n}, (2)

where Ẑi is presumably smaller inclusion interval than Zi. The relation (2) suggests an
iterative interval method for the inclusion of polynomial zeros taking (Z1, . . . , Zn) =

(Z
(0)
1 , . . . , Z

(0)
n ).

A special case of the relation (2) appears if we take that a single zero, say ζ1, is
isolated in an interval Z1, and all remaining zeros lie in an open interval extZ1 = {z :
z /∈ Z1}. Then (2) becomes

ζ1 ∈ Ẑ1 := F̃ (extW1,midZ1). (3)

Under suitable conditions (for instance, inversion of the open interval extW1 is a finite
interval, division by intervals containing 0 does not occur in (3)), we can construct
an iterative method for the inclusion of a single (simple or multiple) zero of a given
polynomial. This is the main goal of this paper.

A standard approach in finding polynomial zeros is the application of an iter-
ative method for the simultaneous determination of all zeros. Motivation for the
construction of interval methods for the inclusion of only one zero arises from specific
requirements in real-life problems when only one zero, located in a region of interest,
is requested. Besides, we emphasize that such methods are computationally much
cheaper since not only considerably less numerical operations are needed in the im-
plementation of the corresponding iterative formula but also due to the fact that the
localization of only one zero is required, decreasing in this way computational costs.

In this paper we consider cubically convergent interval Ostrowski-like method.
This method shows good convergent characteristics (see [2]) and it is relatively fast, as
demonstrated by a number of numerical examples. Numerical examples also showed
that the presented method in most cases are better than other interval methods of
third order. We did not consider Weierstrass-like interval method of the second order
(studied, e.g., in [1, Ch. 8], [8, Sec. 3.1]) for two reasons: this method is computa-
tionally very expensive (see [8, Ch. 6]) and the convergence of its version for a single
zero is only linear.

The presentation of the paper is organized as follows. Some basic definitions and
operations of circular complex interval arithmetic, necessary for the construction and
the convergence analysis of inclusion method, are given at the end of Introduction.
The derivation of the Ostrowski-like method for the inclusion of one simple or mul-
tiple complex zero is given in Section 2 and the convergence analysis is presented in
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Section 3. Numerical examples, presented in Section 4, were realized in INTLAB [13],
the Matlab toolbox for reliable computing and self-validating algorithms. Note that
INTLAB runs in double precision arithmetic by default, giving approximately 16 sig-
nificant decimal digits without any specific declaration of variables. In this way the
enclosure of the zeros in the presence of rounding errors is provided.

The construction of the mentioned inclusion method and its convergence analysis,
presented in this paper, need the basic properties of the so-called circular complex
arithmetic introduced by Gargantini and Henrici [3]. A circular closed region (disk)
Z := {z : |z − c| ≤ r} with center c := mid Z and radius r := rad Z is denoted by the
parametric notation Z := {c; r}. The following basic circular arithmetic operations
are defined as follows:

α+ {c; r} = {α+ c; r},
α{c; r} = {αc; |α|r} (α ∈ C),

{c1; r1} ± {c2; r2} = {c1 ± c2; r1 + r2}.

The inversion of a non-zero disk Z is defined by the Möbius transformation,

Z−1 =
{1

z
: z ∈ Z

}
=
{ c̄

|c|2 − r2 ;
r

|c|2 − r2
}

(|c| > r, that is, 0 /∈ Z). (4)

Addition, subtraction and inversion Z−1 are exact operations.

Let us define a disk
{
z : |z − a| ≤ R

}
, denoted by {a;R}, and its exterior

W =
{
z : |z − a| > R

}
. If z 6∈ W (that is, |z − a| ≤ R), then the inversion of the

region
z −W = {w : w − (z − a) > R}

is the closed interior of a circle given by

V (z) = (z−W )−1 =

{
w :

∣∣∣∣w+
z̄ − ā

R2 − |z − a|2

∣∣∣∣ ≤ R

R2 − |z − a|2

}
=: {h(z); d(z)}, (5)

where

h(z) = midV (z) =
ā− z̄

R2 − |z − a|2

and

d(z) = radV (z) =
R

R2 − |z − a|2

(see [12]).

The set {z1z2 : z1 ∈ Z1, z2 ∈ Z2}, in general, is not a disk. In order to remain
within the realm of disks, Gargantini and Henrici [3] introduced the multiplication by

Z1 · Z2 := {c1c2; |c1|r2 + |c2|r1 + r1r2} ⊇ {z1z2 : z1 ∈ Z1, z2 ∈ Z2}. (6)

Then the division is defined by

Z1 : Z2 = Z1 · Z−1
2 .

The square root of a disk {c; r} that does not contains the origin, where c = |c|eiθ
and |c| > r, is defined as the union of two disjoint disks (see [2]):

{c; r}1/2 :=
{√
|c|eiθ/2;

r√
|c|+

√
|c| − r

}⋃{
−
√
|c|eiθ/2;

r√
|c|+

√
|c| − r

}
. (7)
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In this paper we will use the following obvious properties:

z ∈ {c; r} ⇐⇒ |z − c| ≤ r,
{c1; r1} ∩ {c2; r2} = ∅ ⇐⇒ |c1 − c2| > r1 + r2.

More details about circular arithmetic can be found in the books [1] and [12].

2 Ostrowski-Like Method

Let

P (z) =

n∏
j=1

(z − ζj)µj (8)

be a monic polynomial of degree N ≥ 3 with n (2 ≤ n ≤ N) distinct real or complex
zeros ζ1, . . . , ζn of respective multiplicities µ1, . . . , µn, where µ1 + · · · + µn = N and
let

δ1(z) =
P ′(z)

P (z)
, δ2(z) =

P ′(z)2 − P (z)P ′′(z)

P (z)2

and
s2,i(z) =

∑
j∈In\{i}

µj
(z − ζj)2

(In := {1, . . . , n}). (9)

From the factorization (8) we find

δ2(z) = − d2

dz2

(
logP (z)

)
=

n∑
j=1

µj
(z − ζj)2

=
µi

(z − ζi)2
+ s2,i(z).

Solving the last equation in ζi we obtain the following zero-relation

ζi = z −
√
µi[

δ2(z)− s2,i(z)
]1/2
∗

. (10)

It is assumed that only one complex value (of two) of the square root has to be taken
in the last formula, which is indicated by the symbol ∗. This value is chosen in such
a way that the right-hand side reduces to ζi.

Assume that we have found the inclusion disk {z : |z − a| ≤ R} with the center
a and the radius R containing only one zero ζi of P . All other zeros are supposed to
lie in the region W = {z : |z − a| > R}. Using the inclusion isotonicity property we
obtain for z ∈ {a;R}

(z − ζj)−1 ∈
( 1

z −W

)
(j ∈ In \ {i}). (11)

If z 6∈W, by (5) we obtain the inversion of the region

V (z) = (z −W )−1 = {h(z); d(z)}. (12)

Using the inclusion isotonicity property, and (9), (11) and (12), we have

s2,i(z) ∈
∑

j∈In\{i}

(z −W )−2 = (N − µi)V (z)2 =: S2,i(z) (i ∈ In).
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According to the last relation, from (10) we get for z = zi

ζi ∈ zi −
√
µi[

δ2(zi)− S2,i(zi)

]1/2
∗

=: Ẑi. (13)

Assuming that the disk under the square root does not contain 0, Ẑi is a new outer
approximation to the zero ζi.

In our consideration only one zero is requested so that, without the loss of gener-
ality, we may adopt that this zero is denoted with ζ1 and suppose that all other zeros
ζ2, . . . , ζn lie in the exterior of {a;R}. Moreover, for brevity, we will write ζ instead
of ζ1, and also s2 and S2 instead of s2,1 and S2,1.

Let Z(m) =
{
z(m); r(m)

}
be the disk with the center z(m) = midZ(m) and the

radius r(m) = radZ(m) for m = 0, 1, . . . . For the initial inclusion disk Z(0) we have
Z(0) = {a;R}, i.e., z(0) = a, r(0) = R. Besides, we introduce the notation

V (m) := V (z(m)) =
(
z(m) −W

)−1
=
{
h
(
z(m)); d(z(m))}

and
S

(m)
2 = (N − µ)

(
V (m))2.

The relation (13) suggests the following iterative method for the inclusion of a
simple or multiple complex zero of a polynomial P, starting from the isolated initial
inclusion disk Z(0) = {a;R},

Z(m+1) = z(m) −
√
µ[

δ2
(
z(m)

)
− (N − µ)

{
h
(
z(m)

)
; d
(
z(m)

)}2]1/2
∗

(14)

for m = 0, 1, . . . .
According to (7), the square root of a disk in (14) produces two disks; the symbol

∗ indicates that one of these disks has to be chosen. The criterion for the choice of a
proper disk is considered in [2] (see also [6]) and reads:

Let
[
δ2
(
z(m)

)
− (N −µ)

{
h
(
z(m)

)
; d
(
z(m)

)}2]1/2
= D

(m)
1

⋃
D

(m)
2 . Among the disks

D
(m)
1 and D

(m)
2 one has to choose that disk whose center minimizes∣∣∣∣∣ P ′

(
z(m)

)
µP
(
z(m)

) −midD(m)
p

∣∣∣∣∣ (p = 1, 2).

3 Convergence Analysis

In this section we will give a convergence analysis of the iterative method (14). The
iterative method (14) can be expressed in the form

Z(m+1) = z(m) −
√
µ{

c
(
z(m)

)
; η
(
z(m)

)}1/2

∗

= z(m) −
√
µ{√

c
(
z(m)

)
;u
(
z(m)

)} , (15)
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where

c(z) = δ2(z)− (N − µ)h(z)2 = δ2(z)− (N − µ)
(ā− z̄)2(

R2 − |z − a|2
)2 ,

η(z) = (N − µ)
(
2|h(z)|d(z) + d(z)2

)
= (N − µ)

2|a− z|R+R2(
R2 − |z − a|2

)2 ,
u(z) =

η(z)

|c(z)|+
√
|c(z)| − η(z)

.

Assume that we have found an initial disk Z(0) = {a;R} so that the condition

|δ2(a)| > 5(N − µ)2µ

2R2
(16)

is satisfied. Also, for m = 1, 2, . . . let us introduce

ρ(m) = R−
∣∣z(m) − a

∣∣.
At the beginning, let us consider the first iteration (m = 0). Using the inversion

(5) we obtain

{c(a); η(a)} = δ2(a)− (N − µ)
{
h(a); d(a)

}2
= δ2(a)− (N − µ)

{
0;

1

R

}2

=

{
δ2(a);

N − µ
R2

}
. (17)

Since (N − µ)µ ≥ 2, from (17) we estimate

η(a) =
N − µ
R2

≤ (N − µ)2µ

2R2
. (18)

According to the inequalities (16) and (18) and the equality c(a) = δ2(a) (see (17)),
we obtain that

|c(a)| > 5(N − µ)2µ

2R2
>

(N − µ)2µ

2R2
≥ η(a),

which mean that the disk
{
c(a); η(a)

}
does not contain the origin when m = 0 and

we can compute the square root{
c(a); η(a)

}1/2
∗ =

{√
c(a);u(a)

}
.

Using (7) and the estimates (16) and (18) we have

u(a) =
η(a)√

|c(a)|+
√
|c(a)| − η(a)

<

(N − µ)2µ

2R2√
5(N − µ)2µ

2R2
+

√
2(N − µ)2µ

R2

<
17

100
·

(N − µ)
√
µ

R
. (19)



Reliable Computing 16, 2012 231

Furthermore, starting from (15) and using (4), we find the upper bound for r(1) em-
ploying the inequalities (16) and (19),

r(1) = radZ(1) = rad

√
µ{√

c(a);u(a)

} =
√
µ

u(a)

|c(a)| − u(a)2

<
√
µ

17(N − µ)
√
µ

100R
5(N − µ)2µ

2R2
− 172(N − µ)2µ

104R2

,

whence

r(1) <
7

100
· R

N − µ. (20)

Using the same estimates, we find

∣∣z(1) − a∣∣ =
√
µ

|
√
c(a)|

|c(a)| − u(a)2
<
√
µ

√
5(N − µ)2µ

2R2

5(N − µ)2µ

2R2
− 172(N − µ)2µ

104R2

,

wherefrom ∣∣z(1) − a∣∣ < 16

25
· R

N − µ. (21)

Now we prove that the condition (16) implies the inequality

ρ(1) > 5(N − µ)r(1). (22)

Using the inequality (21) we find

ρ(1) = R−
∣∣z(1) − a∣∣ > R− 16R

25(N − µ)
= R

[
1− 16

25(N − µ)

]
,

so that, according to (20) and (22), it is sufficient to show that

R

[
1− 16

25(N − µ)

]
> 5(N − µ)

7R

100(N − µ)
=

35R

100
.

The last inequality is obvious because of

min
1≤µ<N

(
1− 16

25(N − µ)

)
=

9

25
=

36

100
.

The analysis of the first iterative step shows that

(i) a new disk approximation Z(1) includes the zero ζ;

(ii) this disk is contracted because of

r(1) = radZ(1) <
7R

100
. (23)

Besides, the initial condition (16) induces the condition (22).
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Now, we can analyze the iterative process (15) beginning with m ≥ 1 and start-
ing from the inclusion disk Z(1) with the assumption that the condition (22) holds.
For simplicity, in our further analysis we omit the iteration index always when the
possibility of any confusion does not exist.

Lemma 1. If the inequality
ρ > 5(N − µ)r (24)

holds, then 0 6∈ {c(z); η(z)} and

√
µ

√
|c(z)|

|c(z)| − u(z)2
<

13

10
r. (25)

Proof. First, since |z − ζj | > ρ, for all j = 2, . . . , n, under the condition (24) we
estimate∣∣∣∣ P (z)

P ′(z)

∣∣∣∣ =

∣∣∣∣ n∑
j=1

µj
z − ζj

∣∣∣∣−1

≤
(

µ

|z − ζ| −
n∑
j=2

µj
|z − ζj |

)−1

<

(
µ

r
− N − µ

ρ

)−1

=
r

µ− (N − µ)
r

ρ

<
r

µ− 1

5

=
5r

5µ− 1
(µ1 = µ)

and
|a− z|

R2 − |z − a|2 =
R− ρ

R2 − (R− ρ)2
<

1

ρ
.

Therefore,

(N − µ)

(
|a− z|

R2 − |z − a|2

)2

<
N − µ
ρ2

.

Simple transformations give

g(z) : =

∣∣∣∣P ′(z)P (z)
− P ′′(z)

P ′(z)

∣∣∣∣ =

∣∣∣∣(P ′(z)2 − P ′′(z)P (z)

P (z)2

)/(P ′(z)
P (z)

)∣∣∣∣
=

∣∣∣∣( n∑
j=1

µj
(z − ζj)2

)/( n∑
j=1

µj
z − ζj

)∣∣∣∣ =

∣∣∣∣ 1

z − ζ ·
1 + β(z)

1 + γ(z)

∣∣∣∣,
where we put

β(z) =
(z − ζ)2

µ

n∑
j=2

µj
(z − ζj)2

, γ(z) =
z − ζ
µ

n∑
j=2

µj
z − ζj

.

Using the inequality (24) we find

|β(z)| < r2

µ

n∑
j=2

µj
|z − ζj |2

<
r2

µ
· N − µ

ρ2
<

1

25µ(N − µ)
≤ 1

50

and

|γ(z)| < r

µ

n∑
j=2

µj
|z − ζj |

<
r

µ
· N − µ

ρ
<

1

5
,

so that ∣∣∣∣1 + β(z)

1 + γ(z)

∣∣∣∣ > 1− 1
50

1 + 1
5

=
49

60
.
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According to the last estimate and the inequality |z − ζ| ≤ r, we have

g(z) =

∣∣∣∣P ′(z)P (z)
− P ′′(z)

P ′(z)

∣∣∣∣ > 1

|z − ζ|

∣∣∣∣1 + β(z)

1 + γ(z)

∣∣∣∣ > 49

60r
.

Taking into account the previous bounds, we obtain

|c(z)| =

∣∣∣∣P ′(z)P (z)

(
P ′(z)

P (z)
− P ′′(z)

P ′(z)

)
− (N − µ)

(
|a− z|

R2 − |z − a|2

)2∣∣∣∣
>

5µ− 1

5r
· 49

60r
− N − µ

ρ2
,

wherefrom

|c(z)| > 49

60

(
µ− 1

4

) 1

r2
>

3

5r2
. (26)

The upper bound of η(z) is given by

η(z) = (N − µ)
2|a− z|R+R2

(R2 − |z − a|2)2
<
N − µ
ρ2

<
1

25r2
. (27)

From the inequalities (26) and (27) we conclude that

|c(z)| > 3

5r2
>

1

25r2
> η(z)

and whence 0 6∈ {c(z); η(z)}, which proves the first part of the lemma.

Now we will prove the inequality (25). First, using (24), (26) and (27), we estimate

u(z) =
η(z)√

|c(z)|+
√
|c(z)| − η(z)

<

N − µ
ρ2√

3

5r2
+

√
3

5r2
− 1

25r2

<
2

3

(N − µ)r

ρ2
<

2

75r
, (28)

and finally

√
µ

√
|c(z)|

|c(z)| − u(z)2
<

√
49

60
µ
(
µ− 1

4

)
49

60

(
µ− 1

4

)
− 4

752

r <
13

10
r. �

Using Lemma 1 we are now able to prove that the order of convergence of the
inclusion method (14) is three.

Theorem 1. Let the sequence of circular intervals
{
Z(m)

}
m=1,2,...

be defined by the

iterative formula (14), assuming that the initial disk Z(0) = {a;R} is chosen so that
the condition (16) is satisfied. Then, in each iterative step, the following is true:

(i) ζ ∈ Z(m);

(ii) r(m+1) <
17(N − µ)

R2

(
r(m))3.
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Proof. The assertion (i) follows from the zero-relation (10) according to the inclusion
isotonicity property and the fact that z(m) ∈ {a;R} for each m = 0, 1, . . . , which is
obvious because of

R−
∣∣z(m) − a

∣∣ = ρ(m) > 5(N − µ)r(m) > 0.

We now prove that the convergence rate of the iterative method (14) is cubic (the
assertion (ii)). Using the inequality (22), which follows from the condition (16), and
the bounds (26) and (28), we obtain

r(2) = radZ(2) =
u(1)∣∣c(1)∣∣− (u(1)

)2 <
2(N − µ)r(1)

3
(
ρ(1)

)2
3

5
(
r(1)
)2 − ( 2

75r(1)

)2
<

28

25
·

(N − µ)
(
r(1)
)3(

ρ(1)
)2 (29)

and

r(2) <
1

20
r(1). (30)

Using the inequality (21) we estimate

ρ(1) = R−
∣∣z(1) − a∣∣ > R− 16

25
R =

9

25
R (31)

and

ρ(2) = R−
∣∣z(2) − a∣∣ = R−

∣∣∣∣z(1) − a−√µ
√
c̄(1)∣∣c(1)∣∣− (u(1)

)2 ∣∣∣∣
> R−

∣∣z(1) − a∣∣−√µ ∣∣√c(1)∣∣∣∣c(1)∣∣− (u(1)
)2 = ρ(1) −√µ

∣∣√c(1)∣∣∣∣c(1)∣∣− (u(1)
)2 .

Hence, according to the inequality (25), we find

ρ(2) > ρ(1) − 13

10
r(1).

Applying the inequalities (22) and (30), we get

ρ(2) > ρ(1) − 13

10
r(1) > 5(N − µ)r(1) − 13

10
r(1) =

[
5(N − µ)− 13

10

]
r(1)

> 20
[
5(N − µ)− 13

10

]
r(2) > 5(N − µ)r(2).

Using the same consideration as for m = 2, we prove by induction that the following
relations (already proved for m = 2) are true for m ≥ 2 :

r(m+1) <
28(N − µ)

25
(
ρ(m)

)2 (r(m))3, (32)

r(m+1) <
r(m)

20
, (33)

ρ(m) > 5(N − µ)r(m) (34)
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and

ρ(m+1) > ρ(m) − 13

10
r(m). (35)

By successive application of the inequalities (33) and (35), and using the inequal-
ities (23) and (31), we obtain

ρ(m) > ρ(m−1) − 13

10
r(m−1) > · · · > ρ(1) − 13

10
r(1)
(

1 +
1

20
+

1

202
+ . . .

)
≥ ρ(1) − 26

19
r(1) >

9

25
R− 26

19
· 7

100
R >

13

50
R.

According to this, from the inequality (32) it follows

r(m+1) <
17(N − µ)

R2

(
r(m))3.

We will complete the proof of Theorem 1 providing that the iterative method (14) is
defined in each iterative step under the initial condition (16), that is, 0 6∈

{
c(m); r(m)

}
for each m = 1, 2, . . . . Indeed, from the condition (16) the inequality (34) follows for
each m = 1, 2, . . . so that Lemma 1 holds in each iteration. �

Remark 1. In the case of simple zero Theorem 1 can be proved under more relaxed
condition

|δ2(a)| > 3(N − 1)2

2R2
. (36)

In this special case we derive the inequality

r(m+1) <
15(N − 1)

R2

(
r(m))3.

4 Numerical Examples

The presented algorithm (14) was tested in solving many polynomial equations. To
provide the enclosure of the zeros in the presence of rounding errors, we used INTLAB
[13], the Matlab toolbox for reliable computing and self-validating algorithms. For the
comparison purpose, we also tested the following third order methods for the inclusion
of one polynomial zero:

Halley-like method [7]:

Z(m+1) = z(m) − 1

f
(
z(m)

)
−

P
(
z(m)

)
2P ′
(
z(m)

) N(N − µ)

µ

(
V (m))2 , (37)

where

f(z) =
(

1 +
1

µ

) P ′(z)
2P (z)

− P ′′(z)

2P ′(z)
.

Euler-like method [9]:

Z(m+1) = z(m) − 2µ

δ1
(
z(m)

)
+

[
2µδ2

(
z(m)

)
− δ1

(
z(m)

)2
+ 2N(N − µ)

(
V (m)

)2]1/2
∗

.

(38)
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Square-root method [9]:

Z(m+1)

= z(m) − 3µ

δ1
(
z(m)

)
+

[
6µδ2

(
z(m)

)
− 2δ1

(
z(m)

)2
+ 3(N − µ)(N − 3µ)

(
V (m)

)2]1/2
∗

.

(39)

Third-order method [10]

Z(m+1) = z(m)−µv
(
z(m))−µv(z(m)

)(
A
(
z(m)

)
− v
(
z(m)

)2
(N − µ)(N − 2µ)

(
V (m)

)2)
2
(
1− v

(
z(m)

)
(N − µ)V (m)

)2 ,

(40)
where

δ1(z) =
P ′(z)

P (z)
, v(z) =

P (z)

P ′(z)
and A(z) = 1− µ+ µv(z)

P ′′(z)

P ′(z)
.

Example 1. To find circular inclusion approximations to a simple zero of the poly-
nomial

P (z) = (z − 1)(z2 − 12z + 85)(z2 + 12z + 100)(z2 − 14z + 85)(z2 + 14z + 98)

×(z4 − 6561)(z4 − 4096),

we implemented the interval methods (14), (37), (38), (39) and (40). The zero ζ1 = 1

of P was isolated in the initial disk Z
(0)
1 = {0.8 + 0.2i; 6}. All zeros of the polynomial

P and the initial disk are displayed in the Figure 1.

5

5-5

-5

Figure 1: Distribution of zeros of P
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The radii of the inclusion disks produced in the first three iterative steps are given
in Table 1, where the denotation A(−q) means A × 10−q. In this case the initial
condition (36) is satisfied, that is,

|δ2(a)| = |δ2(0.8 + 0.2i)| ≈ 12 >
3(N − 1)2

2R2
≈ 10.67.

Methods (14) (37) (38) (39) (40)

r(1) 5.08(−3) 9.33(−2) 2.23(−1) 4.03(−2) diverges

r(2) 2.46(−13) 9.17(−5) 8.55(−3) 3.03(−7)

Table 1: The maximal radii of inclusion disks – Example 1, a = 0.8 + 0.2i

Let us examine what happen in the case when the initial condition (36) is not
satisfied. We shifted the starting point z(0) = 0.8 + 0.2i away from the zero ζ1 = 1
to the point z

(0)
1 = {0.7 + 0.3i}. In this case the initial condition (36) is not satisfied

since

|δ2(a)| = |δ(0.7 + 0.3i)| ≈ 5.56 <
3(N − 1)2

2R2
≈ 10.67.

In spite of that, the method (14) converges. The radii of the inclusion disks in the first
three iterative steps are given in Table 2. We observe that the other methods either
diverge or run with efforts.

Methods (14) (37) (38) (39) (40)

r(1) 1.74(−2) 5.21(−1) diverges 2.06(−1) diverges

r(2) 9.10(−11) 3.46(−1) 1.09(−3)

Table 2: The maximal radii of inclusion disks – Example 1, a = 0.7 + 0.3i

Example 2. To find circular inclusion approximations to a multiple zero of the
polynomial

P (z) = (z + 1)3(z + 6)3(z − 6)2(z2 + 36)3

we applied the same interval methods from Example 1. The isolated multiple zero
of P is ζ1 = −1 with multiplicity µ1 = 3. The initial disk was selected to be Z

(0)
1 =

{−0.8− 0.2i; 2}. In this example the initial condition (16) is not fulfilled, namely,

|δ2(−0.8− 0.2i)| ≈ 37.51 <
5(N − µ)2µ

2R2
≈ 227.

The radii of the inclusion disks, produced in the first three iterative steps, are given
in Table 3.

From Tables 1, 2 and 3 we observe that theoretical results, concerning the conver-
gence order of the considered method (14), mainly well coincide with the convergence
behavior in practice. We recall that the condition (16) (the condition (36) in the case
of simple zeros) is only sufficient. Namely, the interval method (14) can converge in
practice although the conditions (16) and (36) are not fulfilled, as can be seen from
Examples 1 and 2. On the other hand, the validity of the conditions (16) and (36)
always guarantees the convergence of the method (14) and the inclusion of desired
zero in each iteration.
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Methods (14) (37) (38) (39) (40)

r(1) 1.06(−2) 4.94(−2) 6.64(−2) 8.91(−3) diverges

r(2) 2.80(−11) 1.66(−6) 9.33(−6) 7.35(−12)

Table 3: The maximal radii of inclusion disks – Example 2, multiple zero
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for the inclusion of polynomial zeros, Appl. Math. Comput. 196:762–773, 2011.
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