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Abstract

When using interval analysis, the bounds of an inclusion function are
often non-tight due to dependency effects. The benefit of Taylor Mod-
els (TMs) or Verified Taylor Series (VTSs) is the use of higher order
derivatives terms, significantly reducing the dependency effect. In this
paper, it is assumed that the required information to derive these inclu-
sion functions is obtained using automatic differentiation. The drawback
of TMs and VTSs is that not all available information is used, resulting in
non-optimal inclusion functions. In this paper the Polynomial Inclusion
Function (PIF) is presented, which is guaranteed to form equal or shaper
enclosures than any (combination of) Taylor Model(s) defined using the
same set of information. The PIF is derived for the one dimensional case.
Extension to n-dimensional functions is performed via application of the
PIF to every dimension independently. The performance of the PIF is
compared to that of Verified Taylor Series for multiple (non-linear) func-
tions and is shown to yield to superior inclusions. Moreover, unlike with
TMs or VTSs, increasing the order of the PIF will always sharpen its
bounds.

Keywords: Polynomial inclusion function, interval analysis, Taylor Models, Verifies
Taylor Series, inclusion function
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1 Introduction

For any global optimization problem it is crucial to find guaranteed bounds, i.e. an
inclusion function, on a given (usually non-linear) function f whose output depends on
the variable parameters for which it is optimized. With these bounds one can find all
global/local solutions of the given problem using simple branch and bound methods.
For all optimization problems, it holds that the computational load needed to solve
the problem highly depends on the sharpness of the obtained bounds. The sharper the
bounds, the faster regions of the search space can be discarded, leading to less com-
putational effort (unless the cost of obtaining sharper bounds is too high). Finding
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sharper bounds at low cost is therefore a crucial part of solving optimization problems.

Most inclusion functions describe the bounds on a function as a polynomial. When
using standard interval arithmetic one obtains a zero-order polynomial describing the
upper bound and one for the lower bound. In the centered forms [6, 7, 8] the obtained
inclusion is a set of two first order polynomials for the upper bound and another set
for the lower bound. Higher order polynomial inclusion functions can be obtained
using Taylor series theory. One of such inclusion function is the Taylor Model. In
this paper it is assumed that the set of information required to construct these type
of inclusion functions is obtained via automatic differentiation in combination with
interval arithmetic. All claims in this paper are based on this assumption.

Taylor models have been developed by Lanford around 1980, subsequently studied
by Eckmann, Koch, Wittwer, Berz, Makino and Hoefkens [17, 12, 13, 10], and have
been applied successfully to many problems [11, 2]. Taylor Models are shown to have
excellent performance in situations where the domain is small1 and are often used
to remove the wrapping effect encountered when performing guaranteed integration.
For larger domains the order of the polynomial must increase to prevent a remainder
blow-up. For optimization problems in which the dependency effects increase when
taking a higher order derivative of the function [5] the remainder blow-up can only
be prevented by reducing the domain width (e.g., bisecting the domain). Although
widely applied in the reliable computing community and applicable in n dimensional
problems, the Taylor Models are not always optimal, and other inclusion functions
can result in tighter bounds [5]. Generally speaking the optimal form of the inclusion
function is problem dependent.

The main focus of this paper is on deriving a generic inclusion function which uses all
available information as efficiently as possible to form the sharpest possible bounds.
In case of Taylor Models one needs to derive, over the entire domain [x], the natural
inclusion function of the nth order derivative ([∇nf([x])) and the 0 to (n− 1)th order
derivative value at the expansion point. As previously stated, the assumption is that
the derivative information is derived using automatic differentiation techniques. The
key aspect is that when the nth order derivative information is derived one automati-
cally obtains information regarding the derivatives of lower order (0 to (n−1))2. This
means that the entire information set S, for a one-dimensional function f , is given by:

S :

{
dif

dxi

∣∣∣∣
x=x0

,

[
djf

dxj

∣∣∣∣
x=[x]

]}
, i = 0, 1, ..., n , j = 0, 1, ..., n+ 1. (1)

In the current application, the Taylor Models (or Taylor series) only use the informa-
tion obtained from [∇nf([x])] leaving a lot of available information unused.

The first contribution of this paper is the derivation of a new inclusion function called
the polynomial inclusion function (PIF) which provides a guaranteed (equal or) sharper
inclusion than any (combination of) Taylor Model(s) derived using the same set of in-
formation. The PIF is an inclusion function based on a set of piecewise polynomials
describing the guaranteed upper (Pf̄ ) and lower bound (Pf ) on function f for domain

1The definition of ‘small’ is problem dependent.
2Automatic differentiation packages ’record’ a directed acyclic graph (DAG) while comput-

ing the function value [18]. When the nth order derivative is computed, the DAG automatically
contains the information of the 0 to (n− 1)th order derivative.
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[x]:

f (x) ⊆
[
Pf (x) , Pf̄ (x)

]
∀x ∈ [x]. (2)

This paper focuses on the theoretical development of the new inclusion function. The
goal is to show information can be used more efficiently than for Taylor Models. Since
the computational load is an important aspect of any optimization algorithm, a cost
analysis is performed. The second contribution of this paper is the introduction of a
computational ‘light’ version of the proposed PIF to show that faster optimization is
possible than when using Taylor Models.

In this paper the one-dimensional case is described. The PIF can be extended to mul-
tiple dimensions by applying it to each dimension separately as will be demonstrated
in section 6. The one-dimensional case frequently is encountered in dynamic opti-
mization problems, e.g., trajectory optimization, where the cost function commonly
includes an integral [4] over time:

J = Φ (x (t0) , t0,x (tf ) , tf ) +

tf∫
t0

L (x (t) ,u (t) , t) dt, (3)

where Φ is a function denoting the penalty for end-point constraints, and L is the
Lagrangian. By having a sharp inclusion of the Lagrangian (a generally non-linear
function) in polynomial form, the integral can be computed easily. Another large
field of research is that of bounding the solutions of ODEs (required in for instance
initial value problems) for which Taylor Models frequently are used [9][16](Packages
COSY-INFINITY [3], VSPODE [9], and VNODE-LP [15] all incorporate some form
of Taylor Models). The proposed inclusion function can be applied in this field as well.

In section 2, a brief review of guaranteed Taylor series expansions is given. The
effect of Taylor series order on the sharpness of the inclusion function will be clearly
demonstrated. In section 3 the derivation of the PIF will be performed in steps. With
each step the information content of the PIF will be increased resulting in guaranteed
sharper bounds (over the entire domain) compared to the previous step. The derived
PIF will be validated and compared to Verified Taylor Series (introduced in the next
section) for several examples in section 4. A cost analysis is performed in section 5,
and the extension of the proposed method to higher dimensional function is given in
section 6. Finally, in section 7, conclusions and recommendations for further work are
given.

2 Verified Taylor Series (VTS)

Any (non-linear) function f can be approximated by a Taylor series. By using interval
analysis one can define an inclusion function based on a Taylor series expansion which
provides guaranteed bounds on f for a given domain. Taylor’s formula with remainder
for a one dimensional function is given by:

f (x) =

n∑
v=0

f (v) (x0)

v!
(x− x0)v +

g (x)− g (x0)

g(1) (ξ)

f (n+1) (ξ)

n!
(x− ξ)n , (4)
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where g is an arbitrary function with non vanishing derivative strictly between x0 and
x, ξ lie strictly between x0 and x, and f (v) = dvf(x)/dxv3. The form of the remainder
depends on the choice of the function g. When choosing

g (y) = (x− y)n+1

g(1) (y) = − (n+ 1) (x− y)n
,

(5)

where y is the independent variable, one obtains the Lagrange’s Remainder:

Lnf,x0
(ξ, x) =

f (n+1) (ξ)

(n+ 1)!
(x− x0)n+1 , (6)

where again ξ lies strictly between x0 and x. For the multivariate case we can use the
following notation for the n-th order Taylor polynomial and corresponding remainder:

Tnf,x0
(x) =

∑
0≤i1+...+id≤n

{
∂i1+...+idf(x)

∂x
i1
1 ...∂x

id
1

· (x1−x0,1)i1 ·...·(xd−x0,d)id
i1!·...·id!

}
Lnf,x0

(ξ,x) =
∑

i1+...+id=n+1

{
∂n+1f(ξ)

∂x
i1
1 ...∂x

id
1

· (x1−x0,1)i1 ·...·(xd−x0,d)i1
i1!·...·id!

}
.

(7)

2.1 Forming a Guaranteed Inclusion Function

The bounds on the remainder can be determined by substituting the interval [x] for
all x and ξ in the expression for Lnf,x0

. By using interval arithmetic rigorous bounds
are obtained. This approach results in a single interval for the remainder I:

I = Lnf,x0
([x], [x]) =

∑
i1+...+id=n+1

{
∂n+1f([x])

∂x
i1
1 ...∂x

id
1

·

([x1]−x0,1)i1 ·...·([xd]−x0,d)i1
i1!·...·id!

}
.

(8)

The combination of (T, I) is called a Taylor Model [2]. The width of I depends on the
width of [x] and on the function f(x). If the domain [x] is large then the multiplication
(x1−x0,1)i1 ·...·(xd−x0,d)i1

i1!·...·id!
causes a blow-up of the remainder if the (n + 1)-th order

derivative of f is non-zero. Another difficulty is the number of occurrences of x in
the (n + 1)-th order derivative of f . As for any function multiple occurrences of x
can cause overestimation, which yields large remainder bounds [5]. As an alternative
method one can use Taylor Model arithmetic from Makino and Berz to derive the
remainder. A trade-off between accuracy and speed must be made to decide which
method to use. In this paper the method of deriving the Taylor coefficients is used.

What is important to realize is that the remainder also can be kept as a function
of x. Taylor series theory states that a guaranteed inclusion can be formed when
inserting [x] for only ξ:

I(x) = Lnf,x0
([x],x) =

∑
i1+...+id=n+1

{
∂n+1f([x])

∂x
i1
1 ...∂x

id
1

·

(x1−x0,1)i1 ·...·(xd−x0,d)i1
i1!·...·id!

}
.

(9)

The resulting inclusion function, i.e. (T, I(x)), is called a Verified Taylor Series (VTS)
in this paper. From the definition of the VTS and TM one can derive the following:

3For the work in this paper the function f may be analytically or numerically differentiable.
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x

f

f = cos(πx)
TM

V TS

0 0.5 1
-2

-1

0

1

2

Figure 1: Inclusion of f = cos(xπ), x ∈ [0, 1] using the Taylor Model and Verified
Taylor Series. The expansion point for both inclusion functions is x0 = 0.5, and
the order is 3.

there exists a parameter δ1 ≤ x0 and a parameter δ2 ≥ x0 such that the following
holds4:

V TS(x) ⊆ TM(x), ∀x ∈ [δ1, δ2]. (10)

Under the assumption that automatic differentiation is used to derive the required
information for construction of the VTS and TM the values of δ1 and δ2 can be set
to inf[x] and sup[x] respectively. This means that the following holds: V TS(x) ⊆
TM(x), ∀x ∈ [x]. The difference between the TM and VTS is demonstrated in Figure
1. Since the VTS yields sharper inclusions it is used as a reference in the remainder
of this paper.

2.2 Use of Derivative Information

The nth order VTS is formed using the natural inclusion function of the (n+1)th order
derivatives. As stated in the introduction, it is assumed that the derivative natural
inclusion function [f (n+1)([x])] is derived using automatic differentiation techniques
such that all other derivatives up to order (n + 1) are readily available. Since only
[f (n+1)([x])] is used for the construction of the TM/VTS, a lot of valuable information
is disregarded. In Figure 2 VTSs up to order 4 for function f = cos(πx), x ∈ [0, 3]
are given. As one can clearly see, the VTSs of order > −1 all violate the bounds of
the [f([x])] (equal to V TS−1

f (x)) at some point x ∈ [x]. Moreover, the bounds of other
derivative inclusion functions may also be violated, i.e., upper bound violation:

sup

[
∂iV TS

∂xi

∣∣∣∣
x∗

]
> sup

[
∂if

∂xi

∣∣∣∣
[x]

]
, x∗ ∈ [x], (11)

4This results is independent of the way the remainder of the TM is derived, e.g. automatic
differentiation or TM arithmetic.
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Figure 2: Taylor Models for function f = cos(xπ) for domain X = [0, 3] and
expansion point x0 = 1.5.

(same holds for lower bound violations). Since the bounds of [f (i)([x])] are guaranteed,
one can use this information to improve the inclusion. In the following section a method
is given that makes sure that the VTS will not violate any of the bounds set by the
derivative inclusion functions.

3 Polynomial Inclusion Function (PIF)

The discussion on the Verified Taylor Series showed that not all available informa-
tion regarding derivative inclusions is used. In this section the polynomial inclusion
function (PIF) is derived that uses the available derivative bounds more efficiently.
The resulting PIF provides a guaranteed equal or sharper enclosure than any VTS
constructed based on the same set of available information. The PIF consists of two
piecewise polynomials, one bounding the function from above and one from below:

f (x) ⊆ PIF df (x) =
[
P df (x) , P df̄ (x)

]
∀x ∈ [x], (12)

where f denotes the function and d the maximal derivative order of which information
is used in the construction of the PIF.

The PIF derived in this paper is based on Taylor series expansion theory. To sim-
plify the discussion the derivation of the PIF starts by looking at the upper bound on
function f for x ≥ x0. All other remaining bounds (upper bound and lower bound for
x ≤ x0, and lower bound for x ≥ x0) can be derived using the same procedure after
having performed a simple coordinate mapping. The results given in this section show
the PIF for the entire domain to demonstrate the overall performance. The example of
f = cos(xπ), x0 = 1.5, x ∈ [0, 3] given in Figure 2 is used to explain the consequences
of each step in the derivation. With each step, the bounds of the PIF become more
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tight or remain equal over the entire domain, i.e., for every x ∈ [x] the bounds of the
new PIF are equal to or within the bounds of the PIF of the previous step.

3.1 Combining VTS

Proposition 3.1. Given a certain set S containing derivative inclusion functions for
domain [x] and derivative evaluations at location x0 for function f ,

S :

{
dif

dxi

∣∣∣∣
x=x0

,

[
djf

dxj

∣∣∣∣
x=[x]

]}
, i = 0, 1, ..., n , j = 0, 1, ..., n+ 1 , x0 ∈ [x], (13)

it is guaranteed that the optimal inclusion function has sharper or equal bounds com-
pared to the bounds of VTS of any degree, which has been derived using the same set
of information, for the entire domain x ∈ [x].

Proof. Since the VTS of any given degree is a guaranteed inclusion function of function
f :

f (x) ⊆ V TSdf,x0
(x) , ∀d ≤ n,∀x ∈ [x], (14)

one can select the sharpest bounds at each x ∈ [x] provided by one of the VTS. The
resulting bound is guaranteed to correctly bound the function f from above and below:

max
d

{
inf
[
V TSdf,x0

(x)
]}
≥ f (x) ≤ min

d

{
sup

[
V TSdf,x0

(x)
]}

∀d ≤ n, ∀x ∈ [x].

(15)
Since all VTSs are derived using the given derivative information, the optimal inclusion
function based on the same information must yield sharper or equal bounds.

Proposition 3.1 can be used to derive a PIF. To derive the piecewise polynomial P d
f

,
one must determine the intersection points between each pair of VTSs to determine the
lowest valued VTS upper bound for each location in [x]. Finding the intersection points
can be formulated as a root finding problem: h(x) = supV TSz(x)−supV TSy(x) = 0,
for which many methods are available. For polynomials up to order 4 a closed form
solution exists [1] (such as the quadratic formula for order 2). In the work of Mekwi
[14] the methods of Bairstow, Bernoulli, Graeffe, Müller, Newton-Raphson, Jenkins-
Traub and Laguerre are explained. Most available methods provide numeric approx-
imations for the roots, and others use interval analysis to rigorously bound all roots.
Irrespectively of the applied method for finding the roots, the PIF will remain a guar-
anteed inclusion of the function if the domain switch point x∗ is chosen such that
inf V TSzf,x0

(x∗) ≥ supV TSyf,x0
(x∗) when transforming from degree z to y. For the

given example of f = cos(xπ) the resulting PIF is represented in Figure 3. Note that
the sharpest bound is not necessarily formed by the highest order VTS as can be seen
from the PIF 4

f,x0
:

P 4
f̄ =



supV TS−1
f,x0

(x) , x ∈ [0.000, 0.595]

supV TS2
f,x0

(x) , x ∈ [0.595, 1.503]
supV TS4

f,x0
(x) , x ∈ [1.503, 1.978]

supV TS−1
f,x0

(x) , x ∈ [1.978, 2.044]

supV TS4
f,x0

(x) , x ∈ [2.044, 2.675]
supV TS−1

f,x0
(x) , x ∈ [2.675, 3.000]

(16)
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Figure 3: Verified Taylor Series (VTSs) and Polynomial Inclusion Function
(PIF) for function f = cos(xπ) for domain X = [0, 3] and expansion point
x0 = 1.5. The PIF is formed by applying Proposition 3.1.

P 4
f =



inf V TS−1
f,x0

(x) , x ∈ [0.000, 0.331]

inf V TS4
f,x0

(x) , x ∈ [0.331, 0.962]
inf V TS−1

f,x0
(x) , x ∈ [0.962, 1.028]

inf V TS4
f,x0

(x) , x ∈ [1.028, 1.503]
inf V TS2

f,x0
(x) , x ∈ [1.503, 2.411]

inf V TS−1
f,x0

(x) , x ∈ [2.411, 3.000]
.

(17)

3.2 Lowering VTS Order

The PIF formed using Proposition 3.1 always provides equal or sharper bounds than
any VTS. However, the information regarding the guaranteed derivatives bounds is not
fully used, i.e., the PIF may still violate these bounds. Proposition 3.2 can be used to
form a PIF that, per domain, will consist of a polynomial that does not violate any
derivative bounds (up to the order of the polynomial).

Proposition 3.2. Consider a polynomial P dx0
(x):

P dx0
(x) =

d+1∑
j=0

1

j!
ai (x− x0))j , (18)

defined on domain [x] for which

dif(x)

dxi
≤
diP dx0

(x)

dxi
, ∀i ∈ [0, d+ 1], ∀x ∈ [x]. (19)

Then the polynomial

P qx∗(x) =

q∑
j=0

{
1

j!

diP dx0
(x)

dxi

∣∣∣∣∣
x∗

(x− x∗)j
}

+
1

(q + 1)!
b (x− x∗)q+1 , (20)
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where b ≥ dq+1f/dxq+1,∀x ∈ [x], will also bound the function f and its derivatives up
to order (q + 1) from above on domain [x∗, sup[x]].

Proof. Since the value b is always equal or larger than the (q + 1)th order derivative
of f in domain [x] the following holds

dqP qx∗(x)

dxq

∣∣∣∣
x

− dqP qx∗(x)

dxq

∣∣∣∣
x∗
≥ dqf(x)

dxq

∣∣∣∣
x

− dqf(x)

dxq

∣∣∣∣
x∗
∀x ∈ [x∗, sup[x]]. (21)

Since it is also guaranteed that

diP qx∗(x)

dxi

∣∣∣∣
x∗
≥ dif(x)

dxi

∣∣∣∣
x∗
, ∀i ∈ [0, q], (22)

(directly derived from the properties of P dx0
(x)), the following must hold:

diP qx∗(x)

dxi

∣∣∣∣
x

≥ dif(x)

dxi

∣∣∣∣
x

,∀i ∈ [0, q + 1], ∀x ∈ [x∗, sup[x]]. (23)

This completes the proof.

The bounding of function f from above is guaranteed for any x ∈ [x] when a VTS
is used. By definition, the bounds obtained for the ith order derivative of f via the
VTS are guaranteed:

dif

dxi

∣∣∣∣
x

⊆

[
diV TSdf
dxi

∣∣∣∣∣
x

]
∀x ∈ [x] , i ≤ d+ 1. (24)

This means that when one uses the upper bound of a VTS of order d to define the
polynomial P dx0

(x) and using b = sup[f (q+1)([x])], all conditions of Proposition 3.2 are
satisfied. Proposition 3.2 can be used to define a Taylor polynomial of order q ≤ d
which will always bound the function f from above (and its derivatives up to order
q + 1). The new Taylor polynomial again satisfies the conditions of the proposition.
This means that one can keep on switching to lower order Taylor polynomials when
desired without sacrificing the guarantee of bounding function f from above.

Proposition 3.2 can be used to define a PIF which has Taylor polynomials for each
domain in x which do not violate any of the derivative bounds (up to the order of the
active polynomial (q)). The idea is that the order of the Taylor polynomial in a given
sub-domain x (e.g., one part of the PIF formed by Proposition 3.1) is reduced to q
if the (q + 1)th order derivative of the polynomial crossed the sup[f (q+1)([x])] bound.
By altering the polynomial to a lower order, the inclusion function is guaranteed not
to violate that derivative bound. As an example consider the function f = cos(xπ)
again for VTS up to order 4. When Proposition 3.1 and Proposition 3.2 are applied a
PIF can be derived which has guaranteed equal or sharper bounds than any VTS. The
result is represented in Figure 4, and the PIF description is given below (indication of
the polynomial order used per sub-domain of x):
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Figure 4: Verified Taylor Series(VTSs) and Polynomial Inclusion Function
(PIF) for function f = cos(xπ) for domain X = [0, 3] and expansion point
x0 = 1.5. The PIF is formed by applying proposition 3.1 and 3.2. At a switch
point the polynomial of the PIF changes order.

P 4
f̄

x ∈ degree of
polynomial

[0.000, 0.240] 0
[0.240, 0.704] 1
[0.704, 1.182] 2
[1.182, 1.500] 3
[1.500, 1.818] 5
[1.818, 1.976] 4
[1.976, 2.039] 0
[2.039, 2.137] 5
[2.137, 2.667] 3
[2.667, 3.000] 2

P 4
f

x ∈ degree of
polynomial

[0.000, 0.333] 2
[0.333, 0.863] 3
[0.863, 0.961] 5
[0.961, 1.024] 0
[1.024, 1.182] 4
[1.182, 1.500] 5
[1.500, 1.818] 3
[1.818, 2.296] 2
[2.296, 2.760] 1
[2.760, 3.000] 0

Comparing to the result given in Figure 3, one can see that the effect of Proposition
3.2 can be severe. The obtained inclusion is much sharper than the original VTSs based
on the same set of information.

3.3 Transitions Between Taylor Polynomials

Although the derived PIF is already an improvement, there still remains one issue:
the transition between Taylor polynomials in the PIF. As an example, consider the
two zoom plots of Figure 4 shown in Figure 5. Clearly the transition in both plots is
discontinuous for derivative order higher than 1. A jump in the nth order derivative
means that the (n+ 1)th order derivative does not exist. The latter is not possible for
the underlying function f since it is guaranteed that the derivatives remain within the
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Figure 5: Zoom plots of the result given in figure 4. The figure demonstrates
the discontinuous behavior of the PIF in the first order derivative between
polynomials.

bounds specified by the natural inclusion function [f (n)([x])]. This information can be
used to sharpen the bounds on f as is demonstrated next.

Consider a location x∗ for which the function f is at its maximum. Per definition
the first order derivative of f must be zero, and the second order derivative ≤ 0.
Nothing can be said of the values of the higher order derivatives since it depends on
the value of the second order derivative (e.g., if it is zero then the 3rd order derivative
must be ≤ 0 and so on). The bounds on f given by [f([x])] are guaranteed thus for any
point on this bound the previous conditions of the first and second order derivative
must hold. Now consider the PIF represented in Figures 4 and 5 at location x = 0.240
where the transition is made from a zero order Taylor polynomial to a first order Taylor
polynomial. Suppose that a point x1 ∈ [0.000, 0.240] exists where f is equal to the
active Taylor polynomial P−1

f̄
, and a point x2 ∈ [0.240, 0.704] exists where f is equal

to the active Taylor polynomial P 0
f̄ on that domain (see Figure 6). If a second order

polynomial is used to define the transition between the two points then the following
must hold:

p(x1) = P−1
f̄

(x1)
∂p
∂x

∣∣
x1

= 0

p(x2) = P 0
f̄ (x2)

∂p
∂x

∣∣
x2

=
∂P0

f̄

∂x

∣∣∣∣
x=x2

∂2p
∂x2

∣∣∣
x∈X

= a



p (x) = P−1
f̄

(x1) + 1
2
a (x− x1)2

x2 = x1 +

∂P0
f̄

∂x
a

∆x =

∂P0
f̄

∂x
a

, (25)

where a is the constant second order derivative value to be determined. To form a
guaranteed inclusion of the function f the value of ∆x must be as small as possible
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f

x

x1

x2

p(x)

Figure 6: Transition polynomial between Taylor polynomials based on minimal
second order derivative information.

which is obtained as follows:

∂P0
f̄

∂x
> 0 → a = sup

[
∂2f
∂x2

∣∣∣
x=[x]

]
∂P0

f̄

∂x
< 0 → a = inf

[
∂2f
∂x2

∣∣∣
x=[x]

] . (26)

By using the bounds obtained by the natural inclusion function the transition is guar-
anteed to be a valid upper bound on the function f . The demonstrated principle of
transition between Taylor polynomial holds for any transition between Taylor poly-
nomial. However, the procedure for defining the transition polynomial becomes less
trivial for higher order transitions (i.e., p has a higher degree). As an example, the
previously determined second order polynomial still violates the third order derivative
bound when the transition is made between p and the Taylor polynomials at x1 and
x2 (jump in second order derivative) which is not valid. Including higher order deriva-
tive information will complicate the derivation, but sharper inclusion functions can be
formed.

The research on the smooth transitions between polynomials in the PIF is subject
of ongoing research. This includes the analysis of speed versus tightness trade-offs.
The main aspects have been highlighted here for completeness but will not be included
in the next section dealing with performance evaluation of the PIF.

4 Comparing Methods

To determine the possible improvement of the bounds formed by the PIF compared
to the standard Verified Taylor Series (VTS), several test cases are used:
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• f1(x) = cos(2xπ)

• f2(x) = exp(−2πx2)

• f3(x) =
n∑
i=0

sin(xπ i!
2i + π

i!
), n = 5

for x ∈ [0, 1] (see Figure 7). For all test cases the volume V between the upper and
lower bounds right of the expansion point is computed for the

• VTS up to order d,

• PIF formed using only Proposition 3.1 (PIF1),

• PIF formed by using Proposition 3.1 and 3.2 (PIF2).

To see the effect of the width of the domain (VTS accuracy increases with a decrease
in domain width [x]) all test cases are evaluated for several domains with varying di-
ameters right of the expansion point x0 = 0, i.e., [x] = x0 +w([x]) · [0, 1] (where w([x])
denotes the width of the domain [x]). The first test function is a simple function to
demonstrate the basic properties of the VTS and the PIF. The other two functions are
selected to demonstrate the performance in case of ‘non-vanishing’ dependency effects,
i.e., functions leading to remainder blowup in case of Taylor Models. The results for
test function f1, f2, and f3 are given in Figures 8, 9, and 10, respectively.

The first conclusion is that the VTSs are indeed effective for ‘small’ domains [x] (‘small’
is problem dependent). The effect of remainder blowup is clearly visible in all figures.
One can see that for a given w([x]) the inclusion might become worse with increas-
ing VTS order before decreasing again. This behavior is clearly not present for both
PIF1 and PIF2. For the PIF the accuracy always increases with increase order, i.e.,
increasing available information. Moreover, it is clearly visible that the PIF always
outperforms the VTS, in particular for ‘larger’ domains. Looking at the figures where
the performance of PIF2 is compared to that of PIF1 one can clearly see that a huge
improvement can be realized (> 50%, expressed as a percentage of the V (PIF1)) es-
pecially in the ‘middle’ values of w([x]). For larger values of w([x]) the effect in %
drops since the volume V (PIF1) also becomes larger but the in terms of magnitude
the gain is increasing. From all figures it becomes clear that the three methods: VTS,
PIF1, and PIF2, perform almost equal for small w([x]) and large d. This is due to
the fact that the PIF consist of a single polynomial (the optimal VTS) for the largest
part of the domain. The reason that the number of switch point, i.e., number of pol-
ynomials, in the PIF2 is not 1 is that at the end of the domain the switch to lower
order polynomials is made. Since this only happens at the very end of the domain,
the increase in efficiency is minimal.

The main conclusion is that the performance of the PIF2 compared to the VTS
and PIF1 increases with increasing function complexity. Due to dependency effects
the bounds on the derivatives are widened leading to non-tight bounds which affect
the performance of the VTSs considerably. To attain the same accuracy as for sim-
pler functions the model order must be increased considerably especially for larger
domains. The latter is far less severe for the proposed PIF. Since higher order meth-
ods are most useful for complex functions (for less complex functions standard linear
methods would suffice) the introduction of the PIF is a valuable addition to the field
of inclusion functions.
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Figure 7: Test function used for the comparison of Taylor Models and Polyno-
mial Inclusion Function performance.

5 Computational Cost Analysis

The main message in this paper is that more efficient handling of available informa-
tion is possible, i.e., a tighter inclusion function can be obtained without additional
function evaluations. Although this is the central topic, the overall computational load
required to make the PIF should also be considered. One can argue that the additional
computational load, required to derive the PIF, could also have been used to determine
a second VTS on a sub-domain thereby improving the sharpness of the inclusion. In
this section a cost analysis is made to identify the cases where it is more beneficial
to use the PIF than the VTS and vice versa. The performance of both methods is
expressed in terms of obtained inclusion function sharpness within the same amount
of computation time.

The method of deriving the PIF requires the use of a root finding algorithm. The
computational load for solving a one-dimensional root finding problem is relatively
low but one can argue that the accumulated computational load can be high. To
make a fair comparison between methods, both the PIF and the VTS implementation
must be optimized. For the VTS only two function calls must be made, one at the
expansion point and one for the entire domain. All the required information is deduced
using automatic differentiation. The more complex the function, the longer it takes to
derive the DAG required for deriving the derivative information. The computational
load of the PIF consists of that of the VTS and additional load to apply the proposi-
tions given in this paper.

To eliminate the need for a numeric root finding algorithm (for higher order pol-
ynomials), a ‘light’ version of the PIF construction algorithm is made: Algorithm 1
given in Table 1. This algorithm, which is based on Proposition 3.2 only, was found
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to yield similar results as the one using both propositions (compare Figure 10 with
Figure 11). Note that the guarantee that a tighter enclosure is found compared to the
VTS is lost when only using Proposition 3.25. The computational load required for
executing Algorithm 1 is very low since only first order polynomial root finding must
be performed. Algorithm 1 is be compared to the VTS for the function f3(x).

The computational load of the derivation of the VTS (tV TS) and the computational
load of the required additional computations to derive the PIF (t∆PIF ) are shown in
Figure 11 (tPIF = tV TS + t∆PIF ). As one can see, the added computational load
to derive the PIF is always lower than that required for deriving a VTS (± half for
this example). This means that at most two VTSs can be determined in the time it
takes to derive one PIF. In Figures 12 and 13 the comparison is made between the
inclusion performance in case of using two VTSs (derived for domain [inf[x],mid[x]]
and [mid[x], sup[x]] respectively - expansion point at the beginning of each domain)
and the performance of the PIF derived using Algorithm 1 for the entire domain.
Test function f3 is used with once n = 5 and once n = 6. The results demonstrate
that indeed applying two VTSs instead of one yields better results. This is clearly
demonstrated when only the zero order derivative bounds are used, i.e., d = −1. The
performance of the VTS is always better than that of the PIF. From Figures 12 and 13
one can conclude that the performance of the PIF with respect to the VTSs is problem
dependent. The more complex the function, the better the performance of the PIF in
terms of V (V TS). The same holds for the width of the domain which is investigated.
As also the results in the previous section show, it is problem dependent which ap-
proach yields the most optimal overall performance in terms of inclusion bounds for
a given amount of computation time. If the domain of interest is small, or the func-
tion is smooth, there is no difference between V (V TS) and V (PIF ) since both will
consists of exactly the same polynomial. Therefore the VTS performs better in terms
of the computational load. For larger domains and more non-linear functions the PIF
quickly becomes more suitable to use, both in terms of sharpness of the bounds and
in terms of computational load.

6 n-Dimensional Case

The discussion of the PIF has been restricted to one-dimensional functions. To be
easily applicable to higher dimensional functions, it is proposed to apply the procedure
given in this paper to all dimensions independently.
A higher dimensional Taylor series is given by:

T
(n)
f,x0

(x) =
∑

0≤i1+...+id≤n

{
∂i1+...+idf(x)

∂x
i1
1 ...∂x

id
d

· (x1−x0,1)i1 ·...·(xd−x0,d)id
i1!·...·id!

}
+Lnf,x0

(ξ,x)
.

(27)

5In the performed research the enclosure was always found to be sharper than that of the
VTS (see also Figure 11).
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Table 1: Algorithm 1: Determination of PIF df .

0. Determine DAG for expansion point x0 and domain [x] yielding
[fd(x)]∀d for x0 and [x].

1. Determine upper bound Prd
f̄

for domain [x0, sup[x]] using algorithm 2

2a. Apply transformation on y-axis:
[fd(x)] = −[fd(x)],∀d for both x0 and [x]

2b. Determine upper bound P d
f̄

for domain [x0, sup[x]] using algorithm 2

2c. Apply transformation on y-axis on P : P d
f̄
→ Prdf

3a. Apply transformation on x-axis:
[fd(x)] = −[fd(x)],∀unevend for both x0 and [x]

3b. Determine upper bound P d
f̄

for domain [inf[x], x0] using algorithm 2

3c. Apply transformation on y-axis and x-axis on P : P d
f̄
→ Pldf

4a. Apply transformation on y-axis:
[fd(x)] = −[fd(x)],∀d for both x0 and [x]

4b. Determine upper bound P d
f̄

for domain [inf[x], x0] using algorithm 2

4c. Apply transformation on x-axis on P : P d
f̄
→ Pld

f̄

5 Create full PIF: PIF df (x) = [P df , P
d
f̄

]∀x ∈ [x]

P df = [Pldf , P r
d
f ], P d

f̄
] = [Pld

f̄
, P rd

f̄
]

Table 2: Algorithm 2: Determination of the upper bound piecewise Taylor
polynomial P d

f̄
.

0. Initialize P d
f̄,x∗

0
= sup[V TSdf ] with x∗0 = x0, set q = d, exit = false.

1. Evaluate sup[V TSdf (sup[x])]∀d and set d̂ such that:

sup[V TSd̂f (sup[x])] ≤ sup[V TSdf (sup[x])]∀d
WHILE !exit AND q > d̂
2. Determine location x∗ where P q

f̄ ,x∗
0

= sup[fq]

3. IF x∗ <= sup[x] THEN compute P q−1

f̄ ,x∗ using Proposition 3.2 ELSE exit
= true.

4. Check derivative values:

IF
∂iP q−1

f̄

∂xi > sup[f i([x])] for any i ∈ [1, q − d̂] THEN execute algorithm
3 to determine i∗ and ∆x∗ .

5. Set x∗ = x∗ + ∆x∗ and compute P i
∗

f̄ ,x∗ using Proposition 3.2.

6. Add P q
f̄ ,x∗

0
as part of the piece-wise polynomial and set q = i∗, x∗0 = x∗

END
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Table 3: Algorithm 3: Check derivative bounds.

0. Set ∆i = 0, ∀i ∈ [1, q − d̂].

FOR i ∈ [1, q − d̂]:
1. Set ε = −∞

WHILE ε < −0.01(sup[x]− x0)

2. ε = sup[f i([x])]− ∂iP q−1

f̄
/∂xi|x=x∗+∆i

3. IF sup[f i+1([x])] ≤ 0 THEN set ε = 0,∆xi = x0 − x∗
4. ELSE Compute ∆xi = ε/ sup[f i+1([x])]

END

5. Define i∗ such that ∆xi∗ < ∆xi,∀ i ∈ [1, q − d̂]
Define ∆x∗ = ∆xi∗

END

The terms corresponding solely to one dimension can be taken out:

Tnf,x0
(x) =

∑
d

{
T

(n)
f,x0,d

(xd) + Lnf,x0,d
(ξd, xd)

}
+R

Tnf,x0,d
(xd) =

∑
0≤id≤n

{
∂idf(xd)

∂x
id
d

· (xd−x0,d)id
id!

}
Lnf,x0,d

(ξd, xd) = 1
(n+1)!

∂n+1f

∂xn+1
d

∣∣∣∣
ξd

(xd − x0,d)
n+1

,

(28)

where R contain all the cross terms. By applying the PIF method to all
(T

(n)
f,x0,d

(xd),L
n
f,x0,d

(ξd, xd)) independently, the method given in this paper can be ap-

plied to higher dimensions.

7 Conclusions

A novel inclusion function has been introduced called the Polynomial Inclusion Func-
tion (PIF). It has been proven and shown through several examples that the PIF is
guaranteed to provide equal or sharper bounds that any (combination of) Taylor Mod-
els and Verified Taylor Series without the need for additional information, i.e. function
evaluations. The assumption hereby is that the required derivative information is de-
rived using automatic differentiation.

Irrespectively of the assumption made, the accuracy of the PIF always improves
with increasing order, a trait that Taylor Models or Verified Taylor Series do not pos-
sess. This means that the PIF does not suffer from the inclusion function blowup effect
encountered with Taylor Models (remainder blowup) for highly non-linear functions
(non-vanishing derivatives) and/or wider domains. The PIF has been deduced for the
one-dimensional case and can be easily extended to n-dimensional functions.

In this paper the PIF has been compared to the VTS inclusion function. In future
research the PIF will be compared to TMs which have been constructed using TM
arithmetic. It has been shown that given a TM and a VTS, there exist a domain
[x0 − δ1, x0 + δ2], δ1 ≥ 0, δ2 ≥ 0 for which the VTS (and thus also the PIF) is guaran-
teed to have tighter enclosure of f than the TM, irrespectively of the method used for
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deriving the remainder. The fact that the inclusion formed by a PIF start with nearly
zero width is an advantage over TM which have a constant width enclosure (=w(I))
over the entire domain. Future research will indicate what the value of δ1,2 will be for
different types of function and different domains. Moreover, a thorough investigation
regarding accuracy versus generation cost must be made to see if the new PIF can
be used more efficiently than TM. The TM of Makino and Berz compromise accuracy
over speed. If in the time a PIF is derived, multiple TM can be derived, then the
overall accuracy of combined TMs might be higher.

Although the PIF provides significantly improved bounds compared to VTS, there
still remains room for improvement. Future research will focus on including even more
(available) information in the construction of the PIF to obtain even sharper bounds.
The results presented in this paper prove that the PIF are a worthy addition to the
field of inclusion functions.
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Figure 8: Test case 1 (f1(x) = cos(2xπ)) - Performance evaluation of the PIF
compared to VTS. PIF1 is created using Proposition 3.1 only, while PIF2 is
created using Proposition 3.2 too. V denotes the area between the bounds
provide by the inclusion function.
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Figure 9: Test case 2 (f2(x) = exp(−2πx2)) - Performance evaluation of the
PIF compared to VTS. PIF1 is created using Proposition 3.1 only, while PIF2

is created using Proposition 3.2 too. V denotes the area between the bounds
provide by the inclusion function.
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Figure 10: Test case 3 (f3(x) =
n∑
i=0

sin(xπ i!
2i + π

i! ), n = 5) - Performance evalua-

tion of the PIF compared to VTS. PIF1 is created using Proposition 3.1 only,
while PIF2 is created using Proposition 3.2 too. V denotes the area between
the bounds provide by the inclusion function.
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i! ), n = 5) - Performance evalu-

ation of the PIF (Algorithm 1) compared to VTS. V denotes the area between
the bounds provide by the inclusion function.
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Figure 12: Test case 3 (f3(x) =
n∑
i=0

sin(xπ i!
2i + π

i! ), n = 5) - Performance eval-

uation of the PIF (Algorithm 1) compared to two VTSs. One VTS is used to
form an inclusion of domain [inf[x],mid[x]], while the other is used for domain
[mid[x], sup[x]]. V denotes the area between the bounds provide by the inclusion
function. For the bottom plot, values lower than -100% have been set to -100%.
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Figure 13: Test case 3 (f3(x) =
n∑
i=0

sin(xπ i!
2i + π

i! ), n = 6) - Performance eval-

uation of the PIF (Algorithm 1) compared to two VTSs. One VTS is used to
form an inclusion of domain [inf[x],mid[x]], while the other is used for domain
[mid[x], sup[x]]. V denotes the area between the bounds provide by the inclusion
function. For the bottom plot, values lower than -100% have been set to -100%.
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