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Abstract

In this article, we address the question of minimizing a real polynomial
over the standard simplex. This problem can be solved with a branch-and-
bound method, using the Bernstein form of the polynomial. Such methods
have been widely studied from a numerical point of view, and refinements
have been proposed to speed up the computational time. We are here
interested in the basic branch-and-bound algorithm (and its complexity),
which has the advantage to lead to certified proofs.
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1 Introduction

In this article we study the problem of approximating the minimum value of a poly-
nomial on the standard simplex, which can be stated as follows:

min f(x)

s.t. x ∈ ∆
(P)

where f is a polynomial of degree d in k variables. Here, ∆ stands for the standard
simplex, defined as:

∆ = {x ∈ Rk | x > 0 and

k∑
i=1

xi 6 1}.

Problem (P) (and its complexity) is widely studied (see [4, 5] and the references
therein), and has several applications in financial engineering (portfolio optimization),
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life sciences (genetics, population dynamics) and graph theory. For example, as pointed
out in [5], the maximum stable set problem is a particular case of Problem (P). Con-
sequently, Problem (P) is an NP-hard problem, already for polynomials of degree
2.

Numerical methods can generally be of real interest to tackle NP-hard problems
of polynomial optimization (see [9, 7, 14] in the general framework of polynomial
optimization, and [4, 5] in the context of polynomial optimization over a simplex).
However, stability problems can occur with such methods, and it can be difficult
to control the numerical precision, which can lead to an incertitude concerning the
obtained results. This is especially the case when one seeks a formal proof, i.e. a proof
in which every logical inference has been checked (see [6] for an example of a formal
proof involving optimization problems).

We study here the complexity of a basic branch-and-bound method. This algorithm
makes use of the simplicial Bernstein basis and its range enclosing property, which has
proved to be useful in bounding ranges of polynomials over domains (see, for example,
[8], [13]).

2 Background

We now give the necessary background on the simplicial Bernstein basis (see the
textbook [16] for further details).

2.1 Simplicial Bernstein Basis

We first recall the definition of a simplex:

Definition 2.1. Let v0, . . . ,vk be k + 1 points of Rk (k ≥ 1).

The ordered list V = [v0, . . . ,vk] is called simplex of vertices v0, . . . ,vk.

The realization |V | of the simplex V is the set of Rk defined as the convex hull of
the points v0, . . . ,vk.

If the points v0, . . . ,vk are affinely independent, the simplex V is said to be non-
degenerate.

Notation 2.2. Throughout the article V = [v0, . . . ,vk] will denote a non-degenerate
simplex of Rk, or, by abuse of notation, its realization |V |.

Let λ0, . . . , λk be the associated barycentric coordinates to V , i.e. the linear
polynomials of R [X] = R [X1, . . . , Xk] such that

k∑
i=0

λi(X) = 1 and ∀x ∈ Rk, x = λ0(x)v0 + · · ·+ λk(x)vk.

Recall that V is characterized by its barycentric coordinates as follows:

V =

k⋂
i=0

{x ∈ Rk|λi(x) ≥ 0}.
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X1 ≥ 0

1−X1 ≥ 0

X1, X2 ≥ 0

1−X1 −X2 ≥ 0

X1, X2, X3 ≥ 0

1−X1 −X2 −X3 ≥ 0

Figure 1: Standard simplices and associated barycentric coordinates in dimen-
sion 1, 2, 3.

Example 2.3. Let (e1, . . . , ek) denote the canonical basis of Rk, and 0 = (0, . . . , 0)
the origin. The simplex ∆ = [0, e1, . . . , ek] is called standard simplex of Rk.

The following notation will be useful afterwards:

Notation 2.4. For every multi-index α = (α0, . . . , αk) ∈ Nk+1, we write |α| =
α0 + · · ·+ αk.

The Bernstein polynomials are defined as follows:

Definition 2.5. Let d be a natural number. The Bernstein polynomials of degree d
with respect to V are the polynomials

(
Bdα
)
|α|=d, where:

Bdα =

(
d

α

)
λα =

d!

α0! . . . αk!

k∏
i=0

λαi
i ∈ R [X] .

The Bernstein polynomials of degree d w.r.t. V form a basis of the vector-space
of the polynomials of degree ≤ d. Thus, every polynomial f of degree ≤ d can be
uniquely written as

f =
∑
|α|=d

bα(f, d, V )Bdα,

and the numbers bα(f, d, V ) are called Bernstein coefficients of f of degree d with
respect to V . We denote by b(f, d, V ) the list of all the Bernstein coefficients bα(f, d, V )
(in any order).

2.2 Control Net

The Bernstein coefficients of a polynomial f give some geometric information, which
can be expressed in terms of the so-called control points:

Definition 2.6. Let V = [v0, . . . ,vk] be a non-degenerate simplex of Rk, f ∈ R [X] a
polynomial of degree ≤ d and bα(f, d, V ) (|α| = d) its Bernstein coefficients of degree
d w.r.t. V .

• The grid points of degree d associated to V are the points

vα(d, V ) =
α0v0 + · · ·+ αkvk

d
∈ Rk (|α| = d).
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• The control points associated to f of degree d w.r.t. V are the points

Cα =
(
vα(d, V ), bα(f, d, V )

)
∈ Rk+1 (|α| = d).

The control points of f form its control net of degree d.

• The discrete graph of f of degree d w.r.t. V is formed by the points(
vα(d, V ), f

(
vα(d, V )

))
|α|=d

.

We then have the following classical properties (see [16] for proofs):

Proposition 2.7. Keeping the same notations, we have:

(i) linear precision: if deg f ≤ 1, then:

∀|α| = d, bα(f, d, V ) = f(vα(d, V )).

(ii) interpolation at the vertices: if (e0, . . . , ek) denotes the canonical basis of
Rk+1, then:

∀i ∈ {0, . . . , k}, bdei(f, d, V ) = f(vi).

(iii) convex hull property: the graph of f is contained in the convex hull of its
associated control points.

(iv) range enclosure property: Consequently,

∀x ∈ V, min
|α|=d

bα(f, d, V ) ≤ f(x) ≤ max
|α|=d

bα(f, d, V ).

We then aim at comparing the discrete graph of f to its control net.
In order to compare the control net to the discrete graph of a polynomial, we will

make use of the so-called second differences:

Definition 2.8. Let (e0, . . . , ek) be the standard basis of Rk+1 (with the convention
e−1 = ek), and V = [v0, . . . ,vk] a simplex of Rk.
For |γ| = d−2 and 0 ≤ i < j ≤ k, define the quantity (where bα stands for bα(f, d, V )):

∇2bγ,i,j(f, d, V ) = bγ+ei+ej−1 + bγ+ei−1+ej − bγ+ei−1+ej−1 − bγ+ei+ej .

The collection ∇2b(f, d, V ) =
(
∇2bγ,i,j(f, d, V )

)
|γ|=d−2
0≤i<j≤k

forms the second differences

of f of degree d w.r.t. V .

Notation 2.9. Let
∥∥∇2b(f, d, V )

∥∥
∞ denote the quantity max

|γ|=d−2
0≤i<j≤k

|∇2bγ,i,j(f, d, V )|.

In [10], the author obtains an explicit bound on the gap between the control net
and the discrete graph of a polynomial, namely:

Theorem 2.10. With the previous notations, we have:

max
|α|=d

∣∣f(vα(d, V )
)
− bα(f, d, V )

∣∣ ≤
⌊
d2k(k + 2)

12

⌋
2d

∥∥∇2b(f, d, V )
∥∥
∞ .

Remark 2.11. This result generalizes results from [11] (dimension 1) and [17] (di-
mension 2).
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2.3 Convergence under Subdivision

In the following, we study the behavior of the Bernstein coefficients of a polynomial
when subdividing a simplex.

Let f ∈ R[X] be a polynomial of degree d over the standard simplex V . Assume
that V has been subdivided, i.e.

V = V 1 ∪ · · · ∪ V s,

where the interiors of the simplices V i (1 ≤ i ≤ s) are disjoint.
The expansion of f in the Bernstein basis of degree d associated with each subsim-

plex V i can be computed using only convex combinations of its Bernstein coefficients
w.r.t V . This can be done by successive calls to the De Casteljau algorithm ([15],[16]),
which we recall for the readers’ convenience.

Notation 2.12. If V = [v0, . . . ,vk] is a simplex of Rk and M ∈ Rk, the simplices
V [i] (i = 0, . . . , k) are defined as follows:

V [i] = [v0, . . . ,vi−1,M,vi+1, . . . ,vk].

In what follows, if α ∈Nk+1 and 0 ≤ i ≤ k, we write

α̂i = (α0, . . . , αi−1, 0, αi+1, . . . , αk).

Recall that the barycentric coordinates of M w.r.t. V are denoted by

(λ0(M), . . . , λk(M)) .

The standard basis of Rk+1 is denoted by (e0, . . . , ek).

Algorithm 2.13 (De Casteljau).

Input: a simplex V , the Bernstein expansion b(f, d, V ) of a polynomial f of degree
d over V , and a point M ∈ Rk.

Output: the Bernstein expansions b(f, d, V [i]) of f associated to the subsimplices
V [i], for every i ∈ {0, . . . , k}.

Algorithm:
∀|α| = d, b

(0)
α ← bα(f, d, V ).

for ` = 1, . . . , d do
for |α| = d− ` do

b
(`)
α ←

k∑
p=0

λp(M)b
(`−1)
α+ep

end for
end for

return bα(f, d, V [i]) = b
(αi)

α̂i
(|α| = d, i = 0, . . . , k).

If U = [u0, . . . ,uk] is a subsimplex of V , then the Bernstein expansion b(f, d, U)
can be computed from b(f, d, V ) by k + 1 successive calls to De Casteljau’s algorithm
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at the points u0, . . . ,uk. In each call, only convex combinations of the Bernstein
coefficients b(f, d, V ) are involved. This process is called reparametrization.

In the following, we will focus on subdivision schemes that reduce the diameter in
the following sense:

Definition 2.14. Let V be a non-degenerate simplex of Rk, S be a subdivision scheme
(i.e. a rule for subdividing any simplex), and S(V ) = V 1 ∪ · · · ∪ V s be the resulting
subdivision of V .

• The mesh of V , denoted by m(V ), is its diameter.

The mesh of S(V ), denoted by m(S(V )), is the largest mesh among the subsim-
plices V i.

• S is said to have a shrinking factor 0 < C < 1 if for every simplex V ,

m(S(V )) ≤ C ×m(V ).

• SN (V ) denotes the subdivision of V obtained after N successive subdivision
steps.

Example 2.15. The so-called binary splitting consists in splitting each simplex at the
midpoint of its (not necessary unique) longest edge. In this case, a call to De Calsteljau
algorithm can be executed faster than for an arbitrary point in the interior of the
simplex ([14]), and generates the Bernstein expansion of f over the two subsimplices.

Since a non-degenerate simplex has k(k+1)
2

edges, the following is easy to see:

Lemma 2.16. After at most
k(k + 1)

2
steps of binary splitting of a simplex of diameter

h, the diameter of the subsimplices is less than h/2.

In other words, the subdivision scheme consisting in
k(k + 1)

2
steps of binary split-

ting has a shrinking factor 1
2

.

When subdividing a simplex (so that the diameters of the subsimplices converge
to 0), the control net of a polynomial converges to its discrete graph: this well-known
property is called convergence under subdivision. In [10], the author deduces from
Theorem 2.10 an explicit bound implying convergence under subdivision:

Theorem 2.17. Let W be a subsimplex of a simplex V .

Then, for all |α| = d, we have:

∣∣f (vα(d,W ))− bα(f, d,W )∣∣ ≤ m(W )2d
k2(k + 1)(k + 2)2(k + 3)

576

∥∥∇2b(f, d, V )
∥∥
∞ .

Remark 2.18. Note that the previous theorem implies that the rate of convergence is
quadratic in the diameter of the subsimplices, as already shown in [3]. The improve-
ment here is that the bound is explicit in terms of the dimension, the degree and the
Bernstein expansion of f over V .



Reliable Computing 17(1), 2012 17

3 Polynomial Minimization over the Standard
Simplex

When minimizing a polynomial f over a non-degenerate simplex V , one can use an
approach based on the simplicial Bernstein basis. Indeed, the range enclosure property
leads to a lower bound of f on V . By repeatedly subdividing V , the minimum of f over
V can then be approximated within any desired accuracy. This procedure is called
Bernstein branch and bound method. It can be used not only to numerically minimize
a polynomial over a simplex, but also to obtain certified formal proofs. Polynomial
minimization is a NP-hard problem, so the complexity of such a procedure is high. In
this section, we bound the number of needed subdivision steps.

Remark 3.1. In [12, 13], the problem of minimizing a polynomial in Bernstein form
is also studied. However, the authors use the so-called tensorial Bernstein basis (see
[16] for details), in which polynomials can be expanded with respect to boxes [a1, b1]×
· · · × [ak, bk] ⊂ Rk. One advantage of using the simplicial Bernstein basis is to deal
with a simpler representation of polynomials.

3.1 Branch and Bound Algorithm

Let V be a non-degenerate simplex and S be a subdivision scheme. In the process of
minimizing a polynomial, the subdivision scheme as described above continues even for
subsimplices where the minimum cannot occur. In order to delete such subsimplices,
so that unnecessary subdivisions are avoided, one can use the simple cut-off test :

Lemma 3.2 (cut-off test). Let W be a subsimplex of V , and f? an upper bound on
the minimum of f over V .

If min
|α|=d

bα
(
f, d,W

)
> f?, then the minimum of f cannot occur in W . Hence, W

can be deleted from the list of simplices to be subdivided.

Remark 3.3. From a certified point of view, computing the minimum means comput-
ing a lower and an upper bound of it; computing the minimizers means giving a list of
subsimplices that contain all the minimizers.

Note also that in the output of the following algorithm, a simplex V is always
given together with the Bernstein expansion bV = b(f, d, V ), the minimum Bernstein
coefficient

mV = min
|α|=d

bα(f, d, V )

and, when relevant, the value fV defined as

fV = min
(
f
(
vα(d, V )

)
, bde0(f, d, V ), . . . , bdek (f, d, V )

)
,

where α satisfies bα(f, d, V ) = mV .

From Properties (ii) (interpolation at the vertices) and (iv) (range enclosure) of
Proposition 2.7, one can obviously deduce that

mV ≤ min
x∈V

f(x) ≤ fV . (3.1)

We now present a certified version of the usual Bernstein branch and bound algo-
rithm.
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Algorithm 3.4 (Branch and bound algorithm).

Input:

• the list b∆ = (bα(f, d,∆))|α|=d of the Bernstein coefficients of a polynomial
f ∈ R [X] of degree d with respect to the standard simplex ∆ of Rk

• a subdivision scheme S with shrinking factor C < 1

• a precision ε > 0

Output:

• A lower bound m? and an upper bound f? of the minimum m of f over ∆, such
that f? −m? ≤ ε

• A collection of subsimplices of ∆ that contain all the possible minimizers.

• A collection of rejected subsimplices, that are sure not to contain any minimizer.

Algorithm:

f? ← f∆

L← {(∆, b∆,m∆, f
?)}

S ← ∅
R← ∅

while L 6= ∅ do
Pick the first item (V, bV ,mV , fV ) of L, and delete it from L.
f? ← min(f?, fV )
if mV > f? then

Add (V, bV ,mV ) to R. {cut-out test}
else

if fV −mV ≤ ε then
Add (V, bV ,mV , fV ) to S.

else
Subdivide V .
for W in S(V ) do

Compute the Bernstein expansion of f over W .
Add the items (W, bW ,mW , fW ) to L.
f? ← min(f?, fW )

end for
end if

end if

end while

Discard from S and place into R all the subsimplices V such that mV > f?.

m? ← min
V ∈S

mV

return m? {lower bound on the minimum of f over ∆}

return f? {upper bound on the minimum of f over ∆}

return S {subsimplices that contain all the minimizers}

return R {subsimplices that are sure to contain no minimizer}

Remark 3.5.
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• Algorithm 3.4 is certified in the following sense: from the Bernstein expansions
of f over the subsimplices in S and R, one can read the proof that:

(i) The minimum of f over ∆ satisfies:

m? ≤ min
x∈∆

f(x) ≤ f?.

(ii) The minimizers belong to subsimplices from the list S.

(iii) No subsimplex from R contains a minimizer.

This can lead to a formal proof, and be checked by proof assistants (e.g. Coq,
[1]), or implemented in a theorem prover like PVS ([2]).

• f
(
vα(d, V )

)
can be evaluated by means of the De Casteljau’s algorithm ([15],[16]).

When doing this, it generates a subdivision of V that can be used to speed up
the subdivision process (note that the subdivision scheme S still has to have a
shrinking factor C < 1)

• If ε is to be lowered, one can use the result of a former instance of this algorithm
to meet the new accuracy requirement.

• If m? = fV for a simplex V ∈ S, then the exact minimum of f over ∆ has been
computed by Algorithm 3.4, and an exact minimizer is easily computed.

Proof of Algorithm 3.4. The proof is an immediate consequence of Lemma 3.2 and
Equation (3.1). The number of subdivision steps is finite, and is bounded in the next
section.

3.2 Number of Subdivision Steps

We now prove that Algorithm 3.4 stops, and bound the number of subdivision steps:

Theorem 3.6. Let f ∈ R [X] be a polynomial of degree d, and S a subdivision scheme
with shrinking factor C < 1.

Let ε > 0 a real number, and N an integer satisfying:

1

C2N
≥ dk

2(k + 1)(k + 2)2(k + 3)

288 ε

∥∥∇2b(f, d,∆)
∥∥
∞ .

Then Algorithm 3.4 needs at most N subdivision steps.

Proof. It is sufficient to show that |fV −mV | ≤ ε for each subsimplex V ∈ SN (∆).
Let V ∈ SN (V ) be such a simplex, and α a multi-index such that mV = bα(f, d, V ).

Then:

|fV −mV | = fV −mV

≤ f
(
vα(d, V )

)
− bα(f, d, V )

≤ m(V )2d
k2(k + 1)(k + 2)2(k + 3)

576

∥∥∇2b(f, d,∆)
∥∥
∞ (Th. 2.17)

≤
(
CNS(∆)

)2
d
k2(k + 1)(k + 2)2(k + 3)

576

∥∥∇2b(f, d,∆)
∥∥
∞

≤ C2Nd
k2(k + 1)(k + 2)2(k + 3)

288

∥∥∇2b(f, d,∆)
∥∥
∞ ,

where the last inequality comes from the fact that S(∆) =
√

2. This allows us to
conclude.
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Remark 3.7. The bound in Theorem 3.6 does not take into account the cut-off test,
which in practice drastically improves the computational time.
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