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Abstract

We propose a generalized method, called as the Matrix method, for
computation of the coefficients of multivariate Bernstein polynomials. The
proposed Matrix method involves only matrix operations such as multipli-
cation, inverse, transpose and reshape. For a general box-like domain, the
computational complexity of the proposed method is O(nl+1) in contrast
to O(n2l) for existing methods. We conduct numerical experiments to
compute the Bernstein coefficients for eleven polynomial problems (with
dimensions varying from three to seven) defined over a unit box domain
as well as a general box domain, with the existing methods and the pro-
posed Matrix method. A comparison of the results shows the proposed
algorithm to yield significant reductions in computational time for ‘larger’
number of Bernstein coefficients.

Keywords: Polynomial optimization, Bernstein coefficient, Interval analysis, Matrix
operations
AMS subject classifications: 65-00

1 Introduction

Knowledge of the range of a multivariate polynomial is relevant for numerous inves-
tigations and applications in numerical and functional analysis, combinatorial opti-
mization, and finite geometry. If a polynomial is written in the Bernstein basis over a
box, then the range of the polynomial is bounded by the values of the minimum and
maximum Bernstein coefficients [8].
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Polynomial optimization using the Bernstein approach needs transformation of
the given multivariate polynomial from its power form into its Bernstein form, and
subsequently computation of the Bernstein coefficients. For obtaining these trans-
formations, the Conventional method [6] has the disadvantage of high computational
complexity for large dimensional problems. Although Garloff’s method [3] is superior
to the Conventional method, but on a general box-like domain its computational com-
plexity is high when the number of Bernstein coefficients is large. Moreover, a study
of Garloff’s method reveals that it cannot be fully implemented in terms of only vector
or array operations. Thus, the benefits of speedy vector-array operations (available
in most programming languages) are not fully exploited in this method. Berchtold
et al. [1] give an alternate method for converting univariate, bivariate and trivariate
power-form polynomials into the equivalent Bernstein form. However, the method is
difficult to generalize for dimensions higher than three. The method of computation of
generalized Bernstein coefficients as given in [9, 12] is almost the same as that of the
Conventional method. The scaled Bernstein coefficients approach of Sánchez-Reyes
[10] reintroduces the binomial coefficients while computing the Bernstein coefficients,
hence is inefficient for directly finding the latter. The parallel scheme of Garczarczyk
[2] is specific to parallel processors, and is thus not appropriate for normal processing.
Smith’s method [11] of computation of the Bernstein coefficients of multivariate pol-
ynomials is efficient when the polynomials are sparse, i.e., when the number of terms
of the polynomial is much less than the number of Bernstein coefficients.

In this paper, we present a new generalized technique, called the Matrix method,
for computation of the Bernstein coefficients of multivariate polynomials. Using the
proposed technique, the aforesaid limitations are reduced to a considerable extent.
The proposed method is based fully on matrix operations, which enables speeding up
of all the computations. In the proposed method, the given polynomial coefficients
(irrespective of the dimensionality), are always arranged in the form of amatrix instead
of a multidimensional array. The size of this matrix depends on the number of variables
of the polynomial, and the maximum power of each variable in the polynomial. The
computation of Bernstein coefficients then proceeds using only matrix operations such
as inverse, multiplication, transpose and reshape. All these matrix operations are
efficiently implemented in many popular programming languages as standard library
routines, thus leading to much faster computations. Moreover, the transformation of
the polynomial coefficients from a general box-like domain to a unit box domain is an
inherent part of the proposed method.

The organization of the paper is as follows : in the next section, we give the nota-
tions and definitions of Bernstein polynomials and discuss about the basis conversion
from power form to Bernstein form. In Section 3, we describe the existing methods
for computation of Bernstein coefficients and also give the computational complexity
associated with their algorithms. In Section 4, we present the proposed method for
a bivariate case. The proposed Matrix method uses the inverses of three types of
matrices. In the same section, initially we formulate a simple method to directly com-
pute the inverses of the three required matrices. We also give the algorithms and the
computational complexities of each formulation. Subsequently, we extend the same
idea based on matrix operations to higher multivariate cases. In Section 5, we present
the proposed algorithm for Bernstein coefficient computation, and in Section 6, we
compare its computational complexity with those of the existing methods. In Section
7, we investigate the performances of all the three methods for Bernstein coefficients
computation on eleven polynomial test problems with dimensions varying from three
to seven taken from the literature. We present the conclusions in the last section
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followed by the description of the test problems.

2 Bernstein Forms

2.1 Notation and Definitions

Following the notations in [5], let l ∈ N be the number of variables and x = (x1,x2, ..., xl) ∈
R

l. Define a multi-index I as I = (i1,i2, ..., il) ∈ N
l and multi-power x as xI =

(xi1
1 , xi2

2 , ..., x
il
l ). Further, define a multi-index of maximum degreesN asN = (n1, n2, ..., nl)

and I = (i1, i2,..., il). Inequalities I ≤ N for multi-indices are meant component-wise,
where 0 ≤ ik ≤ nk, k = 1, 2, ..., l. Also, write

(
N

I

)
for
(
n1

i1

)
, ...,

(
nl

il

)
.

Let x = [x, x], x ≥ x be a real interval, where x=inf x is the infimum, and x=sup
x is the supremum of the interval x. The width of the interval x is defined as wid
x =x− x. For an l-dimensional interval vector or box x = (x1,x2,...,xl), the width of
x is wid x = (wid x1,wid x2, ...,wid xl).

We can write an l-variate polynomial p of degree N in the power form as

p(x) =
∑

I≤N

aIx
I , aI ∈ R, x = (x1, x2, ..., xl) ∈ R

l (1)

We can expand the multivariate polynomial in (1) into Bernstein polynomials over the
l-dimensional box x = (x1,x2,...,xl). Without loss of generality, we consider the unit
box u = [0, 1]l, since any nonempty box x of Rl can be affinely mapped onto u.

The transformation of a polynomial from its power form (1) into its Bernstein form
results in

p(x) =
∑

I≤N

bI(u)BN,I(x), x ∈ u (2)

The coefficients bI(u) are called the Bernstein coefficients of p over u, and BN,I(x) is
called the Ith Bernstein polynomial of degree N defined as

BN,I(x) = Bn1

i1
(x1)B

n2

i2
(x2)...B

nl
il
(xl)

where,

B
nj

ij
(xj) =

(
nj

ij

)
x
ij
j (1− xj)

nj−ij , ij = 0, ..., nj , j = 1, ..., l

Each set of coefficients (aI or bI) in (1) and (2) can be computed from the other as
[1] :

aI =
∑

J≤I

(−1)I−J
(
N
I

)(
I
J

)
bJ

bI(u) =
∑

J≤I

(
I

J

)
(
N

J

)aJ , I ≤ N (3)

2.2 The Basis Conversion [1]

Most systems use the power form representation of a polynomial. When the Bernstein
form is used, a conversion between the two bases is often necessary. For instance, in
the univariate case, the equivalent power and Bernstein forms are

p (x) =

n∑

i=0

aix
i =

n∑

i=0

bni B
n
i (x) , x ∈ u (4)
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In this subsection, we review the conversion of a univariate polynomial from the
power form to its Bernstein form.. The polynomial p(x) can be written in the following
two ways

p(x) =

n∑

i=0

aix
i =

(
1 x x2 .. .. xn

)




a0

a1

:
:
an




= XA (5)

or as

p (x) =
n∑

i=0

bni B
n
i (x) =

(
Bn

0 (x) Bn
1 (x) .. .. .. Bn

n(x)
)




bn0
bn1
:
:
bnn




=: BxB (6)

Thus,
p (x) = XA = BxB (7)

If

Ux =




(
n

0

)(
n

0

)
(−1)0 0 ... 0(

n

0

)(
n

1

)
(−1)1

(
n

1

)(
n−1
0

)
(−1)0 ... 0

: : ... :
: : ... :(

n

0

)(
n

n

)
(−1)n

(
n

1

)(
n−1
n−1

)
(−1)n−1 ...

(
n

n

)(
n−n

n−n

)
(−1)n−n




(8)

then, for a unit interval domain (see [1])

BxB = XUxB

or
B = U−1

x A (9)

where in the above, Bx is the Bernstein basis matrix, B is the Bernstein coefficient
matrix, A is the polynomial coefficient matrix, and Ux is a lower triangular matrix
given by (8).

On a general interval domain [x, x], the Bernstein polynomials of degree n ∈ N are
defined by

Bn
i (x) = (ni )

(x− x)i(x− x)n−i

(x− x)n
, i = 0, 1, ..., n (10)

If

Vx =




1 0 0 ... 0
0 1

(x−x)
0 ... 0

: : 1
(x−x)2

... :

: : : : :
0 0 0 .... 1

(x−x)n




(11)

and

Wx =




1
(
1
0

)
(−x)1

(
2
0

)
(−x)2 ...

(
n

0

)
(−x)n

0
(
1
1

)
(−x)1−1 (

2
1

)
(−x)2−1 ...

(
n

1

)
(−x)n−1

0 0
(
2
2

)
(−x)2−2 ...

(
n

2

)
(−x)n−2

: : 0 ... :
: : : ... :

0 0 0 ...
(
n

n

)
(−x)n−n




(12)
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then, from the derivation given in [1]

XA = Bx B = XWxVxUxB

or
B = U−1

x V −1
x W−1

x A

where, A is the matrix containing the coefficients of the polynomial defined on a given
general interval domain, Vx is a diagonal matrix given by (11), and Wx is an upper
triangular matrix given by (12).

3 Existing Methods for Bernstein Coefficient Com-

putation

In this section, we discuss three existing methods of computing the Bernstein coeffi-
cients along with their computational complexities.

3.1 Conventional Method

Let p be a polynomial on a general interval domain x. Then,

p(x) =
∑

I≤N

aIx
I , aI ∈ R, x ∈ x

In order to evaluate the Bernstein coefficients, the polynomial is first transformed onto
a unit interval domain u. The transformed polynomial [3] with the coefficients a′

I is
given by

p(x) =
∑

I≤N

a′
Ix

I , a′
I ∈ R, x = (x1, x2, ..., xl) ∈ u

The Bernstein coefficients of p over u are then given by

bI(u) =
∑

J≤I

(
I

J

)
(
N

J

)a′
J , I ≤ N (13)

The transformed polynomial coefficients are given by

a′
I = (wid x)I

N∑

J=I

(
J

I

)
(inf x)J−IaJ , I ≤ N (14)

In the above, we need the binomial coefficients C(J, I) defined as

C(J, I) :=

(
J

I

)
(15)

which can be computed using the following algorithm.

Algorithm Binomial coefficient : C(0 : n, 0 : n) = Binomial coefficient (n)
Inputs : Degree n of the polynomial.
Output : The binomial coefficients C(0 : n, 0 : n).
BEGIN Algorithm
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1. {Compute binomial coefficients C(i, k)}

C(1, 0) = 1,

for i = 2, ..., n do

1. C(i− 1, i− 1) = 1, C(i, 0) = 1

2. for k = 1, ..., (i− 1) do C(i, k) = i

i−k
C((i− 1), k).

2. {Return}

return C.

END algorithm

Complexity of Algorithm Binomial coefficient

• Step 1.2 requires 2 additions and multiplications, and is executed (i− 1) times.
Therefore, it requires 2(i− 1) number of additions and multiplications. Since i
varies from 2 to n, step 1 requires a total number of

n(n− 1) (16)

additions and multiplications.

We can now implement (14), using the multivariate Horner scheme, and find the
transformed polynomial coefficients a′

I .

3.1.1 Multivariate Horner Scheme [7, 13]

A multivariate polynomial in l variables

p(x) =
N∑

I=0

aIx
I

may be represented in sum of products representation as

p(x1, x2, ..., xl) =
N∑

I=0

aI

l∏

r=1

xir
r (17)

Initially, set p(1)(x1,x2,..., xl) = p(x1,x2,..., xl) and expand it in powers of x1 as

p(1)(x1, x2, ..., xl) =

n1∑

i=0

xi
1p

(2)
i (x2, x3, ..., xl)

Using the Horner scheme, the above expression can be represented as

p(1)(x1, x2, ..., xl) = p
(2)
0 (x2, x3, ..., xl)+x1(p

(2)
1 (x2, x3, ..., xl)+x1(...+x1p

(2)
n1

(x2, x3, ..., xl)))

Note that the coefficients p
(2)
i are still polynomials with x1 variable eliminated. The

same expression can now be applied to the (n1 +1) coefficients p
(2)
i (x2, x3, ..., xl) with

x2 as the indeterminate.
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Table 1: Number of additions and multiplications required at each step to eval-
uate a polynomial using multivariate Horner scheme

Step Additions Multiplications
1 n n

2 n(n+ 1) n(n+ 1)
...

...
...

l n(n+ 1)l−1 n(n+ 1)l−1

We recursively expand the coefficients in the same way until polynomials in only xl

are obtained. The expansion is repeated l times and in each step we obtain coefficients
with one variable less. Hence,

p(r)(xr, xr+1, ..., xl) =

nr∑

i=0

xi
rp

(r+1)(xr+1, xr+2, ..., xl), r = 1, 2, ..., l

For the sake of convenience, we assume here all powers nr equal to n. The additions
and multiplications required at each step are shown in Table 1.

From Table 1, the total additions and multiplications is obtained as

l∑

r=1

n(n+ 1)r−1 = (n+ 1)l − 1

leading to the following theorem.

Theorem 3.1 [13] The evaluation of an l-variate polynomial in power form of max-
imum degree n in all variables requires at most (n+1)l − 1 additions and (n+1)l − 1
multiplications.

The Horner scheme as applied to (14) is essentially the same as applied to (17),
except that instead of the indeterminates xr, we have the products of the binomial
coefficients and the infima of the box.

For the sake of illustration, consider the multivariate Horner scheme as applied to
the transformation of a bivariate polynomial from a general box to a unit box domain.
For a bivariate polynomial, the transformed polynomial coefficients are given by

a
′

i1i2
= (wid x1)

i1(wid x2)
i2

n1∑

j1=i1

(
j1
i1

)
inf xj1−i1

1

n2∑

j2=i2

(
j2
i2

)
inf xj2−i2

2
aj1j2

where 0 ≤ i1,2 ≤ n1,2 and the indeterminates are
(
j1
i1

)
inf xj1−i1

1
and

(
j2
i2

)
inf xj2−i2

2
. By

the application of Horner’s method, the following parenthesizing is obtained :

a
′

i1i2
= (wid x1)

i1(wid x2)
i2

{
ai1i2 + ...+

(
n1 − 1

i1

)
inf x1 {an1−1i2 + ...

+

(
n1

i1

)
inf x1 {an1i2 + ... +

(
n2 − 2

i2

)
inf x2 {an1n2−2

+

(
n2 − 1

i2

)
inf x2

{
an1n2−1 +

(
n2

i2

)
inf x2an1n2

}}}}}
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Based on the above multivariate Horner scheme, we present here an algorithm for
transformation of the coefficients of an l-variate polynomial from a general box to a
unit box domain. We assume here for simplicity that degree N of all the variables are
equal to n. The algorithm initially computes all the powers (from 1 to n) of the widths
of all the sides of a general box, and then finds all the coefficients of the transformed
polynomial using (14).

Algorithm Transformation Horner : a
′

I = Transformation (N , x, aI , C(0 :
n, 0 : n))

Inputs : Degree N of the polynomial (which is taken to be n), the l-dimensional
box x, all the polynomial coefficients aI = a(i1, ...il), and the binomial coefficients
C(0 : n, 0 : n).

Output : Coefficients a
′

I = a
′

(i1, ...il) of the transformed polynomial.
BEGIN Algorithm

1. {Compute edge lengths of x, i.e., widths of the box x}

for r = 1, ..., l do wid xr = (xr − xr)

2. {All the powers of the widths}

for r = 1, .., l do wid x0
r = 1

1. for ir = 1, ..., n do wid xir
r =

(
wid x

(ir−1)
r

)
(wid xr)

3. {Coefficients of the transformed polynomial}

for i1 = 0, ..., n

...

for ir = 0, ..., n

...

1. for il = 0, ..., n do d(n+ 1, i2, ..., il) = 0

1. for j1 = n, ..., i1 do d(j1, n+ 1, i3, ..., il) = 0
...

for jr = n, ..., ir do d(j1, ..., jr, n+ 1, ..., il) = 0
...

for jl = n, ..., il

dd(j1, ..., jl) = a(j1, ..., jl) + C(jl + 1, il)inf xld(j1, ..., jl + 1).

...
d(j1, ..., jr, ir+1, ..., il) = d(j1, ..., jr, ..., il)+C(jr+1, ir)inf xrd(j1, ...jr+
1, ..., il).

...
d(j1, i2, ..., il) = d(j1, i2, ..., il) +C(j1 + 1, i1)inf x1d(j1 + 1, i2, ..., il).

2. a
′

(i1, ...il) = d(i1, ..., il)wid xi1
1 , ...,wid xil

l

4. {Return}

return a
′

I .
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END Algorithm.

Complexity of Algorithm Transformation Horner
The computational complexity of the algorithm for transformation of the l-variate

polynomial is given below.

• Step 1 requires l additions.

• Step 2.1 requires n multiplications and is executed l times. Therefore, step 2
requires ln multiplications.

• Step 3.1.1.1 requires (n− il + 1) additions. Hence step 3.1.1 requires

l∏

r=1

(n− ir + 1) − 1 (18)

additions. Since ir varies from 0 to n, step 3 requires
((

(n+ 1)(n+ 2)

2

)l

− (n+ 1)l
)

(19)

additions.

• Assuming that the binomial coefficients are precomputed, step 3.1.1.1 requires

2(n− ir +1) multiplications. Hence step 3.1.1 requires 2

(
l∏

r=1

(n− ir + 1)− 1

)

multiplications. Step 3.1.2 requires l multiplications. Hence, step 3.1 requires

2

(
l∏

r=1

(n− ir + 1) − 1

)
+ l (20)

multiplications. Since ir varies from 0 to n, step 3 requires

2

((
(n+ 1)(n+ 2)

2

)l

− (n+ 1)l
)

+ l(n+ 1)l (21)

multiplications.

• Summarizing the above steps, for the l-variate case, the total additions required
is

l +

((
(n+ 1)(n+ 2)

2

)l

− (n+ 1)l
)

(22)

while the total multiplications required is

ln+ 2

(
(n+ 1)(n+ 2)

2

)l

− 2(n+ 1)l + l(n+ 1)l (23)

Remark 1 For the l-variate case, the first transformed polynomial coefficient is ob-
tained with ir = 0 for r = 1, ..., l. Therefore, from (18) and (20) we see that(
(n+ 1)l − 1

)
additions and

(
2
(
(n+ 1)l − 1

)
+ l
)
multiplications are needed for the

first transformed polynomial coefficient. Thus, for one term of the transformed poly-
nomial the computational complexity of the transformation onto a unit box is O(nl).

Remark 2 From (22) and (23), the computational complexity of the transformation
of all the terms of the polynomial onto a unit box is O(n2l).
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3.1.2 Conventional Method

After transforming the polynomial coefficients from a given general box to a unit
box, we compute the Bernstein coefficients using (13). We call this method as the
Conventional method of computing the Bernstein coefficients.

We present below an algorithm Conventional Bernstein coefficient to compute the
Bernstein coefficients using (13). We again assume here that degree N of all the
variables are equal to n.

Algorithm Conventional Bernstein coefficient : B(u) =

Conventional Bernstein coefficient (N , x, aI)

Inputs : Degree N of the polynomial (which is taken to be n), a l-dimensional box
x and the coefficients aI of the polynomial.

Output : Bernstein coefficients bI on the unit box or patch B(u) of the Bernstein
coefficients.

BEGIN Algorithm

1. {Compute binomial coefficients}

C(0 : n, 0 : n) =Binomial coefficient (n)

2. {Execute Algorithm Transformation Horner}

a
′

I =Transformation (N , x, aI , C(0 : n, 0 : n))

3. {Bernstein coefficients of the transformed polynomial}

for I = 0, ..., N do bI = 0

1. for J = 0, ..., I do bI = bI + a
′

JC(I, J)/C(N, J).

4. {Return}

return the patch B(u) = bI(u).

END Algorithm.

Complexity of Algorithm Conventional Bernstein coefficient

The complexity of the algorithm is calculated for the l-variate case as follows.

• Complexity of step 1 has been found earlier in (16). From (16), the total addi-
tions and multiplications is

n(n− 1)

• Complexity of step 2 has been found earlier in (22) and (23). From (22), the
total additions is

l +

((
(n+ 1)(n+ 2)

2

)l

− (n+ 1)l
)

(24)

while from (23) the total multiplications is

ln+ 2

(
(n+ 1)(n+ 2)

2

)l

− 2(n+ 1)l + l(n+ 1)l (25)
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• Step 3.1 requires
l∏

r=1

(ir + 1) additions. Since ir takes values from 0 to n, step

3 requires (
(n+ 1)(n+ 2)

2

)l

(26)

additions.

• Step 3.1 requires 2l
l∏

r=1

(ir + 1) multiplications. Since ir takes values from 0 to

n, step 3 requires a total of

2l

(
(n+ 1)(n+ 2)

2

)l

(27)

multiplications.

• Neglecting the work required for the binomial coefficient computation in step 1,
from (24) and (26) the total additions required is

l +

((
(n+ 1)(n+ 2)

2

)l

− (n+ 1)l
)

+

(
(n+ 1)(n+ 2)

2

)l

(28)

while, from (25) and (27) the total multiplications required is

ln+ 2

(
(n+ 1)(n+ 2)

2

)l

− 2(n+ 1)l + l(n+ 1)l + 2l

(
(n+ 1)(n+ 2)

2

)l

(29)

• For a unit box domain, neglecting again the work required for computing bino-
mial coefficient computations, we have the following : since step 2 for domain
transformation is not required, from (26) the total additions is

(
(n+ 1)(n+ 2)

2

)l

(30)

while from (27) the total multiplications is

2l

(
(n+ 1)(n+ 2)

2

)l

(31)

Remark 3 From (28) to (31), we see that the computational complexity of the Con-
ventional method for a unit box domain as well as for a general box domain is O(n2l).

3.2 Generalized Bernstein Polynomial [9, 12]

In order to generalize (4) to a general interval domain x = [x, x], we can write the
polynomial in terms of the shifted polynomial coefficients ci as

p(x) =

n∑

i=0

aix
i =

n∑

i=0

ci(x− x)i =

n∑

i=0

bni B
n
i (x), x ∈ x (32)

where Bn
i (x) is the generalized Bernstein polynomial of degree n and is defined as (10)

and bni is the generalized Bernstein coefficient and is defined as

bni =
i∑

j=0

cj(x− x)i
(
i

j

)
(
n

j

) , j = 0, 1, ..., n
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From (32) ci is obtained as

ci =
n∑

j=i

(
j

i

)
xj−iaj

Following the computational complexity calculations given in Section 3.1, to com-
pute the coefficients of the shifted polynomial ci the additions required is found to be((

(n+1)(n+2)
2

)l
− (n+ 1)l

)
, and the multiplications required is 2

((
(n+1)(n+2)

2

)l
− (n+ 1)l

)
.

The additions required to compute the generalized Bernstein coefficients is
(

(n+1)(n+2)
2

)l

and the multiplications is 3l
(

(n+1)(n+2)
2

)l
. Hence, the total additions and multipli-

cations required to compute of the generalized Bernstein coefficients (including the
computation of the coefficients of the shifted polynomial) is respectively

l +

((
(n+ 1)(n+ 2)

2

)l

− (n+ 1)l
)

+

(
(n+ 1)(n+ 2)

2

)l

(33)

and

ln+ 2

(
(n+ 1)(n+ 2)

2

)l

− 2(n+ 1)l + 3l

(
(n+ 1)(n+ 2)

2

)l

(34)

Remark 4 From (33) and (34), we see that the computational complexity of the gen-
eralized Bernstein coefficients is O(n2l). Since its order of computational complexity
is the same as that of the Conventional method, we shall not consider it for further
comparison.

3.3 Garloff’s Method

Garloff [3] proposed a method wherein the Bernstein coefficients of a polynomial p
over the unit box domain u are computed by a difference table scheme. The scheme
reduces the number of the products appearing in the Conventional method given by
(13). This method is more efficient than the Conventional method, as it requires fewer
arithmetic operations and computation of a smaller number of binomial coefficients.
The method is explained in detail in [3] for the bivariate case, and can be readily
generalized to higher multivariate cases.

First, the polynomial defined on a general box is transformed onto a unit box using
(14). This transformation is done using the multivariate Horner scheme (refer to Sec-
tion 3.1). After the transformation of the polynomial coefficients from a given general
box domain to a unit box domain is done, the Bernstein coefficients are computed.

In brief, the Bernstein coefficients are computed in two steps. First, compute

∆Kb0 =

(
N

K

)−1

aK , K ≤ N (35)

where, ∆K is an l-dimensional forward difference operator defined by

∆KbI :=
∑

J≤K

(−1)K−J

(
K

J

)
bI+J , K ≤ N − I
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and aI are the coefficients of the polynomial defined on a unit box. Then, compute
the Bernstein coefficients from (35), using the recurrence relations

∆0bI = bI

∆IbI +∆Ir,1bI = ∆IbIr,1

Details of the method are given in [3].

Complexity of Garloff ’s method

As reported in [3, 4], Garloff’s method on a unit box domain requires

l
n(n+ 1)l

2
(36)

additions, and

l(n+ 1)l (37)

multiplications.
For a general box domain, we also need to consider the work required for trans-

formation of the polynomial coefficients on to a unit box. Using (22) and (23), and
without taking into considerations the work done in computing the binomial coeffi-
cients, on a general box domain, the total additions required is

l +

((
(n+ 1)(n+ 2)

2

)l

− (n+ 1)l
)

+ l
n(n+ 1)l

2
(38)

while, the total multiplications required is

ln+ 2

(
(n+ 1)(n+ 2)

2

)l

− 2(n+ 1)l + 2l(n+ 1)l (39)

Remark 5 Thus, from (36) and (37), we conclude that the computational complexity
of Garloff’s method for a unit box domain is O(nl+1), and from (38) and (39), the
computational complexity for a general box domain (including the work required for the
multivariate Horner scheme) is O(n2l).

4 The Proposed Matrix Method

The Bernstein coefficient matrix B for a general domain for the univariate case is given
by

B = U−1
x V −1

x W−1
x A = MA (40)

where the polynomial coefficients matrix A =
[
a0 a1 : : an

]T
, the superscript

T denotes ‘transpose’ and M is the product matrix given by

M := U−1
x V −1

x W−1
x = ŨxṼxW̃x (41)

with Ũx := U−1
x , Ṽx := V −1

x and W̃x := W−1
x , where Ux, Vx and Wx are given as in

(8), (11) and (12) respectively.

The proposed method uses the inverses of matrices Ux, Vx and Wx. As matrix
inversion is costly, we formulate a simple method to directly compute the inverses of
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the three required matrices, thus reducing the computational burden of the proposed
method. The inverse of Ux is given by

Ũx =




1 0 0 0 0 0 ... 0

1
(
1
0

)(
n

1

)−1
0 0 0 0 ... 0

1
(
2
1

)(
n

1

)−1 (
2
0

)(
n

2

)−1
0 0 0 ... 0

1
(
3
2

)(
n

1

)−1 (
3
1

)(
n

2

)−1 (
3
0

)(
n

3

)−1
0 0 ... 0

1
(
4
3

)(
n

1

)−1 (
4
2

)(
n

2

)−1 (
4
1

)(
n

3

)−1 (
4
0

)(
n

4

)−1
0 ... 0

1
(
5
4

)(
n

1

)−1 (
5
3

)(
n

2

)−1 (
5
2

)(
n

3

)−1 (
5
1

)(
n

4

)−1 (
5
0

)(
n

5

)−1
... 0

: : : : : : : :
1 1 1 1 1 1 ... 1




(42)

The inverse of Vx is given by

Ṽx =




1 0 0 0 ... 0
0 (x− x) 0 0 ... 0

0 0 (x− x)2 0 ... 0

0 0 0 (x− x)3 ... 0
: : : : : :
0 0 0 0 ... (x− x)n




(43)

and the inverse of Wx is given by

W̃x =




1
(
1
0

)
(x)1

(
2
0

)
(x)2

(
3
0

)
(x)3 ...

(
n

0

)
(x)n

0 1
(
2
1

)
(x)1

(
3
1

)
(x)2 ...

(
n

1

)
(x)n−1

0 0 1
(
3
2

)
(x)1 ...

(
n

2

)
(x)n−2

0 0 0 1 ...
(
n

3

)
(x)n−3

: : : : : :
0 0 0 0 ... 1




(44)

Based on (41) to (44), we next give algorithms for the computations of the in-

verse matrices Ũx, Ṽx and W̃x, and the product matrix M . Using Algorithm Bino-
mial coefficient given earlier in Section 3.1, we first precompute the binomial coeffi-
cients and use them as inputs in the algorithms for computing Ũx using (42) and W̃x

using (44).

Algorithm InverseUx : Ũx(0 : n, 0 : n) = InverseUx (n, C(0 : n, 0 : n))
Inputs : Degree n of the polynomial, and the binomial coefficients C(0 : n, 0 : n).

Output : The matrix Ũx := U−1
x

BEGIN Algorithm

1. {Construction of inverse of matrix Ux}

Ũx(0 : n, 0) = 1, Ũx(0, 1 : n) = 0, Ũx(n, 1 : n) = 1,

2. for i = 1, ..., (n− 1) do

1. for j = 1, ..., i do Ũx(i, j) = C(i, i− j)/C(n, j)

2. Ũx(i, i+ 1 : n) = 0.

3. {Return}

return Ũx.
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END algorithm

Complexity of Algorithm InverseUx

• Step 2.1 requires i multiplications. Since i takes values from 1 to n− 1, step 2
requires

n(n− 1)

2
(45)

multiplications.

• No additions are involved here.

Algorithm InverseVx : Ṽx(0 : n, 0 : n) = InverseVx (n, x)
Inputs : Degree n of the polynomial, and the domain box x = [x, x].

Output : The matrix Ṽx := V −1
x

BEGIN Algorithm

1. {Compute edge length of x, i.e., width of the box}

wid x = (x− x)

2. {Construction of inverse of matrix Vx}

Ṽx(0 : n, 0 : n) = 0, Ṽx(0, 0) = 1, wid x0 = 1,

for i = 1, ..., n do

wid xi =
(
wid x(i−1)

)
(wid x)

Ṽx(i, i) =wid xi.

3. {Return}

return Ṽx.

END algorithm

Complexity of Algorithm InverseVx

• Step 1 requires only one addition.

• Step 2 requires 1 multiplication and is executed n times, therefore it requires n
multiplications.

Algorithm InverseWx : W̃x(0 : n, 0 : n) = InverseWx (n, x, C(0 : n, 0 : n))
Inputs : Degree n of the polynomial, the infimum inf x of the box x, and the

binomial coefficients C(0 : n, 0 : n).

Output : The matrix W̃x := W−1
x .

BEGIN Algorithm

1. {All the powers of the infimum}

inf x0 = 1,

for i = 1, ..., n do inf xi =
(
inf x(i−1)

)
(inf x)

2. {Construction of inverse of matrix Wx}

W̃x(0, 0) = 1,

for i = 0, ..., n− 1 do
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1. for j = i+ 1, ..., n do

W̃x(i, j) = C(j, i)inf x(j−i).

2. W̃x(i+ 1, 0 : i) = 0, W̃x(i+ 1, i+ 1) = 1.

3. {Return}

return W̃x.

END algorithm

Complexity of Algorithm InverseWx

• Step 1 requires n multiplications.

• Step 2.1 requires 1 multiplication and it is executed (n − i) times, where i is
the index in step 2. Since i varies from 0 to n − 1, it requires n(n + 1)/2
multiplications.

• Therefore, from steps 1 and 2, the total multiplications is

n+
n(n+ 1)

2
=

n(n+ 3)

2
(46)

• No additions are involved here.

Algorithm ProductM : M(0 : n, 0 : n) = ProductM (Ũx, Ṽx, W̃x)

Inputs : The inverse matrices Ũx, Ṽx, W̃x.
Output : The product matrix M := Ũx, Ṽx, W̃x.
BEGIN Algorithm

1. {Product of all the inverse matrices}

M = ŨxṼxW̃x.

2. {Return}

return M .

END algorithm

Complexity of Algorithm ProductM

• Since Ṽx is a diagonal matrix (with first element as unity) and W̃x is an up-
per triangular matrix (with all its diagonal elements as unity), the product of
these two would be an upper triangular matrix. So, there would be n(n+ 1)/2
multiplications with no additions.

• Since Ũx is a lower triangular matrix (with all elements of first column as unity)

and the product ṼxW̃x is an upper triangular matrix (with first element as

unity), the product of these two matrices requires
n∑

i=1

i (2(n− i) + 1) additions

and
n+1∑
i=1

i (2(n+ 1− i) + 1) multiplications.

• Summing up, the total additions required is

n∑

i=1

i (2(n− i) + 1) (47)
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whereas, the total multiplications required is

n(n+ 1)

2
+

n+1∑

i=1

i (2(n+ 1− i) + 1) (48)

Remark 6 All the elements of first column of product matrix M are unity.

4.1 Bivariate Case

In this section, we incorporate the results of the univariate case in [1] to devise an
alternate way of computing the Bernstein coefficients of a bivariate polynomial using
matrix multiplications. A bivariate polynomial in the power form can be expressed as

p(x1, x2) = a00 + a10x
1
1 + a20x

2
1 + a01x2 + a11x1x2 + ........ + an1n2

xn1

1 xn2

2

= X1AXT
2 = X2(X1A)T (49)

where

X1 =
(

1 x1 x2
1 .. .. xn1

1

)

X2 =
(

1 x2 x2
2 .. .. xn2

2

)

and

A =




a00 a01 ... a0n2

a10 a11 ... a1n2

: : : :
: : : :

an10 an11 ... an1n2




The same polynomial can be expressed in the Bernstein form as

p(x1, x2) = b00B
n1

0 (x1)B
n2

0 (x2) + b10B
n1

1 (x1)B
n2

0 (x2) + b20B
n1

2 (x1)B
n2

0 (x2)

+b01B
n1

0 (x1)B
n2

1 (x2) + ....... + bn1n2
Bn1

n1
(x1)B

n2

n2
(x2)

= Bx1
BBT

x2
= Bx2

(Bx1
B)T (50)

where

Bx1
=
(

Bn1

0 (x1) Bn1

1 (x1) .. .. .. Bn1
n1

(x1)
)

Bx2
=
(

Bn2

0 (x2) Bn2

1 (x2) .. .. .. Bn2
n2

(x2)
)

and

B =




b00 b01 ... b0n2

b10 b11 ... b1n2

: : : :
: : : :

bn10 bn11 ... bn1n2




From (49) and (50)

Bx2
(Bx1

B)T = X2 (X1A)T (51)

where the superscript T denotes the ‘transpose’, which means changing the order of
the indices of the elements of the two-dimensional array.

On a unit box domain, from (8)

Bx1
= X1Ux1

and Bx2
= X2Ux2

(52)
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Substituting Bx1
and Bx2

from (52) in (51) gives

X2Ux2
(X1Ux1

B)T = X2 (X1A)T

⇒ Ux2
(X1Ux1

B)T = (X1A)T

⇒ X1Ux1
B (Ux2

)T = X1A

⇒ B (Ux2
)T = U−1

x1
A

⇒
(
B (Ux2

)T
)T

=
(
U−1

x1
A
)T

⇒ Ux2
BT =

(
U−1

x1
A
)T

⇒ BT = U−1
x2

(
U−1

x1
A
)T

⇒ B =
(
U−1

x2

(
U−1

x1
A
)T)T

(53)

On a general box domain, from (12)

Bx1
= X1Wx1

Vx1
Ux1

and Bx2
= X2Wx2

Vx2
Ux2

(54)

Substituting Bx1
and Bx2

from (54) in (51) gives

X2Wx2
Vx2

Ux2
(X1Wx1

Vx1
Ux1

B)T = X2 (X1A)T

⇒ Wx2
Vx2

Ux2
(X1Wx1

Vx1
Ux1

B)T = (X1A)T

⇒ X1Wx1
Vx1

Ux1
B (Wx2

Vx2
Ux2

)T = X1A

⇒ B (Wx2
Vx2

Ux2
)T = U−1

x1
V −1
x1

W−1
x1

A

⇒
(
B (Wx2

Vx2
Ux2

)T
)T

=
(
U−1

x1
V −1
x1

W−1
x1

A
)T

⇒ Wx2
Vx2

Ux2
BT =

(
U−1

x1
V −1
x1

W−1
x1

A
)T

⇒ BT = U−1
x2

V −1
x2

W−1
x2

(
U−1

x1
V −1
x1

W−1
x1

A
)T

⇒ B =
(
U−1

x2
V −1
x2

W−1
x2

(
U−1

x1
V −1
x1

W−1
x1

A
)T)T

Define

M1 := U−1
x1

V −1
x1

W−1
x1

(55)

M2 := U−1
x2

V −1
x2

W−1
x2

(56)

then

B =
(
M2 (M1A)T

)T
(57)

Remark 7 All the elements of the first column of product matrices M1 and M2 re-
spectively given by (55) and (56) are unity.

4.2 Higher Multivariate Cases

In order to readily generalize the procedure to higher multivariate cases, we first derive
the formula for computing the Bernstein coefficients for the trivariate case, on lines
similar to the bivariate case developed in Section 4.1. We shall then extend the same
to the general multivariate case.
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Figure 1: Three-dimensional coefficient array, showing the coefficients of the
third coordinate direction placed on the parallel faces

Figure 2: Two-dimensional or matrix representation of a three-dimensional co-
efficient array, showing the vertices

A trivariate polynomial in power form can be expressed as

p(x1, x2, x3) = a000 + a100x
1
1 + a010x2 + a110x1x2 + a001x3 + ...

+an1n2n3
xn1

1 xn2

2 xn3

3

=

n1∑

i1=0

n2∑

i2=0

n3∑

i3=0

ai1i2i3x
i1
1 xi2

2 xi3
3 =

∑

I≤N

aIx
I (58)

where, aI is a three-dimensional coefficient array shown in Figure 1, with n1, n2 and
n3 as the respective degrees of the variables x1, x2 and x3.

We can view the three dimensional array aI as a matrix A having n1 +1 rows and
(n2 + 1)(n3 + 1) columns arranged as shown in Figure 2.

Then, the polynomial p in (58) can be written by means of matrix multiplication
as

p(x1, x2, x3) = X3

(
X2 (X1A)T

)T
(59)

where, X1, X2, and X3 are vectors, and A is a three-dimensional coefficient array
represented in the form of a matrix. Similarly, if Bx1

, Bx2
and Bx3

are the Bernstein
vectors in the variables x1, x2 and x3 respectively, then in the Bernstein form, the
polynomial p(x1, x2, x3) is

p(x1, x2, x3) = Bx3

(
Bx2

(Bx1
B)T

)T
(60)
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Note that B is also represented in the form of a matrix. Equating (59) and (60) and
thereafter using the properties of matrix operations, on a unit box domain we can
obtain B as

B =

(
U−1

x3

(
U−1

x2

(
U−1

x1
A
)T)T

)T

(61)

Similarly, on a general box domain we can obtain B as

B =

(
U−1

x3
V −1
x3

W−1
x3

(
U−1

x2
V −1
x2

W−1
x2

(
U−1

x1
V −1
x1

W−1
x1

A
)T)T

)T

and write it as

B =

(
M3

(
M2 (M1A)T

)T)T

(62)

where the matrices M1, M2, and M3 are defined as

M1 := U−1
x1

V −1
x1

W−1
x1

M2 := U−1
x2

V −1
x2

W−1
x2

M3 := U−1
x3

V −1
x3

W−1
x3

The superscript T denoting the ‘transpose’ is illustrated in Figure 3.
We can readily generalize (61) and (62) to the higher multivariate cases. With

U−1
xi

, V −1
xi and W−1

xi having the usual meanings, define Mi for a unit box domain as

Mi := U−1
xi

and for a general box domain as

Mi := U−1
xi

V −1
xi

W−1
xi

Generalizing (61) and (62) to l variables, we easily get the formula for computing the
Bernstein coefficients as

B =


Ml...

(
Mi...

(
M3

(
M2 (M1A)T

)T)T...
)T...




T

(63)

where A is the polynomial coefficients matrix with (n+1) rows and (n+1)l−1 columns.
The superscript T denotes the ‘transpose’, which means here changing the order of
the indices of the elements of the l dimensional array cyclically, in the reverse order
and finally converting the elements of first coordinate direction to the lth coordinate
direction.

Since Mi and A are matrices, their products would also be matrices. In this form
of representation, every ‘transpose’ denoted by the superscript T in (63) amounts to
transposing and proper reshaping of the resulting matrix. These operations can very
easily be carried out using ‘transpose’ and ‘reshape’ commands of popular program-
ming languages such as FORTRAN 95. Theoretically, polynomials of any dimension
and degree can be readily handled using this matrix representation, since the polyno-
mial coefficients array A can be always expressed in the form of a matrix, and only
matrix operations such as multiplication, inverse, transpose and reshape operations
are involved.
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Figure 3: Rotation of axes for a three-dimensional array example with n1 = 2,
n2 = 1 and n3 = 2 : (a) Coefficient matrix A , (b) First transpose (Ã)T =

(M1A)
T
, (c) Second transpose (A)T =

(
M2 (M1A)

T
)T

, (d) Third transpose

giving the Bernstein coefficient matrix B =

(
M3

(
M2 (M1A)

T
)T

)T
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5 Proposed Algorithm

Based on the above developments, we give two algorithms using the proposed Ma-
trix method for computing the Bernstein coefficients. The first Algorithm Bern-
stein Matrix unit computes the Bernstein coefficients specifically on a unit box do-
main, whereas the second Algorithm Bernstein Matrix computes the Bernstein coef-
ficients on a general box domain. Since on a unit box domain the product matrix
M := Ũx becomes a lower triangular matrix, the former algorithm is a simplified al-
gorithm for Bernstein coefficient computation on a unit domain requiring fewer arith-
metic operations.

We assume in the algorithms that the degree N of all the variables are equal to n,
purely for convenience of presentation. The elements of the input coefficient matrix
A are first arranged as ai,k, i = 0, ..., n, k = 0, ..., ((n+ 1)l−1 − 1), and supplied as an
input to the algorithm.

Algorithm Bernstein Matrix unit : B(u) = Bernstein Matrix unit (N , l, A)

Inputs : Degree N of the polynomial p (N is taken to be n here), number of
variables l, and coefficient matrix A whose elements are the polynomial coefficients aI .

Output : A patch B(u) of Bernstein coefficients of p. Note that B is output in the
form of a matrix.

BEGIN Algorithm

1. {Compute the binomial coefficients}

C(0 : n, 0 : n) = Binomial coefficient (n).

2. {Compute inverse of Ux}

Ũx(0 : n, 0 : n) = InverseUx (n, C(0 : n, 0 : n))

M = Ũx

3. {Iterate}

for r = 1 to l do

1. A = MA

2. transpose A

3. reshape A to the required matrix shape.

4. {Return}

return B(u) = A.

END Algorithm

Computational complexity of Algorithm Bernstein Matrix unit

• Step 1 requires n(n− 1) multiplications and additions (refer equation 16).

• Step 2 requires n(n− 1)/2 multiplications (refer equation 45) and no additions.

• Since on a unit box domain M is a lower triangular matrix with all the ele-
ments of its first column as unity, step 3.1 requires ln(n + 1)l/2 additions and
multiplications.
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• Summing up from steps 2 to 3 (i.e., without considering the operations involved
in binomial coefficient computations), the total additions is

l
n(n+ 1)l

2
(64)

and the total multiplications is

n(n− 1)

2
+ l

n(n+ 1)l

2
(65)

Algorithm Bernstein Matrix : B(u) = Bernstein Matrix (N , l, x, A)
Inputs : Degree N of the polynomial p (N is taken to be n here), number of

variables l, the l -dimensional domain box x, and coefficient matrix A whose elements
are the polynomial coefficients aI .

Output : A patch B(u) of Bernstein coefficients of p. Note that B is output in the
form of a matrix.

BEGIN Algorithm

1. {Compute the binomial coefficients}

C(0 : n, 0 : n) = Binomial coefficient (n).

2. {Compute inverse of Ux}

Ũx(0 : n, 0 : n) = InverseUx (n, C(0 : n, 0 : n))

3. {Iterate}

for r = 1 to l do

1. {Compute inverse of Vx}

Ṽx(0 : n, 0 : n) = InverseVx (n, x).

2. {Compute inverse of Wx}

W̃x(0 : n, 0 : n) = InverseWx (n, x, C(0 : n, 0 : n)).

3. {Product of all the inverse matrices}

Mr =ProductM (Ũx, Ṽx, W̃x).

4. {Iterate}

for r = 1 to l do

1. A = MrA

2. transpose A

3. reshape A to the required matrix shape.

5. {Return}

return B(u) = A.

END Algorithm

Computational complexity of Algorithm Bernstein Matrix

• Step 1 requires n(n− 1) multiplications and additions (refer equation 16).

• Step 2 requires n(n− 1)/2 multiplications (refer equation 45) and no additions.
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• Step 3.1 is executed l times, hence it requires l additions and ln multiplications.

• Step 3.2 requires ln(n + 3)/2 multiplications and no additions (refer equation
46).

• Step 3.3 requires

l
n∑

i=1

i (2(n− i) + 1)

additions (refer equation 47) and

l

(
n(n+ 1)

2
+

n+1∑

i=1

i (2(n+ 1− i) + 1)

)

multiplications (refer equation 48).

• Step 4.1 requires ln(n+ 1)l additions and l(n+ 1)l+1 multiplications.

• Summing up from steps 2 to 4 (i.e., neglecting the work involved in binomial
coefficient computations), the total additions is

l + l

n∑

i=1

i (2(n− i) + 1) + ln(n+ 1)l (66)

while the total multiplications is

n(n− 1)

2
+ ln+

ln(n+ 3)

2
+ l

n(n+ 1)

2
+ l

n+1∑

i=1

i (2(n+ 1− i) + 1) + l(n+ 1)l+1

(67)

6 Computational Complexity and Memory Re-
quirements

In this section we compare the computational complexities of the Conventional method
and Garloff’s method derived in Sections 3.1 and 3.3 respectively, with that of the pro-
posed method. In Table 2, we give the arithmetic involved in all the three methods on
a unit box domain, assuming that all the binomial coefficients have been precomputed
and stored.

Table 2: Unit box domain : Number of arithmetic operations required to com-
pute the Bernstein coefficients with the three methods

Method Number of additions Number of multiplications Total

Conventional
(

(n+1)(n+2)
2

)l

2l
(

(n+1)(n+2)
2

)l

O(n2l)

Garloff’s l
n(n+1)l

2 l(n+ 1)l O(nl+1)

Matrix l
n(n+1)l

2
n(n−1)

2 + l
n(n+1)l

2 O(nl+1)

From Table 2, we see that on a unit box domain, the computational complexity
of the Conventional method is O(n2l), whereas those of Garloff’s method and the
proposed method is O(nl+1).
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Next, assuming that all the binomial coefficients are precomputed, the arithmetic
involved in all the three methods for evaluating Bernstein coefficients on a general box
domain are reported in Table 3. The table also reports the computations involved in
transforming the polynomial from a general box domain to a unit box domain using
the multivariate Horner scheme. For one term of the polynomial, the computational
complexity of this transformation onto a unit box is O(nl) (see Remark 1); and for all
the terms of the polynomial, it is O(n2l) (see Remark 2).

Table 3: General box domain : Number of arithmetic operations required by
Horner scheme to transform all the polynomial coefficients, and by the three
methods for computing the Bernstein coefficients

Method Number of additions Number of multiplications Total

Horner l +
(

(n+1)(n+2)
2

)l

ln+ 2
(

(n+1)(n+2)
2

)l

O(n2l)

scheme − (n+ 1)
l

−2 (n+ 1)
l
+ l(n+ 1)l

Conven- l +
(

(n+1)(n+2)
2

)l

ln+ 2
(

(n+1)(n+2)
2

)l

O(n2l)

tional − (n+ 1)l −2 (n+ 1)l + l(n+ 1)l

+
(

(n+1)(n+2)
2

)l

+2l
(

(n+1)(n+2)
2

)l

Garloff’s l +
(

(n+1)(n+2)
2

)l

ln+ 2
(

(n+1)(n+2)
2

)l

O(n2l)

− (n+ 1)l + l
n(n+1)l

2 −2 (n+ 1)l + 2l(n+ 1)l

Matrix l + l

n∑
i=1

i (2(n− i) + 1) n(n−1)
2 + ln+ ln(n+3)

2 O(nl+1)

+ln(n+ 1)l +l
n(n+1)

2 + l(n+ 1)l+1

+
n+1

l
∑

i=1

i (2(n+ 1− i) + 1)

From Table 3, we note that on a general box domain, the computational complexity
of the Conventional method (see remark 3) and Garloff’s method (see remark 5) is
O(n2l), whereas that of the proposed method is O(nl+1).

For some selected values of degree n and number of variables l, we calculate the
number of additions, the number of multiplications and the total number of operations
required by Garloff’s method and the proposed method on both the unit and general
box domains. These are reported respectively in Table 4 and Table 51. For a unit box
domain, the ratio of the total number of operations required by Garloff’s method to
that of the proposed method is found to be

l(n+ 1)l(n/2 + 1)

n(n− 1)/2 + ln(n+ 1)l

For asymptotically large values of n or l, this ratio converges to 0.5. We also find
the values of this ratio for the respective degree and dimension, and report the same

1In these tables, we show a comparison only between these two methods, as the Conven-

tional method requires much larger number of arithmetic operations than Garloff’s method,

and so is ignored.
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in the last column of Table 4. In case of a general box domain, for the fixed degree
given in column 1, we report in the last two columns of Table 5, the minimum and the
maximum values of the ratios, i.e. for dimensions 4 and 6, respectively.

Table 4: Unit box domain : Comparison of the number of arithmetic opera-
tions required to compute Bernstein coefficients with Garloff’s Method and the
proposed Matrix method

Degree Operations Garloff’s method Matrix method

n Dimension l Dimension l Ratio

4 5 6 4 5 6

additions 324 1215 4374 324 1215 4374

2 multiplications 324 1215 4374 325 1216 4375

total 648 2430 8748 649 2431 8749 1.0

additions 1536 7680 36864 1536 7680 36864

3 multiplications 1024 5120 24576 1539 7683 36867

total 2560 12800 61440 3075 15363 73731 0.83

additions 28812 2.5e05 2.1e06 28812 2.5e05 2.1e05

6 multiplications 9604 8.4e04 7.0e05 28827 2.5e05 2.1e05

total 38416 3.4e05 2.8e06 57639 5.0e05 4.2e06 0.67

additions 5.7e04 5.7e05 5.5e06 5.7e04 5.7e05 5.5e06

7 multiplications 1.6e04 1.6e05 1.6e06 5.7e04 5.7e05 5.5e06

total 7.4e04 7.4e05 7.1e06 1.1e05 1.1e06 1.1e07 0.64

From Table 4, we see that the total number of operations required to compute the
Bernstein coefficients on a unit box domain is less with Garloff’s method than with
the proposed Matrix method. Keeping the degree n fixed and varying the dimension
l, the ratio of the total number of operations required by Garloff’s method to that of
the proposed method remains the same. In the limiting case where n or l tends to
infinity, the ratio becomes 0.5.

In contrast, from Table 5, for a general box domain, we see that the total number
of operations required to compute the Bernstein coefficients is much less with the
proposed Matrix method than with Garloff’s method. For a given degree, the ratio of
the total number of operations required by Garloff’s method to that of the proposed
method increases with the dimension. Further, the proposed method also becomes
relatively much more efficient with the degree, as can be seen from the entries of the last
two columns of the table. Hence, we may conclude that the proposed Matrix method
becomes increasingly more computationally efficient than the existing methods, when
the number of Bernstein coefficients to be computed increases.

As far as memory requirements or array storage is concerned, the Conventional
method, Garloff’s method and the proposed Matrix method require one array of size
(n+ 1)l for computing and storing the Bernstein coefficients.

7 Numerical Experiments

Using the three methods of Bernstein coefficient computation discussed above, we
compute the Bernstein coefficients for eleven real world problems, and compare the
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Table 5: General box domain : Comparison of the number of arithmetic opera-
tions required to compute Bernstein coefficients with Garloff’s Method and the
proposed Matrix method

Deg Opera- Garloff’s method Matrix method Min Max

n tions Dimension l Dimension l ratio ratio

4 5 6 4 5 6

adds 1.5403 8.7503 5.0e4 6.72e2 2.46e3 8.78e3

2 mults 3.0803 1.75e4 1.00e5 1.07e3 3.77e3 1.32e4

total 4.62e3 2.62e4 1.50e5 1.74e3 6.23e3 2.20e4 2.65 6.84

adds 1.12e4 1.06e5 1.03e6 3.13e3 1.54e4 7.38e4

3 mults 2.15e4 2.08e5 2.04e6 4.30e3 2.07e4 9.86e4

total 3.28e4 3.14e5 3.07e6 7.43e3 3.61e4 1.72e5 4.42 17.82

adds 6.41e0 1.74e7 4.84e8 5.79e4 5.04e5 4.23e6

6 mults 1.24e6 3.45e7 9.66e8 6.80e4 5.89e5 4.9e6

total 1.88e6 5.20e7 1.45e9 1.26e5 1.09e6 9.17e6 14.95 158

adds 1.73e6 6.10e7 2.18e9 1.15e5 1.14e6 1.10e7

7 mults 3.38e6 1.21e8 4.36e9 1.32e5 1.31e6 1.25e7

total 5.11e6 1.82e8 6.54e9 2.47e5 2.45e6 2.35e7 20.68 278

computational time taken. The eleven problems are taken from [14] and described in
Appendix A. A time limit of five hours is imposed for the computations, while the
available computer memory is limited to 2 GB RAM. All computations are performed
on a Sun 440 MHz Ultra Sparc 10 Workstation with the codes developed in Forte
FORTRAN 95 [?]. All rounding errors are accounted for by using interval arithmetic
support provided in the compiler.

For a unit box domain, Table 6 gives the computation time taken (in seconds) to
compute the Bernstein coefficients by the three methods for the eleven problems. In
the table, we have also reported the degree (as ‘deg’) of each problem considered in
column 4, and the number of Bernstein coefficients required to be computed in column
5.

For a general box domain given in Appendix A, Table 7 gives the computation
time taken (in seconds) to compute the Bernstein coefficients by the three methods
for the eleven problems. In column 5 of this table, we also report the time taken (in
seconds) only for transforming the polynomial coefficients from a general box domain
to a unit box domain, using the multivariate Horner’s scheme described in Section
3.1. Recall that the transformed polynomial coefficients are needed to compute the
Bernstein coefficients in Garloff’s method and the Conventional method. The times
reported in columns 6 and 7 already include this time taken by Horner’s scheme.

For the purpose of comparison, we also report the values of the percent reduction
in Tables 6 and 7. This is computed as

Time taken by existing method− Time taken by proposed matrix method

Time taken by existing method
×100

where, the ‘existing method’ is either the Conventional method or Garloff’s method,
as the case maybe.
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Table 6: Unit box domain : Computation times taken by Garloff’s method,
Conventional method and Matrix method to compute Bernstein coefficients

Ex Test Dim deg No. of Time taken in seconds by % reduction

function Bern coeff Garloff Conv Matrix Garloff Conv

1. L. V. 3 3 2 18 0.0002 0.0004 0.0006 -216.634 -76.021

2. R. D. 3 3 2 12 0.0002 0.0002 0.0006 -252.878 -264.939

3. L. V. 4 4 2 54 0.0004 0.0030 0.0007 -108.554 74.973

4. Cap 4 4 3 64 0.0004 0.0042 0.0009 -104.809 79.367

5. Wrig 5 5 2 48 0.0003 0.0027 0.0007 -145.389 72.460

6. Reim 5 5 6 16,807 0.0556 140.01 0.0338 39.147 99.976

7. Mag 6 6 2 729 0.0020 0.3307 0.0021 -5.904 99.359

8. But 6 6 3 288 0.0010 0.0667 0.0012 -19.980 98.160

9. Reim 6 6 7 262,144 1.3545 17075.2 0.7175 46.393 99.996

10. Mag 7 7 2 2,187 0.0064 2.2973 0.0059 7.973 99.743

11. Reim 7 7 8 4,782,969 52.381 * 21.8375 58.310 *

‘*’ entry denotes that computation was incomplete at the end of time limit of five hours.

Table 7: General box domain : Computation times taken for transformation to
unit domain by Horner’s method, and for computation of Bernstein coefficients
by various methods

Ex Test Dim deg Time Time taken in seconds by %cent reductions

Function Horner Garloff Conv Matrix Garloff Conv

1. L.V.3 3 2 0.0007 0.0009 0.0011 0.0008 16.706 29.323

2. R.D.3 3 2 0.0007 0.0009 0.0009 0.0008 14.952 14.376

3. L. V. 4 4 2 0.0009 0.0013 0.0039 0.0009 31.796 77.241

4. Cap 4 4 3 0.0009 0.0013 0.0051 0.0009 30.107 81.846

5. Wrig 5 5 2 0.0008 0.0011 0.0035 0.0009 19.822 74.097

6. Reim 5 5 6 0.0410 0.0971 140.05 0.0341 64.908 99.976

7. Mag 6 6 2 0.0026 0.0046 0.3332 0.0022 51.122 99.327

8. But 6 6 3 0.0016 0.0026 0.0683 0.0014 47.456 97.968

9. Reim 6 6 7 0.8430 2.1976 17076 0.7175 67.351 99.996

10. Mag 7 7 2 0.0072 0.0136 2.3045 0.0063 53.815 99.727

11. Reim 7 7 8 24.822 77.203 * 22.2797 71.141 *

‘*’ entry denotes that computation was incomplete due to time/memory restrictions

From the tables, we note at the outset that in the specified time limit of five
hours, with Garloff’s method and the Matrix method we are able to compute the
Bernstein coefficients for all the problems, whereas with the Conventional method
we are successful in all but one problem. On a unit box domain, the reduction in the
computational time with the Matrix method over the Conventional method varies from
−264.94% to 99.99%, while on a general box domain the reduction varies from 14.38%
to 99.99%. The Conventional method is seen to be relatively quite slow. Hence, we
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shall next focus only on comparing the Matrix method with Garloff’s method.

To aid in the comparative analysis, we extract and summarize the results as a
function of the number of Bernstein coefficients in Table 8. From Table 8, we see that
on a unit box domain the reduction in the computational time with the Matrix method
over Garloff’s method varies from −252.88% to 58.31%, while on a general box domain
the reduction varies from 14.95% to 71.14%. We also observe that the Matrix method
becomes relatively faster with the number of Bernstein coefficients computed. The
relative speed improvements with the Matrix method can be attributed to a fuller
exploitation of efficient matrix operations, as compared to Garloff’s method. This
exploitation naturally yields relatively better computational time as the number of
coefficients ‘increases’.

Table 8: Percent reduction in computational time obtained with the proposed
Matrix method over Garloff’s method, as function of the number of Bernstein
coefficients computed

S. Number of Unit box General box

No Bernstein coefficients domain domain

1. 12 -252.8785 14.9523

2. 18 -216.6344 16.7063

3. 48 -145.3887 19.8220

4. 54 -108.5537 31.7959

5. 64 -104.8091 30.1069

6. 288 -19.9804 47.4597

7. 729 -5.9041 51.1220

8. 2,187 7.9726 53.8151

9. 16,807 39.1474 64.9080

10. 262,144 46.3931 67.3507

11. 4,782,969 58.3100 71.1414

8 Conclusions

In this paper, we proposed a Matrix method to compute the Bernstein coefficients of a
multivariate polynomial on a general box-like domain. The proposed method involves
only matrix operations. This enables one to take advantage of the built-in array oper-
ation routines of programming languages to accelerate the computations. Moreover,
on a general box-like domain, the proposed method has a lesser computational com-
plexity than the existing methods. Numerical tests conducted on eleven polynomial
test problems over unit and general box domain show the proposed method to yield
significant reductions in computational time over existing methods as the number of
Bernstein coefficients becomes ‘larger’.
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A Description of Test Problems

In the following, we list the polynomials p, the domain boxes x, the abbreviated and full
names, and the dimensionality of the problems considered in our tests. The problems
are arranged in the order of increasing dimensionality. All these test problems are
taken from Verschelde’s PHC pack [14].

1. L. V. 3 : A neural network modeled by an adaptive Lotka-Volterra system,
l = 3

p(x1, x2, x3) = x1x2
2 + x1x

2
3 − 1.1x1 + 1

x1 = [−1.5, 2], x2 = [−1.5, 2], x3 = [−1.5, 2]

2. R. D. 3 : A 3-dimensional reaction diffusion problem, l = 3

p(x1, x2, x3) = x1 − 2x2 + x3 + .835634534x2(1− x2)

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5]

3. L. V. 4 : A neural network modeled by an adaptive Lotka-Volterra system,
l = 4

p(x1, x2, x3, x4) = x1x
2
2 + x1x

2
3 + x1x

2
4 − 1.1x1 + 1

x1 = [−2, 2], x2 = [−2, 2], x3 = [−2, 2], x4 = [−2, 2]

4. Cap 4 : Caprasse’s system : l = 4

p(x1, x2, x3, x4) = −x1x
3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4

+4x1x3 + 4x2
3 − 10x2x4 − 10x2

4 + 2

x1 = [−.5, .5], x2 = [−.5, .5], x3 = [−.5, .5], x4 = [−.5, .5]

5. Wrig 5 : System of A.H. Wright, l = 5

p(x1, x2, x3, x4, x5) = x2
5 + x1 + x2 + x3 + x4 − x5 − 10

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5], x4 = [−5, 5],

x5 = [−5, 5]

6. Reim 5: The 5-dimensional system of Reimer, l = 5

p(x1, x2, x3, x4, x5) = −1 + 2x6
1 − 2x6

2 + 2x6
3 − 2x6

4 + 2x6
5

x1 = [−1, 1], x2 = [−1, 1], x3 = [−1, 1], x4 = [−1, 1], x5 = [−1, 1]

7. Mag 6 : A problem of magnetism in physics, l = 6

p(x1, x2, x3, x4, x5, x6) = 2x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + x2

6 − x6

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5], x4 = [−5, 5],

x5 = [−5, 5], x6 = [−5, 5]
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8. But 6 : Butcher’s problem, l = 6

p(x1, x2, x3, x4, x5, x6) = x6x
2
2 + x5x

2
3 − x1x

2
4 + x3

4 + x2
4 − 1/3x1 + 4/3x4

x1 = [−1, 0], x2 = [−.1, .9], x3 = [−.1, .5],x4 = [−1,−.1],

x5 = [−.1,−.05], x6 = [−.1,−.03]

9. Reim 6 : The 6-dimensional system of Reimer, l = 6

p(x1, x2, x3, x4, x5, x6) = −1 + 2x7
1 − 2x7

2 + 2x7
3 − 2x7

4 + 2x7
5 − 2x7

6

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5], x4 = [−5, 5],

x5 = [−5, 5], x6 = [−5, 5]

10. Mag 7 : Katsura 6, a problem of magnetism in physics, l = 7

p(x1, x2, x3, x4, x5, x6, x7) = x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6 + 2x2
7 − x1

x1 = [−5, 5], x2 = [−5, 5], x3 = [−5, 5], x4 = [−5, 5],

x5 = [−5, 5], x6 = [−5, 5], x7 = [−5, 5]

11. Reim 7 : The 7-dimensional system of Reimer, l = 7

p(x1, x2, x3, x4, x5, x6, x7) = −1 + 2x8
1 − 2x8

2 + 2x8
3 − 2x8

4 + 2x8
5 − 2x8

6 + 2x8
7

x1 = [−1, 1], x2 = [−1, 1], x3 = [−1, 1], x4 = [−1, 1],

x5 = [−1, 1], x6 = [−1, 1], x7 = [−1, 1]
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