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Abstract

In science and engineering there often is a need for the approximation
of scattered multi-dimensional data. A class of powerful scattered data ap-
proximators are the multivariate simplex B-splines. Multivariate simplex
B-splines consist of Bernstein basis polynomials that are defined on a ge-
ometrical structure called a triangulation. Multivariate simplex B-splines
have a number of advantages over other scattered data approximators,
like neural networks and kernel methods. Firstly, the multivariate sim-
plex B-splines have an arbitrarily high approximation power. Secondly,
the simplex spline models are parametric models, which allows for effi-
cient approximation of arbitrarily large datasets. Finally, the local basis
property of the simplex B-splines results in sparse solution and evaluation
systems. Until now, the disadvantage of using simplex B-splines for scat-
tered data approximation is that a triangulation must be defined a-priori
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which can not be guaranteed to be optimal. This triangulation optimiza-
tion problem has been a long standing issue in the field of multivariate
splines. In this article, a new interval form of the multivariate simplex
B-splines is introduced which aims to solve the triangulation optimiza-
tion problem. This new form is the interval spline, or Interspline, which
consists of interval B-coefficients which scale interval Bernstein basis pol-
ynomials defined on interval simplices. A branch and bound optimization
scheme can then be used to concurrently determine the guaranteed opti-
mal set of B-coefficients and triangulation vertex locations given a set of
scattered multidimensional data, thus solving the triangulation optimiza-
tion problem.

Keywords: multivariate splines; interval analysis; triangulation optimization;
function approximation; global optimization
AMS subject classifications: 65D07,65D15,65G40,90C26

1 Introduction

Accurate models of dynamic systems are essential to many applications in science and
engineering. Currently, there are only a handful of methods available for modeling
such systems. The most widely used of these methods are neural networks, kernel
methods, polynomial blending methods, and spline methods. Neural networks are
powerful function approximators that have been used successfully in the past, see e.g.
[8, 29, 17, 19, 28, 25]. Neural networks are black box models, and therefore suffer from
an inherent intransparency [5]. The result of this is that their performance can only be
guaranteed under special circumstances [7]. Additionally, the radial basis functions in a
neural network have a global influence on neural network output. As a consequence, all
basis functions and coefficients need to be considered during evaluation and estimation,
resulting in computationally inefficient evaluation and solution systems.

Kernel methods like the support vector machines can also be used for scattered
nonlinear data modeling [9, 14, 31, 15]. While powerful in their role as categorizers,
kernel methods are non-parametric in nature and require that every significant data
point is associated with a single kernel function, with the result that the size of the
optimization problem is proportional to the total number of data points [9]. This in
turn produces computationally expensive optimization problems, especially when the
modeled datasets are large.

Polynomial modeling methods are perhaps the simplest and the most widely used
of all modeling methods. While a single polynomial has only a limited approximation
power, accurate global models can still be created by estimating local models on subre-
gions of the system operating domain. This, however, introduces discontinuities in the
model which can present a problem if it is to be used in some model based controller.
Continuity can be restored by employing a blending scheme like Takagi–Sugeno fuzzy
blending [1, 5]. While fuzzy blending techniques are powerful, their construction and
tuning is done based on expert knowledge which means that they will probably never
result in a fully automated identification technique [5].

Finally, polynomial spline methods have been used in the past for the modeling
of nonlinear systems, see e.g. [34, 20, 6]. However, these spline methods employed
multivariate tensor product B-splines which due to their rectangular nature are inca-
pable of fitting scattered data and are confined to rectangular domains, limiting their
applicability to rectangular datasets [2].



Reliable Computing 17(2), 2012 155

Multivariate simplex B-splines are a type of multivariate splines which are capable
of accurately approximating scattered nonlinear data [4, 23, 12, 11, 13]. The multivari-
ate simplex B-splines have a stable local polynomial basis consisting of Bernstein basis
polynomials. The Bernstein basis polynomials are functions in terms of barycentric
coordinates. The barycentric coordinate system is an affine local coordinate system
which is native to the simplex, a geometric structure that minimally spans a given
set of dimensions. As such, each simplex B-spline basis function is defined on a single
simplex. The true power of the multivariate simplex B-spline comes from connecting
any number of simplices into a geometric structure called a triangulation [23].

The simplex B-splines have a number of important advantages over the earlier
mentioned modeling methods. Firstly, the simplex B-splines have an arbitrarily high
approximation power on a global model scale. Secondly, simplex B-spline models are
parametric models, which allows for efficient approximation of very large datasets.
Thirdly, the simplex B-splines are linear in the parameters, which means that linear
regression methods like generalized least squares and recursive least squares can be
used in their estimation [12, 11]. Finally, the simplex B-splines have a local polynomial
basis, which implies that only small subsets of parameters and basis polynomials need
to be considered during estimation and evaluation, resulting in efficient computational
schemes.

However, there exists a gap in the theory of the multivariate simplex B-spline
which is the absence of a rigorous method for triangulation optimization. The difficulty
with triangulation optimization lies in its essentially non-convex nature. A number
of triangulation optimization methods are present in the literature, most notably the
methods for 2-D constrained Delaunay triangulation (CDT) optimization presented
by Ruppert [30] and Shewchuk [32], and the general N-D CDT optimization method
introduced by Shewchuk in [33]. However, none of these methods are specifically
designed for use with simplex B-splines in the sense that the per-simplex data content
is not used as an optimization parameter. This particular optimization parameter has
been found to be of fundamental importance to the conditioning and solvability of a
data approximation problem with simplex B-splines [12, 11, 13].

The objective of this paper is the presentation of a new type of multivariate spline,
which we call the multivariate ‘Interspline’. Intersplines are multivariate simplex B-
splines with interval B-coefficients which scale individual interval Bernstein basis func-
tions. The interval Bernstein basis functions are formulated in terms of the vertices of
interval-simplices. The Intersplines allow the use of interval analysis to determine, in
a single step, a globally optimal solution for the combined triangulation optimization
and B-coefficient estimation problem.

The idea of using intervals in the formulation of multivariate simplex B-splines is
not entirely new. Zhou presented an Interval Simplex Spline (ISS) method in which
the B-coefficients of the simplex B-splines are represented by intervals for the purpose
of encoding uncertainty in datasets and data reduction [37]. However, Zhou’s ISS
method only uses intervals for the B-coefficients of the simplex splines, and does not
consider using intervals for the simplex vertices and Bernstein basis functions. As a
result, the ISS method can not be used for the combined triangulation optimization and
B-coefficient estimation problem for which our Interspline method has been developed.

The Intersplines are enabled by a new formulation of the Bernstein basis polyno-
mials of the multivariate simplex B-splines in terms of global coordinates. This new
formulation effectively combines the simplex vertices with the spline polynomial coef-
ficients into a single set of optimization parameters. The resulting Interspline function
produces the guaranteed optimal spline function defined on the guaranteed optimal
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triangulation, thereby closing the gap in multivariate simplex B-spline theory that has
been present since its inception. This paper is primarily focused on the linear Inter-
spline, which consists of linear spline pieces. The principles presented in this paper
are general, however, and can also be used to define nonlinear Intersplines.

The outline of this paper is as follows. First, in Sec. 2 an introduction into the
theory of the multivariate simplex B-splines is provided. Following this, Sec. 3 presents
a new formulation of the Bernstein basis polynomials of the multivariate simplex B-
splines in terms of global coordinates. In Sec. 4 a brief introduction on interval anal-
ysis is given. In Sec. 5 the problem of triangulation optimization is introduced, and a
theorem is presented for the non-convex nature of the combined B-coefficient and tri-
angulation optimization problem. In Sec. 6 the multivariate Interspline is introduced.
In Sec. 7 the results from a number of numerical experiments are presented. Finally,
in Sec. 8 the paper is concluded and recommendations for future work are provided.

2 Preliminaries on Multivariate Simplex
B-splines

This section serves as a brief introduction into the mathematical theory of the mul-
tivariate simplex B-spline. For a more in-depth coverage of the mathematical theory,
we would like to refer to [23].

2.1 The Simplex and Barycentric Coordinates

The individual polynomial pieces of the simplex B-spline are defined on simplices.
A simplex is a geometric structure that provides a minimal, non-degenerate span of
n-dimensional space. For example, lines are 1-dimensional simplices, triangles are 2-
dimensional simplices, and tetrahedrons 3-dimensional simplices. A simplex is defined
as follows. Let V be a set of n + 1 unique, non-degenerate, points in n-dimensional
space:

V := {v0,v1, . . . ,vn} ⊂ Rn, (1)

with each vi a vector in Rn.

The convex hull of V is the n-simplex t:

t := 〈V〉 , (2)

with 〈•〉 the convex hull operator. The boundary edges of a simplex are called facets.
A facet of an n-simplex is an (n − 1)-simplex by definition; it is constructed from all
but one of the vertices of the n-simplex.

The simplex supports its own local coordinate system in the form of the barycentric
coordinate system. The barycentric coordinate system is instrumental in the definition
of the stable local polynomial basis for the multivariate splines. The principle of
barycentric coordinates is the following: every point x = (x1, x2, . . . , xn) inside or
outside a simplex t, with t as in Eq. 2, can be described in terms of a unique weighted
vector sum of the vertices of t. The barycentric coordinate b(x) = (b0, b1, . . . , bn) of x
with respect to simplex t are these vertex weights:

x =

n∑
i=0

bivi. (3)
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Fig. 1 2-D Delaunay triangulation consisting of 31 triangles (left) and 3-D
Delaunay triangulation consisting of 6 tetrahedrons (right, two tetrahedrons
are shaded for clarity).

The barycentric coordinates are normalized, i.e.

n∑
i=0

bi = 1. (4)

2.2 Triangulations of Simplices

A triangulation T is a special partitioning of a domain into a set of J non-overlapping
simplices.

T :=

J⋃
i=0

ti. (5)

In a valid triangulation we have that for each pair of simplices ti and tj that their
intersection is void or a k-simplex t̃ij with 0 ≤ k ≤ n− 1, as follows:

ti ∩ tj ∈
{
∅, t̃ij

}
, ∀ti, tj ∈ T , (6)

One of the most common triangulation methods is the Delaunay triangulation, see
Fig. 1.

Creating high quality triangulations is not a trivial task, especially in higher dimen-
sions. Methods for creating high quality triangulations are present in the literature,
such as for example Shewchuk’s constrained Delaunay triangulation (CDT) method
[32, 33]. These methods, however, are not designed for creating triangulations that are
optimal for use with simplex splines as they do not use the per-simplex data coverage
as an optimization parameter. In [11] a triangulation optimization method is presented
that is specifically designed for use with simplex splines. This method, however, can
never be guaranteed to produce optimal triangulations.

2.3 Spline Spaces

A spline space is the space of all spline functions s of a given degree d and continuity
order r on a given triangulation T . Such spline spaces have been studied extensively,
see e.g. [24, 22, 23]. We use the definition of the spline space from [23]:

Srd(T ) := {s ∈ Cr(T ) : s|t ∈ Pd, ∀t ∈ T }, (7)
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with Pd the space of all polynomials of total degree d. The definition of the spline
space in Eq. 7 provides a convenient notation for stating the degree, continuity and
triangulation of a spline solution without having to specify individual spline functions.
For example, S1

3(T ) is the space of all cubic spline functions with continuity C1 defined
on the triangulation T .

2.4 The B-form of the Multivariate Simplex Spline

The Bernstein basis polynomial Bdκ(b) of degree d in terms of the barycentric coordi-
nate b = (b0, b1, . . . , bn) from Eq. 3 is given by:

Bdκ(b) :=
d!

κ!
bκ, (8)

with κ = (κ0, κ1, . . . , κn) ∈ Nn+1 a multi-index with the following notation: κ! :=
κ0!κ1! · · ·κn! and |κ| := κ0 + κ1 + · · · + κn. In Eq. 8, we use the notation bκ =
bκ00 bκ1

1 · · · bκnn . The total number of Bernstein basis functions thus is equal to the total
number of valid permutations of κ:

d̂ :=
(d+ n)!

n!d!
. (9)

Any polynomial pd(b) of degree d defined on a simplex t can be written as a linear
combination of Bernstein basis polynomials [10]:

pd(b) :=
∑
|κ|=d

ctκB
d
κ(b), b ≥ 0, (10)

with ctκ the so-called B-coefficients which uniquely determine pd(b). The right hand
term in Eq. 10 is known as the B-form of the multivariate simplex spline in local
barycentric coordinates. Note that Eq. 10 is only defined for b ≥ 0 which implies a
barycentric coordinate inside t.

2.5 Vector Formulations of the B-Form

In [12] a vector formulation for the B-form of the multivariate simplex B-spline was
introduced which will prove to be instrumental in the definition of the B-form in global
coordinates.

The vector formulation of the B-form is enabled by the lexicographical sorting
order on the elements of the multi-index as introduced in [18] and [23]. In general, for
κ = (κ0, κ1, . . . , κn) and |κ| = d this lexicographical sorting order is the following:

d, 0, 0 · · · 0 > d− 1, 1, 0 · · · 0 > d− 1, 0, 1, 0 · · · 0 > · · · >
> 0 · · · 0, 1, d− 1 > 0 · · · 0, 0, d. (11)

The vector formulation for a B-form polynomial defined on a single simplex t is
defined as follows:

pd(b(x)) :=

{
Bd(b(x)) · ct ,x ∈ t
0 ,x /∈ t , (12)

with b(x) the barycentric coordinate of the Cartesian vector x.
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The vector Bd(b(x)) in Eq. 12 is a vector which is constructed from lexicographi-
cally sorted basis polynomials:

Bd(b(x)) :=
[
Bd
d,0,0(b(x)) Bd

d−1,1,0(b(x)) · · ·

· · · Bd
0,1,d−1(b(x)) Bd

0,0,d(b(x))
]
∈ R1×d̂.

(13)

The vector ct in Eq. 12 is the vector of lexicographically sorted B-coefficients on
the simplex t:

ct := [cd,0,0 cd−1,1,0 · · · c0,1,d−1 c0,0,d]
> ∈ Rd̂×1. (14)

For example, let p2(b(x)) be a (barycentric) bivariate B-form of degree d = 2 on a
single simplex t and with x ∈ t. We then have |κ| = 2 and κ ∈ {(2, 0), (1, 1), (0, 2)}.
In this case the vector formulation of the B-form is the following:

p2(b(x)) = B2(b(x)) · c

=
[
B2

2,0(b(x)) B2
1,1(b(x)) B2

0,2(b(x))
]  c2,0

c1,1
c0,2

 .
The complete simplex spline function of degree d and continuity order r for all J

simplices in a triangulation T is then defined as follows:

srd(b(x)) := Bd · c ∈ Srd(T ), (15)

with Bd the full-triangulation vector of basis polynomials:

Bd := [ Bd
t1(b(x)) Bd

t2(b(x)) · · · Bd
tJ (b(x)) ] ∈ R1×J·d̂. (16)

The full-triangulation vector of B-coefficients c in Eq. 15 is constructed as follows:

c :=


ct1

ct2

...
ctJ

 ∈ RJ·d̂×1 (17)

with ctj the per-simplex vector of lexicographically sorted B-coefficients from Eq. 14.

2.6 The B-Coefficient Net

The B-coefficients of the multivariate simplex B-splines are structured in what is called
the B-coefficient net, or B-net. The B-net has a spatial representation which not only
provides insight into the structure of B-form polynomials, but which also aids the visu-
alization of the structure of continuity between simplices. This spatial representation
of the B-net is well known in the literature, see e.g. [16, 21, 23].

The spatial representation of the B-net results from a direct relationship between
the index of a B-coefficient and its spatial location, or barycentric coordinate within
a simplex:

bcκ :=
κ0v0 + κ1v1 + · · ·+ κnvn

d
, |κ| = d, (18)
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Fig. 2 B-net for a 4th degree bivariate simplex spline function on a triangula-
tion consisting of 3 simplices.

with bcκ the barycentric coordinate of B-coefficients and vi, i = 0, 1, . . . , n the simplex
vertices.

In Fig. 2 the graphical representation of the B-net corresponding with a fourth
degree basis function (i.e. d = 4) defined on a triangulation consisting of the three
simplices ti, tj and tk is shown.

2.7 Continuity between Simplices

A spline function is a piecewise polynomial function with Cr continuity between its
pieces. Continuity between the polynomial pieces is enforced by continuity conditions
which are defined for every facet shared by two neighboring simplices. The formulation
of the continuity conditions in this subsection are well known in the literature see e.g.
[10, 3, 23, 11], but are repeated here for completeness. Let two neighboring n-simplices
ti and tj , differing by only the vertex u be defined as follows:

ti := 〈v0,v1, . . . ,vn−1,u〉 , tj := 〈v0,v1, . . . ,vn−1,vn〉 ,
(19)

then ti and tj meet along the facet t̃ given by:

t̃ := ti ∩ tj = 〈v0,v1, . . . ,vn−1〉 . (20)

In [4, 23] the following formulation for the continuity conditions between ti and tj
is used:

ci(κ0,...,κn−1,m) =
∑
|γ|=m

cj(κ0,...,κn−1,0)+γ
Bmγ (u), 0 ≤ m ≤ r, (21)

with γ = (γ0, γ1, . . . , γn) a multi-index independent of κ, and with u the vertex in ti
that is not in the edge t̃. The operator ‘+’ in Eq. 21 adds the components of the two
multi-indices κ and γ in an element by element fashion, e.g. κ0 + γ0.

It was shown in [12] and [13] that the formulation from Eq. 21 is not accurate
for B-nets of general orientation. Instead, Eq. 21 needs to be generalized such that
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the location of the constants in the multi-indices (i.e. the 0 and m) are equal to the
locations of the single non-zero values in the multi-indices of B-coefficients located at
the out-of-edge vertices u and vn, respectively. Such a generalization is presented in
[11].

The total number of continuity conditions for Cr continuity on a single edge facet
is:

R :=

r∑
m=0

(d−m+ n− 1)!

(n− 1)!(d−m)!
. (22)

By equating all continuity conditions to zero, the following matrix form is obtained:

Hc = 0, (23)

with the matrix H the so-called smoothness matrix.

3 A New Formulation of the B-form in Global
Coordinates

The barycentric coordinate system is instrumental in the definition of the B-form basis
polynomials of the multivariate simplex B-splines. Because the barycentric coordinate
system is a local coordinate system, defined on a per-simplex basis, the polynomials
defined in terms of these coordinates have a local interpretation only. In this section,
a new formulation of the B-form of the multivariate simplex spline in terms of a global
coordinate system will be presented. This formulation will prove to be instrumental
in the definition of the multivariate Intersplines.

3.1 Barycentric Coordinates Revisited

Before starting the derivation of the B-form in global coordinates, a better insight into
the barycentric coordinate system is required. It was shown in Sec. 2 that the global
coordinate x = (x1, . . . , xn) ∈ Rn can be written as follows:

x =

n∑
i=0

bivi, (24)

with vi ∈ Rn×1 the i-th vertex of the n-simplex t and bi the i-th barycentric compo-
nent. This expression can be rewritten in matrix formulation as follows:

x =
[

v0 v1 · · ·vn
]

b0
b1
...
bn


= V · b, (25)

with V ∈ Rn×(n+1) a singular matrix containing the n + 1 vertices of t as columns.
The singular nature of V shows that the system is under determined. This is where
the barycentric normalization property from Eq. 4 is introduced:

b0 = 1−
n∑
i=1

bi. (26)
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Substitution of Eq. 26 in Eq. 25 results in:

x =
[

v0 v1 · · ·vn
]


1−
∑n
i=1 bi

b1
...
bn

 . (27)

Expanding Eq. 27, leads to the following expression:

x =
[

(v1 − v0) (v2 − v0) · · · (vn − v0)
]

b1
b2
...
bn

+ v0. (28)

So finally,

x− v0 =
[

(v1 − v0) (v2 − v0) · · · (vn − v0)
]

b1
b2
...
bn



= Ṽ


b1
b2
...
bn

 , (29)

with the matrix Ṽ defined as:

Ṽ =
[

(v1 − v0) (v2 − v0) · · · (vn − v0)
]
∈ Rn×n. (30)

It is now easy to check that the matrix Ṽ is invertible when the n-simplex has n+ 1
unique non-degenerate vertices. Now define Λ as the inverse of Ṽ as follows:

Λ = Ṽ−1 ∈ Rn×n. (31)

The barycentric components (b1, b2, . . . , bn) of x with respect to the simplex t then
are: 

b1
b2
...
bn

 = Λ(x− v0) (32)

Now let z = (z1, z2, . . . , zn) ∈ Rn be the global coordinate of x with respect to t as
follows:

z = x− v0 ∈ Rn. (33)

With the relative coordinate, Eq. 32 can be simplified as follows:
b1
b2
...
bn

 = Λz (34)



Reliable Computing 17(2), 2012 163

Using the normalization property of the barycentric coordinates from Eq. 26, the b0
component becomes:

b0 = 1− |Λz| , (35)

with | • | the 1-norm of a vector.
In the following, let v be the vector consisting of the n vertex components for each

of the n+ 1 vertices of the simplex t as follows:

v :=
[

v0x v0y · · ·vnx vny
]> ∈ Rn·(n+1)×1 (36)

Combining Eq. 34 with Eq. 35 then results in the following definition for the
barycentric coordinate transformation of z:

b(v, z) :=

[
1− |Λz|

Λz

]
, (37)

with v the vector introduced in Eq. 36. Note that v is included in Eq. 37 because the
triangulation vertex locations are optimization parameters.

3.2 A B-form in Global Coordinates

In Eq. 12 the vector formulation of the B-form was introduced. The vector formulation
of the B-form of degree d in terms of the global coordinate z from Eq. 33 and the vertex
vector v from Eq. 36 is defined as follows:

pd(v, z) :=

{
Zd(v, z) · ct, (z + v0) ∈ t
0, (z + v0) /∈ t , (38)

with Zd(v, z) ∈ R1×d̂ the vector of basis polynomials in terms of the vertex vector
v and the global coordinate z. Note that in Eq. 38 we can replace pd(b(v, z)) with
pd(v, z) as b(v, z) is a function of only v and z as shown in Eq. 37.

At this point, the actual elements of Zd(v, z) are unknown. In the following two
theorems, expressions will be derived for the basis polynomials in terms of global
coordinates.

Theorem 1 Any B-form polynomial of degree d = 1 on the n-simplex t has the fol-
lowing representation in the global coordinate z from Eq. 33:

p1(v, z) = Z1(v, z) · ct, (39)

with Z1(v, z) ∈ R1×(n+1) the vector of Bernstein basis polynomials from Eq. 38 for
d = 1. The vector of first degree Bernstein basis polynomials in the global coordinate
z is then given by:

Z1(v, z) =


1− Λ1z1 − Λ2z2 − · · · − Λnzn
Λ1,1z1 + Λ1,2z2 + · · ·+ Λ1,nzn
Λ2,1z1 + Λ2,2z2 + · · ·+ Λ2,nzn

...
Λn,1z1 + Λn,2z2 + · · ·+ Λn,nzn



>

, (40)

with Λi,j the individual components of the matrix Λ from Eq. 31 and with Λj the sum
of all n elements of the jth column of Λ as follows:

Λj :=

n∑
i=1

Λi,j (41)



164 de Visser, van Kampen, Chu and Mulder, Optimal Multivariate Splines

Proof:
Expanding the vector form of the B-form from Eq. 12 in barycentric coordinates

for a first degree simplex polynomial leads to:

p1(b) = [bκ]|κ|=1 · c
t

= [bκ0
0 bκ1

1 · · · b
κn
n ]|κ|=1 · c

t

=
[
b0 b1 · · · bn

]
· ct (42)

Expanding the matrix multiplication from Eq. 34 results in the following expression
for the individual barycentric components bi with i > 0:

bi = Λi,1z1 + Λi,2z2 + · · ·+ Λi,nzn, i > 0, (43)

Using Eq. 35, the b0 component can be reformulated as follows:

b0 = 1− |Λz|
= 1− [(Λ1,1 + Λ2,1 + · · ·+ Λn,1)z1+

(Λ1,2 + Λ2,2 + · · ·+ Λn,2)z2 + · · ·+
(Λ1,n + Λ2,n + · · ·+ Λn,n)zn]

= 1−
n∑
j=1

(Λ1,j + Λ2,j + · · ·+ Λn,j)zj

(44)

Using Eq. 41, Eq. 44 can be simplified as follows:

b0 = 1−
n∑
j=1

Λjzj

= 1− Λ1z1 − Λ2z2 − · · · − Λnzn (45)

Substitution of the expression for b0 from Eq. 45 and the expression for (b1, b2, . . . , bn)
from Eq. 43 in Eq. 42 then immediately results in Eq. 40, which proves the theorem.
�

Higher order polynomials in terms of the global coordinate z can be found easily
by recursively multiplying the vector of basis polynomials from Eq. 40. Based on
Theorem 1, the following theorem for the general B-form in global coordinates can
be introduced.

Theorem 2 The B-form polynomial of degree d on the n-simplex t has the following
representation in the global coordinate z:

pd(v, z) = Zd(v, z) · ct, (46)

with Zd(v, z) the vector of basis polynomials of degree d in the global coordinate z which
is defined as follows:

Zd(v, z) :=

[
d!

κ!
· (Z1(v, z))κ

]
|κ|=d

∈ R1×d̂, (47)

with Z1(v, z) the vector of basis polynomials of degree 1 from Eq. 40
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Proof:
By treating every individual polynomial basis function in Z1

i (v, z) as a single term,
the multinomial theorem can be used to create a new polynomial of any degree d:∑

|κ|=d

d!

κ!
(Z1(v, z))κ =

(
Z1

1(v, z) + Z1
2(v, z) + · · ·+ Z1

n+1(v, z)
)d

(48)

Using the method for constructing the vector of basis polynomials from Eq. 12, the
right hand term in Eq. 48 can be represented in the vector formulation of Eq. 47,
thereby proving the theorem. �

The simplex spline function in terms of global coordinates that is the equivalent
of Eq. 15 for all J simplices in a triangulation then is:

srd(w, z) := Zd(w, z) · c ∈ Srd(T ), (49)

with w a vector constructed from a total of J vectors of the form Eq. 36 as follows:

w :=
[
vt1
> vt2

> · · · vtJ
>
]>

, (50)

and with Zd(w, z) the full-triangulation vector of B-form regressors of the form Eq. 38
as follows:

Zd(w, z) :=
[
Zd,t1(vt1 , zt1) Zd,t2(vt2 , zt2) · · · Zd,tJ (vtJ , ztJ )

]
. (51)

Example 1 The global B-form for a first degree polynomial on a 1-dimensional sim-
plex.

A 1-dimensional simplex is formed by the convex hull of two vertices:

t = 〈v0, v1〉 (52)

In this case we have n = 1, d = 1 and κ ∈ {(1, 0), (0, 1)}. The transformation matrix
Λ from Eq. 31 is actually a scalar:

Λ = Ṽ−1 =
1

v1 − v0
, (53)

which implies that Λ = Λ1 = Λ1,1. The global coordinate in this case is z = z1 = x−v0,
which is a scalar. Using Eq. 40 the following vector of basis polynomials is obtained:

p1(v, z) =

[
1− Λ1,1z1

Λ1,1z1

]>
· ct

=

[
1− 1

v1−v0
z1

1
v1−v0

z1

]>
· ct

Example 2 The global B-form of a second degree polynomial on a 2-dimensional sim-
plex.

In this example the simplified construction method for B-form polynomials in global
coordinates will be demonstrated. In this case, the global B-form polynomial of degree
d = 2 on a single 2-simplex will be derived using Theorem 2.
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First, we need the first degree basis function vector in global coordinates from Eq. 40
for n = 2:

Z1(v, z) =

 1− Λ1z1 − Λ2z2
Λ1,1z1 + Λ1,2z2
Λ2,1z1 + Λ2,2z2

>

Using Eq. 47, together with the valid values for κ we can derive Z2(v, z):

Z2(v, z) =

[
2!

κ!
· (Z1(v, z))κ

]
|κ|=2

, Z2(v, z) ∈ R1×6

=



2!
2!0!0!

· (Z1(v, z))2,0,0

2!
1!1!0!

· (Z1(v, z))1,1,0

2!
1!0!1!

· (Z1(v, z))1,0,1

2!
0!2!0!

· (Z1(v, z))0,2,0

2!
0!1!1!

· (Z1(v, z))0,1,1

2!
0!0!2!

· (Z1(v, z))0,0,2



>

=


(1− Λ1z1 − Λ2z2)2

2 ((1− Λ1z1 − Λ2z2)(Λ1,1z1 + Λ1,2z2))
2 ((1− Λ1z1 − Λ2z2)(Λ2,1z1 + Λ2,2z2))

(Λ1,1z1 + Λ1,2z2)2

2 ((Λ1,1z1 + Λ1,2z2)(Λ2,1z1 + Λ2,2z2))
(Λ2,1z1 + Λ2,2z2)2



>

4 Preliminaries on Interval Analysis

4.1 Interval Arithmetic

Interval analysis is the theory dealing with interval numbers and the arithmetic op-
erations on them [27]. An interval number [x] is defined by an ordered pair of real
numbers [x] = [a, b] with a ≤ b. Operations applied to the ordinary number system can
be extended to cover interval numbers, for example the basic computational operations
of addition, subtraction, multiplication and division:

[a, b] + [c, d] = [a+ c, b+ d] , (54)

[a, b]− [c, d] = [a− d, b− c] , (55)

[a, b] · [c, d] = [min (ac, ad, bc, bd) ,max (ac, ad, bc, bd)] , (56)

[a, b]

[c, d]
= [a, b] · [1/d, 1/c] if 0 /∈ [c, d] . (57)

The lower bound of an interval is called the infimum and is denoted as inf ([x])
or as x. The upper bound of an interval is called the supremum and is denoted as
sup ([x]) or as x̄.

The core of interval analysis is to use interval arithmetic to form an inclusion
function [f ] ([x]) of any function f (x). This property of interval arithmetic follows
from the inclusion function theorem given by R.E. Moore [26, 27]:
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Theorem 3
If [f ] ([x1] , [x2] , ..., [xn]) is a rational expression in the interval variables [x1] , [x2] , ..., [xn],
i.e., a finite combination of [x1] , [x2] , ..., [xn] and a finite set of constant intervals with
interval arithmetic operations, then:

[x1]
′
⊂ [x1] , [x2]

′
⊂ [x2] , ..., [xn]

′
⊂ [xn] , (58)

implies:

[f ]
(

[x1]
′
, [x2]

′
, ..., [xn]

′)
⊂ [f ] ([x1] , [x2] , ..., [xn]) , (59)

for every set of interval numbers [x1] , [x2] , ..., [xn] for which the interval arithmetic
operations in [f ] are defined.

If we take [x1]
′
, [x2]

′
, ..., [xn]

′
to be the crisp numbers x1, x2, ..., xn and apply the

theorem, then we obtain:

f (x1, x2, ..., xn) ∈ [f ] ([x1] , [x2] , ..., [xn]) (60)

for x1 ∈ [x1] , x2 ∈ [x2] , ..., xn ∈ [xn]. It states that if the function arguments lie within
the corresponding intervals we can use interval arithmetic to produce an interval for
the output of the function which is guaranteed to contain the crisp function output
f (x).

4.2 Global Nonlinear Optimization using Interval Analy-
sis

Using the properties of intervals as described in the previous section, this section
will show how intervals can be used to solve nonlinear optimization problems. Interval
analysis has been successfully applied to a number of nonlinear optimization problems,
ranging from spacecraft trajectory optimization to human perception modeling[36, 35].

Consider a nonlinear cost function J as a function of variables x1, .., xn and opti-
mization parameters p1, .., pm:

J = J (x1, .., xn; p1, .., pm) . (61)

The parameters and the resulting cost function can be replaced with intervals:

[J ] = [J ] (x1, .., xn; [p1] , .., [pm]) , (62)

where for each parameter the interval is set to cover the search space in which it
needs to be optimized. The complete search space is defined by the set of all interval
parameters, which can be combined into a single interval vector or box:

[P ] =

 [p1]
...

[pm]

 . (63)

A global minimum can only be found if it resides within the chosen search space,
defined by the interval boundaries. When the true global minimum is not inside the
search space, a suboptimal local minimum will be found.

The optimization problem can now be written as:

min [J ] (x1, .., xn; [P ]) ∀pi ∈ [pi] i = 1..m. (64)
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The goal of the branch and bound algorithm is to efficiently remove sub boxes
from the initial parameter space, for which it is guaranteed that they do not contain
the parameter combination for which the cost function has a global minimum. When
the cost function is evaluated for a particular parameter box, the resulting interval
can be wider than the range of values obtained when computing the cost function for
each combination of parameters in the parameter box.

Let [J1] and [J2] be the cost function evaluation for parameter sub boxes [P1] and
[P2] respectively. Assume that [P1] and [P2] are formed by a bisection of the complete
search space [P ], i.e. a partition into two subsets. Due to dependency it is not possible
to say that the true minimum value of J is in the interval with the lowest lower bound.
So if inf ([J1]) < inf ([J2]) the true minimum value of J can still be in [J2].

Only if sup ([J1]) < inf ([J2]) it is guaranteed that the global minimum of the cost
function is in the interval [J1] and thus formed by a combination of parameters inside
[P1]. This method of eliminating sub boxes that cannot contain the global minimum
is a fundamental element of the interval branch and bound algorithm.

The first step of the interval branch and bound algorithm is to define the param-
eter search space as a multi-dimensional interval box [P ]. Next the cost function is
evaluated for this complete search space, resulting in [JP ]. This interval is likely to
be very wide, but it is guaranteed that the global minimum is contained in it. As
was explained above, it is not possible to say that the global minimum is equal to
inf ([JP ]). The best estimate J∗min for the global minimum of the cost function at this
point in the algorithm is: J∗min = sup ([JP ]).

The next step is to split the initial search space into sub boxes. There are many
possible ways to split an interval box and there is no consensus in the literature which
method is best. Although the type of box splitting influences the efficiency of the
algorithm, the same global minimum will be found each time. Some possibilities are:

• Bisect in all dimensions, resulting in 2m new sub boxes, where m is the number
of dimensions in the original interval box.

• Bisect in the dimension with the widest interval, while not bisecting in the
remaining dimensions, resulting in 2 new sub boxes.

• Split a random dimension into a random number of subintervals.

The new boxes obtained by splitting are put into a list ordered by the lower bound
on the cost function evaluation of these boxes. Every time a new box is added to
the list, the current best estimate of the cost function J∗min can be lowered if the
upper bound of the cost function corresponding to the added sub-box is lower than
the current best estimate. When J∗min is lowered, a check is done to see if any of
the boxes in the list have a lower bound on the cost function that is higher than the
current best estimate. If so, then this box and all following boxes can be removed from
the ordered list, thereby reducing the search space.

Splitting, evaluating and discarding of sub boxes continues until the list of sub
boxes is empty. This requires some criteria to be set on the minimal width of the
parameter sub boxes:

max
i

(w ([Pi])) < εP , w ([x]) = sup ([x])− inf ([x]) . (65)

When sub boxes reach this criteria, they will not be split again and they will be put
in a list of solutions. εP is chosen as a trade-off between the required resolution of the
solution and the amount of memory that is available to store interval-boxes. With a
small εP it is possible that multiple solutions are found which are all joined. In this
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case the hull of the remaining solutions is taken. A different type of stopping criteria
is the width of the evaluated cost function for a sub-box:

w ([Ji]) < εJ . (66)

Usually a combination of both stopping criteria is used, depending on the shape of the
cost function. A flowchart of the basic interval branch and bound algorithm is given
in Fig. 3.

5 Combined B-Coefficient and Triangulation Op-
timization

Triangulation optimization is an essentially non-convex optimization problem. The
non-convexity of the optimization problem is caused by the fact that the combined
B-coefficient and triangulation optimization problem is nonlinear in the parameters.

In this section, a theorem for the non-convexity of the cost function for the com-
bined B-coefficient and triangulation optimization problem will be introduced. This
theory justifies the use of interval analysis for solving the combined B-coefficient and
triangulation optimization problem. Additionally, the non-convex nature of the com-
bined triangulation optimization and B-coefficient estimation problem is demonstrated
with two numerical experiments.

5.1 A General Proof of Non-Convexity

It is well known in the literature that least squares B-coefficient optimization is a
convex optimization problem [4]. However, when the parameters of the triangulation
should also be optimized, the problem becomes non-convex. In the following a theorem
will be presented for the non-convexity of the combined B-coefficient and triangula-
tion optimization problem. For this, we first define the combined B-coefficient and
triangulation vertex vector as follows:

q =
[
c> w>

]>
, (67)

with c the vector of B-coefficients for all simplices from Eq. 17, and with w the vertex
vector from Eq. 50.

The Bernstein basis polynomials of the intersplines do not only depend on the data
point locations, but also on the coordinates of the triangulation vertices. Therefore,
the problem cannot be stated in the form of a linear regression problem such as that
presented in [12]. Using the global formulation of the B-form from Eq. 39 the nonlinear
regression problem is the following:

εi(q) = yi − Zdi (w, z)c, (68)

with Zi(w, z) a single row of B-form regressors of the form Eq. 51.
In this paper, a Sum of Absolute Errors cost function (SAE) will be used in the

optimization:

J1(q) =

N∑
i=1

|εi(q)| . (69)

All prerequisites are now in place to introduce the theory for non-convexity and
non-concavity of the combined B-coefficient and triangulation optimization problem.
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Fig. 3 Schematic flowchart of the interval branch and bound algorithm.
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Theorem 4 The cost function J1(q) from Eq. 69 is non-convex on the set A ∪ B ⊂
Rn, with A ∩ B = ∅, if the following holds:

N∑
i=1

(
sgn(q)

∂2Zi(w, z)

∂q2
j

c

) {
< 0 if q ∈ A,
> 0 if q ∈ B, (70)

with Zi(w, z) from Eq. 51, with c as in Eq. 17, with q as in Eq. 67, and with A and
B two non-overlapping sets in Rn.

Proof:

The proof of the theorem is based on the second derivative test for the cost function
J1(q) from Eq. 69. The first derivative of J1(q) with respect to q is:

∂J1(q)

∂qj
=

N∑
i=1

sgn(q)
∂εi(q)

∂qj
. (71)

with sgn the sign function.

Using Eq. 68 the first derivative of εi(q) with respect to q is:

∂εi(q)

∂qj
=

{
−Zi(w, z) if qj ∈ c

− ∂Zi(w,z)
∂qj

c if qj ∈ w
. (72)

Using the results from Eq. 71 and Eq. 72 we find the following for the second
derivative of J1(q) with respect to q:

∂2J1(q)

∂q2
j

=

 undefined if q = 0∑N
i=1

(
sgn(q) ∂

2εi(q)

∂q2
j

)
if q 6= 0

, (73)

with the second derivative of εi(q) with respect to q given by:

∂2εi(q)

∂q2
j

=

{
0 if qj ∈ c

− ∂
2Zi(w,z)

∂q2
j

c if qj ∈ w
. (74)

From Eq. 73 it is clear that an analysis of the sign of the second derivative of J1(q)
can be restricted to domains where J1(q) is smooth, that is, the domain q 6= 0.

For the case q 6= 0 we substitute Eq. 74 in Eq. 73 resulting in:

∂2J1(q)

∂q2
j

=

 0 if qj ∈ c

−
∑N
i=1

(
sgn(q) ∂

2Zi(w,z)

∂q2
j

c

)
if qj ∈ w

(75)

From Eq. 75 it follows that the sign of ∂2J1(q)

∂q2
j

is determined by the signs of the

elements of q. Therefore, there exists a parameter vector q1 ∈ A of the form Eq. 67 for

which ∂2J1(q)

∂q2
j

> 0. Equivalently, there exists an alternative parameter vector q2 ∈ B

of the form Eq. 67 for which ∂2J1(q)

∂q2
j

< 0. It then follows that ∂2J1(q)

∂q2
j

switches sign on

A ∪ B, which implies that J1 is non-convex on A ∪ B, proving the theorem.�
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Data generating function and 1-D triangulation
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Fig. 4 The data generating function f(x0) together with the triangulation
consisting of two 1-simplices in which v1 has a variable location, together with
the B-net for d = 1.

5.2 Numerical Analysis of the 1-D Cost Function

In this section the non-convex nature of the cost function of the combined B-coefficient
and triangulation optimization problem for the 1-D case is demonstrated with a nu-
merical experiment. First, let XN be a univariate dataset consisting of N points which
have a uniform random distribution in Cartesian R1 as follows:

XN =

N⋃
i=1

{x0(i)} ∈ {U(0, 1)} (76)

The data generating function is the 1-D Mexican hat function (see Fig. 4):

f(x0) =
sin
(
k1π
√
k2(x0 − .5)2 + ν

)
k1π
√
k2(x0 − .5)2 + ν

(77)

with k1 = 15 and k2 = 3 scaling constants, and with ν > 0 some small number (i.e.
ν = 10−3).

For this experiment, a simple triangulation consisting of two simplices (line seg-
ments) is used, in which only the location of the center vertex is a variable, see Fig. 4.

The cost function used in the analysis is the SAE cost function from Eq. 69.
In Fig. 5 the cost function for varying locations of v1 for the S0

1 spline space is
shown, clearly demonstrating its non-convex nature.
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Fig. 5 Mapping of the SAE cost function for different values of the central
vertex wc for the spline function of degree 1 with 0th order continuity.
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5.3 Numerical Analysis of the 2-D Cost Function

In this section, the non-convex nature of the cost function for the 2-D case will be
demonstrated with a numerical experiment.

First, let XN be a bivariate dataset consisting of N points which have a uniform
random distribution in Cartesian R2 as follows:

XN =

N⋃
i=1

{x0(i), x1(i)} ∈ {U(0, 1), U(0, 1)} (78)

The data generating function is the 2-D Mexican hat function:

f(x0, x1) =
sin
(
k1π
√
k2(x0 − .5)2 + k2(x1 − .5)2 + ν

)
k1π
√
k2(x0 − .5)2 + k2(x1 − .5)2 + ν

(79)

with k1 = 15 and k2 = 1 scaling constants, and with ν > 0 some small number (i.e.
ν = 10−3). In Fig. 7 the Mexican hat function is shown.

In this numerical experiment, a triangulation consisting of four 2-simplices is used,
see Fig. 6. The central vertex in this triangulation (v4 in the figure) has a variable
location. The spline spaces S0

1 , S1
2 , and S2

5 are used in the demonstration. The SAE
cost function from from Eq. 69 is used in the optimization.

In Fig. 8, Fig. 9, and Fig. 10 the cost functions of respectively the spline spaces
S0
1 , S1

2 , and S2
5 are plotted as a function of the location of the center vertex v4. In all

cases the cost function is non-convex.
For low volume data sets the specific distribution of the data points in the spline

domain have a significant influence on the shape of the cost function. The result is that
the optimal location of the center vertex (v4) depends not only on the spline space and
data generating function, but also on the particular configuration of data points. In
Fig. 11 this fact is demonstrated for the S0

1 spline space. The figure shows the optimal
vertex locations for 1000 different realizations of the dataset from Eq. 78 consisting of
50 data points. Clearly, there is a significant spread in the optimal location of v4. In
some cases, the optimal location of v4 for one data realization coincides with the least
optimal location of v4 for a different realization.

6 The Multivariate Interspline

In this section the multivariate Interspline is introduced. Additionally, the setup of
the numerical experiment conducted in the next section is discussed in detail.

6.1 The Interval B-Form in Global Coordinates

The multivariate Interspline is enabled by introducing interval variables in the global
formulation of the B-form from Eq. 38. This results in the interval B-form as follows:

[pd(v, z)] = [Zd(v, z)] · [ct], (80)

with [Zd(v, z)] the interval-Bernstein regressor matrix in global coordinates, and with
[ct] the interval B-coefficients for a single simplex. The interval simplex spline function
is derived using Eq. 49 as follows:

[srd(w, z)] = [Zd(w, z)] · [c] ∈ [Srd(T )] (81)
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2-D Triangulation
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Fig. 6 The Type-II triangulation consisting of four 2-simplices in which v4 has
a variable location, together with the B-net for d = 1.
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Fig. 7 The Mexican hat data generating function f(x0, x1).

with Zd(w, z) the full-triangulation B-form regressor matrix in global coordinates from
Eq. 51.

The formulation in Eq. 81 is valid for both linear and nonlinear Intersplines. In
general, Eq. 81 describes a manifold in Rn containing all possible spline functions of a
given degree.

The remainder of this paper is focused primarily on the linear Interspline defined
on Type-II triangulations, such as that shown in Fig. 6. The linear Interspline is in
fact a non-convex polytope which faces are formed by planes spanned by the extremum
values of the B-coefficients at the corner vertices and the extremum values of the central
vertex and central B-coefficient. This polytope then contains all possible linear spline
polynomials.

Determining the geometry of the Interspline inclusion polytope is a non-trivial
task. In Fig. 12 a schematic of the algorithm for determining these faces is shown.
In the figure, the square is the volume formed by the intersection of the interval of a
vertex location [v∗] and the interval of the B-coefficient [c∗] located at v∗.

The principle of the algorithm is that all possible B-form polynomials of a given
degree on a simplex must be contained by the inclusion polytope. In the linear case,
this means that the interval B-coefficient [c0] must be connected to [c∗] by a linear
polynomial, thereby forming the plane P ([c0]) ∈ Rn. This plane is defined by the
intersection point of the vertical ridges of [c∗] ∩ [v∗] with P ([c0]) and all remaining
(interval) B-coefficients in the simplex, see Fig. 12. The solid gray lines in the figure
are valid inclusion planes, while the dashed gray lines are not. It is easy to check that
the solid gray lines indeed contain all possible linear polynomials between the interval
B-coefficient [c0] and [c∗] ∩ [v∗]. All inclusion planes for all simplices together then
form the Interspline inclusion polytope.

In this paper the described ridge plane intersection algorithm is used for Type-I to
Type-II triangulation refinement (see e.g. [11]). In this case the Type-II triangulation
is formed from the Type-I triangulation by inserting a single vertex inside the grid
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Fig. 8 Mapping of the SAE cost function for different values of the central
vertex v4 for the spline function of degree 1 with 0th order continuity.
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Fig. 9 Mapping of the SAE cost function for different values of the central
vertex v4 for the spline function of degree 2 with 1st order continuity.
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Fig. 10 Mapping of the SAE cost function for different values of the central
vertex v4 for the spline function of degree 5 with 2nd order continuity.
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Fig. 11 Optimal and least optimal vertex locations for 1000 random realiza-
tions of a dataset consisting of 50 data points using the Mexican hat data
generating function.
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[c∗]

[v∗]

P ([c0])

P ([c0])

P ([c0]) ∩ r([c∗], [v∗])

P ([c0]) ∩ r([c∗], [v∗])

[c∗] ∩ [v∗]

Fig. 12 The ridge-plane intersection for linear inclusion. Solid gray lines indi-
cate valid inclusion planes, dashed gray lines indicate invalid inclusion planes,
while the hatched regions denote the inclusion error when invalid inclusion
planes are selected.

cells of the Type-I triangulation.

6.2 1-Dimensional Basis

The demonstration of the 1-dimensional Interspline uses linear Bernstein basis function
on a triangulation consisting of the two simplices t1 = 〈v0, v1〉 and t2 = 〈v1, v2〉. Zeroth
order continuity is enforced between the two resulting spline pieces. In this case, the
simplex spline function in global coordinates from Eq. 49 becomes:

s01(w, z) =
[
Z1,t1(vt1 , zt1) Z1,t2(vt2 , zt2)

]
· c,

=

[
1− x− v0

v1 − v0
x− v0
v1 − v0

1− x− v1
v2 − v1

x− v1
v2 − v1

]
· c, (82)

with the vector of B-coefficients equal to:

c = [ct110 ct101 ct210 ct201]>. (83)

The complete optimization problem for Eq. 82 thus consists of 7 parameters. How-
ever, zeroth order continuity requires that ct101 = ct210 in accordance with Eq. 21. Ad-
ditionally, it is assumed that both v0 and v2 are constants. This leaves a total of 4
optimization parameters: v1, ct110, ct101, and ct201. In the following, the notation v∗ = v1,
c0 = ct110, c∗ = ct101, and c1 = ct201 are used for these parameters. The parameters v∗,
c0, c∗, and c1 are all defined as intervals. The center vertex v∗ is chosen as an interval
[v∗] with lower bound larger than v0 and upper bound smaller than v1, see Fig. 13.
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Fig. 13 One-dimensional spline basis geometry.

Goal of the optimization is the simultaneous optimization of the location of the
center vertex v∗ and the spline coefficients c0, c∗, c1, with c∗ the B-coefficient located
at the center vertex v∗.

The first step in the optimization is to define a lower and upper bound of the
enclosing polynomials, y and y respectively, see Fig. 13. The complete domain is split
into two parts, D ([yl]) and D ([yr]), which are partly overlapping.

Left part, yl (x) x ∈
[
0, v∗

]
:

c∗ ≥ c0 → yl (x) = c∗−c0
v∗ (x) + c0

c∗ < c0 → yl (x) = c∗−c0
v∗

(x) + c0

c∗ ≥ c0 → yl (x) =
c∗−c0
v∗

(x) + c0

c∗ < c0 → yl (x) =
c∗−c0
v∗ (x) + c0

Right part, yr (x) x ∈ [v∗, 1]:

c1 ≥ c∗ → yr (x) = c1−c∗
1−v∗ (x− v∗) + c∗

c1 < c∗ → yr (x) = c1−c∗
1−v∗

(
x− v∗

)
+ c∗

c1 ≥ c∗ → yr (x) =
c1−c∗

1−v∗
(
x− v∗

)
+ c∗

c1 < c∗ → yr (x) =
c1−c∗

1−v∗ (x− v∗) + c∗

The next step is to combine the left and right domains in order to obtain a con-
tinuous description for the enclosing polynomials, y and y.
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Fig. 14 Determination of the distance between the data point yi and the en-
closing interval [y] for three cases.

y (x) =


yl (x) xi ∈ [0, v∗]

yr (x) xi ∈
[
v∗, 1

]
ŷ (x) xi ∈ [v∗]

ŷ (x) =


c∗ c∗ ≥ c0 ∧ c∗ ≥ c1

yr (x) c∗ ≥ c0 ∧ c∗ < c1
yl (x) c∗ < c0 ∧ c∗ ≥ c1

max
(
yl (x), yr (x)

)
c∗ < c0 ∧ c∗ < c1

y (x)


yl (x) xi ∈ [0, v∗]

yr (x) xi ∈
[
v∗, 1

]
ỹ (x) xi ∈ [v∗]

ỹ (x) =


c∗ c∗ < c0 ∧ c∗ < c1

yr (x) c∗ < c0 ∧ c∗ ≥ c1
yl (x) c∗ ≥ c0 ∧ c∗ ≥ c1

min
(
yl (x), yr (x)

)
c∗ ≥ c0 ∧ c∗ < c1

Once the equations for the lower and upper bound of the enclosing polynomials
have been found, a distance measure from the data-point to this enclosure must be
defined. In Fig. 14, three cases are presented:

• (a) The data point yi is located inside the enclosing interval
[
y (xi) , ȳ (xi)

]
.

• (b) The data point yi is located below the enclosing interval
[
y (xi) , ȳ (xi)

]
.

• (c) The data point yi is located above the enclosing interval
[
y (xi) , ȳ (xi)

]
.
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The corresponding error measures [εi] are given by:

(a) [εi] =
[
0,max

{
abs

(
y (xi)− yi

)
, abs

(
y (xi)− yi

)}]
(b) [εi] =

[
y (xi)− yi, y (xi)− yi

]
(c) [εi] =

[
yi − y (xi), yi − y (xi)

] (84)

The cost function defined as the summation of the absolute distances from the
data point to the interspline as described by Eq. 84:

[J ] =
∑
i

[εi] (85)

6.3 2-Dimensional Basis

The demonstration of the 2-dimensional Interspline uses linear bivariate Bernstein
basis function on a triangulation consisting of the four simplices t1 = 〈v0,v1,v4〉,
t2 = 〈v1,v2,v4〉, t3 = 〈v2,v3,v4〉, and t4 = 〈v0,v3,v4〉, see also Fig. 6. Zeroth order
continuity is enforced between the four spline pieces. In this case, the simplex spline
function in global coordinates from Eq. 49 is:

s01(w, z) =
[
Z1,t1(vt1 , zt1) Z1,t2(vt2 , zt2)

Z1,t3(vt3 , zt3) Z1,t4(vt4 , zt4)
]
· c ∈ S0

1 ,

(86)

with each Z1,ti(v, z) a vector of Bernstein basis polynomials as shown in Eq. 47. For
example, Z1,t1(v, z), which is defined on the simplex t1, is given by:

Z1,t1(v, z) =


v1xv4y−v1y v4x+v1yx−v1xy−v4yx+v4xy

v0xv1y−v0y v1x−v0xv4y+v0y v4x+v1xv4y−v1y v4x

− v0xv4y−v0y v4x+v0yx−v0xy−v4yx+v4xy
v0xv1y−v0y v1x−v0xv4y+v0y v4x+v1xv4y−v1y v4x

v0xv1y−v0y v1x+v0yx−v0xy−v1yx+v1xy
v0xv1y−v0y v1x−v0xv4y+v0y v4x+v1xv4y−v1y v4x


>

(87)

The vector of B-coefficients in Eq. 86 is equal to:

c =
[
ct1100 ct1010 ct1001 ct2100 ct2010 ct2001 · · ·

· · · ct3100 ct3010 ct3001 ct4100 ct4010 ct4001
]>
. (88)

In the demonstration, it is assumed that the corner vertices v0, v1, v2, and v3 are
fixed. Additionally, C0 continuity requires that the B-coefficients at the center vertex
v4 (see Fig. 6) have equal values according to Eq. 21: ct1001 = ct2001 = ct3001 = ct4001. As
a final simplification step, all B-coefficients located at the corner vertices are assumed
to be equal to zero: ct1100 = ct1010 = ct2100 = ct2010 = ct3100 = ct3010 = ct4100 = ct4010 = 0.
This results in a global optimization problem with interval parameters v4 ∈ [v∗] and
c∗ ∈

[
ct1001

]
. The interval center vertex [v∗], is located somewhere in the rectangle

formed by the corner vertices (see Fig. 15). [v∗] is a 2-dimensional interval:

[v∗] =

(
[v∗x][
v∗y
] ) (89)

By connecting the corner vertices to the center vertex, the rectangle is divided into
4 triangles which each support an Interspline piece. The coefficients of the interspline
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Fig. 15 2-Dimensional Interspline geometry

are intervals as well, ([c0] , [c1] , [c2] , [c3]) for the corner vertices, and [c∗] for the center
vertex. A first order interspline is now defined as the collection of all sets of planes
created by connecting any two crisp points in the coefficients of two adjoining corner
vertices with a crisp point in the rectangular cuboid formed by the interval center
vertex and its interval coefficient. An example of such a set of planes is given in
Fig. 16, where the supremum of each interval coefficient is selected as well as the
supremum of the center vertex in each of the two dimensions.

Similar to the 1-dimensional case, the cost function is defined as the summation
of the absolute distances from a data point to the upper and lower inclusion planes,
which are determined by the procedure shown in Fig. 12.

7 Numerical Experiments with Multivariate In-
tersplines

In this section the results from a numerical experiment with the multivariate inter-
splines are presented.

7.1 2-Dimensional Interspline Demonstration

The demonstration in this section concerns finding the optimal vertex location and
spline coefficient value for a bivariate dataset, obtained by randomly sampling 50
points of the Mexican hat function (Fig. 7), according to Eq. 78 1.

1Upon request the specific dataset can be provided by the authors
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Fig. 16 2-D Interspline geometry: example of a crisp spline that is inside the
Interspline.

The initial search space [X0] for the location of the global optimum is a 7-dimensional
space:

[X0] =
(
[c0] , [c1] , [c2] , [c3] , [c∗] , [v∗x] ,

[
v∗y
])T

. (90)

In order to reduce the computation time, some of the spline coefficients (c0, c1, c2, c3)
will be fixed to a constant(crisp) value, see also Sec. 6.3. Although this makes the
problem less time consuming, the difficulty of simultaneously optimizing for the ver-
tex location (v∗) and the spline coefficient (c∗) is still present.

The vertex location is searched for within the square:

[v∗] =

(
[0.3, 0.7]
[0.3, 0.7]

)
, (91)

while the coefficient c∗ is searched for within the interval [−1, 1], resulting in the initial
search space:

[X0] = ([0, 0] , [0, 0] , [0, 0] , [0, 0] , [−1, 1] , [0.3, 0.7] , [0.3, 0.7])T . (92)

For this initial search space, the inclusion planes can be set-up and the cost function
can be computed according to the procedure described in section Sec. 6.1:

[J ] ([X0]) = [0.1941, 40.6573] . (93)

Next, an interval branch and bound algorithm (see Fig. 3) is used to remove parts
of the search space that cannot contain the global minimum of the cost function.
After running the branch and bound algorithm, a large set of boxes remains that
possibly contain the global minimum, but these boxes are considered too small to
subdivide further. By taking the hull of all these boxes, one interval box remains that
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is guaranteed to contain the global minimum:

Xfinal =



[0, 0]
[0, 0]
[0, 0]
[0, 0]

[0.1384, 0.1426]
[0.4858, 0.4982]
[0.4831, 0.4949]


. (94)

By continuing the branch and bound loop, the width of the final solution can be
reduced further, but there is a limit in the achievable minimum width, which depends
on the machine precision of the computation device and on the number and type of
operations that are required to evaluate the cost function.

The cost function for this final solution is:

[J ] ([Xfinal]) = [11.1796, 11.3073] . (95)

This solution agrees with the interval inclusion theorem (Theorem 3):

[Xfinal] ⊂ [X0]→ [J ] ([Xfinal]) ⊂ [J ] ([X0]) . (96)

The results obtained with the Intersplines were compared with results obtained
with ordinary simplex B-splines that were optimized using a grid search optimization
algorithm for v∗ and c∗. The grid search used a 100 × 100 × 100 three-dimensional
grid inside the search interval (v∗, c∗) = ([0.30.7], [0.30.7], [−11]). The resulting opti-
mization parameters were found to be:

Xgrid =



0
0
0
0

0.140
0.4898
0.4898


. (97)

The resulting optimization parameters from the grid search clearly are located
within the final interval of the Interspline parameters from Eq. 94.

The final cost function value obtained by using the grid search algorithm is:

Jgrid (Xgrid) = 11.258. (98)

The final cost function value found using the grid search algorithm is located within
the interval cost function value from Eq. 95.

In Fig. 17 the location of the central vertex v∗ found using the grid search and
ordinary simplex B-splines is shown. In the same figure, the location of v∗ found using
interval analysis and Intersplines is shown. Clearly, the crisp value for v∗ found using
the grid search is located within the interval found using the Intersplines.

The optimal location of v∗ found using the grid search cannot be guaranteed to
be the true global optimum, however, as a grid search with a higher resolution may
result in an even lower cost function value. The interval provided by the Intersplines is
guaranteed to contain the optimal location of v∗, and therefore provides a capability
that cannot be matched by any grid search algorithm.
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Fig. 17 The SAE cost function, together with the optimal vertex location found
using a grid search, and the interval guaranteed to contain the global optimal
vertex location determined using interval analysis.
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8 Conclusions and Recommendations

8.1 Conclusions

This paper presents multivariate Intersplines, which are a class of globally optimal
multivariate splines.

Multivariate Intersplines are the result of the synthesis of multivariate simplex
B-spline theory and interval analysis. This synthesis is made possible by a new formu-
lation in global coordinates of the Bernstein basis polynomials of the simplex B-splines.
A multivariate Interspline is formed by changing the otherwise crisp B-coefficients and
triangulation parameters into intervals variables. Then, using methods of interval
optimization, globally optimal values for these intervals can be determined. The mul-
tivariate Intersplines solve the triangulation optimization problem, which is a long
standing problem in multivariate spline theory.

The multivariate Intersplines are demonstrated with a bivariate scattered data
approximation problem. In this demonstration, a bivariate linear Interspline is used
to approximate a scattered bivariate dataset on four simplices. The results from the
Interspline approximation are compared and validated with the results obtained by
performing a grid search with ordinary simplex B-splines. The results show that the
optimal spline solution found using the grid search is contained within the Interspline.

8.2 Recommendations

The application part of this paper is focused primarily on linear Intersplines. The
theory presented in this paper, however, is general and can be applied to Intersplines
of any degree. Nonlinear Intersplines do present a challenge in the sense that the
inclusion geometry is not a polytope but a non-convex manifold. Determining the
geometry of this manifold is a standing but in our view solvable problem.

The combined B-coefficient and triangulation optimization problem presented in
the demonstration part of this paper actually represents a Type-I to Type-II trian-
gulation refinement. This type of refinement is rather limited in utility as it can be
applied to a Type-I triangulation only once. A more general approach would be sim-
plex subdivision, in which a single vertex is placed inside an n-simplex, producing n+1
new, smaller n-simplices. This process could be then be run in a recursive fashion.
However, the geometry of the inclusion planes would be more complex than that for
Type-I to Type-II triangulation refinement, because the central element would not be
a cuboid but a prismoid. The cuboid is natively compatible with interval analysis,
as any vector of interval numbers can be represented geometrically in the form of a
hypercube. A prismoid, on the other hand, contains a non rectangular subset of this
hypercube, and can therefore not be represented directly in terms of interval num-
bers. It is recommended that more research should be performed in this more general
refinement scheme.

Interval optimization methods can be combined with other optimization methods
to speed up the algorithm. For example, genetic algorithms can be used to find a lower
value of the estimated cost function minimum. This value can then be used to remove
more boxes from the search space. Also, as soon as it can be verified that the cost
function is convex over a given part of the search space, one can switch to gradient
based optimization methods in order to improve computational performance.
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