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Abstract

The problem of computing the range y of a given function f(x1, . . . , xn)
over given intervals xi – often called the main problem of interval com-
putations – is, in general, NP-hard. This means that unless P = NP,
it is not possible to have a feasible (= polynomial time) algorithm that
always computes the desired range. Instead, interval computations al-
gorithms compute an enclosure Y ⊇ y for the desired range. For all
known feasible enclosure-computing methods – starting with straightfor-
ward interval computations – there exist two expressions f(x1, . . . , xn)
and g(x1, . . . , xn) for computing the same function that lead to different
enclosures. We prove that, unless P = NP, this is inevitable: it is not pos-
sible to have a feasible enclosure-computing method which is independent
of the equivalent form.
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1 Formulation of the Problem

One of the main problems of interval computations. One of the main
problems of interval computations has the following form:

• We are given an algorithm f(x1, . . . , xn) for computing a function of n real
variables, and n intervals x1, . . . , xn.
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• We need to compute the range

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of the function f(x1, . . . , xn) under given intervals.

This problem is NP-hard. It is known (see, e.g., [5]) that the above problem
is, in general, NP-hard.

Comment. It is widely believed that P 6=NP. In this case, NP-hardness means that it
is not possible to have a feasible (= polynomial time) algorithm that always computes
the desired range.

Feasible methods for computing enclosures. Since we cannot always effi-
ciently compute the exact range y, and we want to guarantee that the value
f(x1, . . . , xn) is contained in the estimated range, we need to find an enclosure Y ⊇ y.
There exist many feasible techniques for computing enclosures: straightforward in-
terval computations, mean value form, methods combined with bisection, etc.; see,
e.g., [6].

Existing feasible methods for computing enclosure are not indepen-
dent of the equivalent form. In straightforward interval computations, we

• represent the algorithm f(x1, . . . , xn) as a sequence of elementary arithmetic
operations such as +, −, ·, /, min, max, etc. and then

• replace each elementary operation with the corresponding operation of interval
arithmetic.

In this method, in general, the resulting enclosure may be different for different algo-
rithms that compute the same function. For example, the algorithms f(x1) = x1 − x1

and g(x1) = 0 compute the same function 0 on the interval [0, 1], but:

• for f(x1) = x1 − x1 straightforward interval computations leads to an enclosure

[0, 1]− [0, 1] = [−1, 1],

while

• for g(x1) = 0, we get the enclosure Y = [0, 0] 6= [−1, 1].

Similarly, all other feasible methods for computing enclosure – at least those which
are known to the authors – are not independent of the equivalent form: for each of
these methods, there exist two algorithms that compute the same function but lead
to different enclosures.

The impact of an equivalent form can be huge. The importance of selecting
an appropriate equivalent form can illustrated by the result from [3, 4], according to
which, for straightforward interval computations, we can pick any interval Y =

[
Y , Y

]
that is a superset of the actual range y = {f(x1, . . . , xn) : x1 ∈ x1, . . . ,xn}, and we
can come up with an equivalent form g(x1, . . . , xn) that would give Y as the result.

This result holds when at least one of the intervals is non-degenerate (if all input
intervals are degenerate, i.e., consists of a single point, then the range consists of a
single value, and straightforward interval computation computes this value.)
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This result is reasonably easy to prove. Indeed, let
[
f, f

]
be the enclosure for y

which is obtained when we apply straightforward interval computations to the orig-
inal expression f(x1, . . . , xn), and let xi be a variable for which the input interval

[xi, xi] is non-degenerate, i.e., for which xi < xi. Then, for b
def
= max

(
Y , f

)
and

b
def
= min

(
Y , f

)
, the desired equivalent form has the form

g(x1, . . . , xn)
def
= min(max(b, f(x1, . . . , xn)), b)+

(b− Y ) ·min

(
xi − xi

xi − xi

, 0

)
+
(
Y − b

)
·max

(
xi − xi

xi − xi

, 0

)
.

Since both
[
Y , Y

]
and

[
f, f

]
are supersets of the range, their intersection

[
b, b
]

is

also a superset, so b ≤ f(x1, . . . , xn) ≤ b. Thus, max(b, f(x1, . . . , xn)) = f(x1, . . . , xn),
hence min(max(b, f(x1, . . . , xn)), b) = min(f(x1, . . . , xn), b) = f(x1, . . . , xn) and there-
fore, g(x1, . . . , xn) = f(x1, . . . , xn) for all xi ∈ xi.

When we apply straightforward interval computations to the expression
g(x1, . . . , xn), we:

• first compute the enclosure
[
f, f

]
for the original expression f(x1, . . . , xn),

• then use the interval analog of max to compute the enclosure for
max(b, f(x1, . . . , xn)) as

max
(
b,
[
f, f

])
=
[
max

(
b, f
)
,max

(
b, f
)]

=
[
b, f

]
;

• use the interval rule for min to compute the enclosure for
min(max(b, f(x1, . . . , xn)), b) as min

([
b, f

]
, b
)

=
[
b, b
]
;

• the enclosure for
xi − xi

xi − xi

is [−1, 1], so the enclosure for min

(
xi − xi

xi − xi

, 0

)
is

[−1, 0], and the enclosure max

(
xi − xi

xi − xi

, 0

)
is [0, 1];

• thus, the final enclosure for g(x1, . . . , xn) is equal to[
b, b
]

+ (b− Y ) · [−1, 0] +
(
Y − b

)
· [0, 1] =

[
Y , Y

]
.

So, indeed, interval computation’s unreliability / imprecision is unbounded if we ignore
the equivalent form.

Natural question. The above facts lead to the following natural question: Is it
possible to have a feasible enclosure-computing method which is independent of the
equivalent form?

2 Main Result

Let us provide an answer to the above question.

Definition 1. By a numerical algorithm, we mean a composition of functions +,
−, ·, min, max, and rational constants.
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Examples. Every polynomial with rational coefficients is a (finite) composition of
additions, multiplication, and constants, and is, therefore, a numerical algorithm in
the sense of Definition 1. For example, a polynomial f(x1, x2) = (x1 − 1) · (x2 − 2) is
a composition of multiplication, two subtractions, and two constants 1 and 2.

In particular, a constant 0 itself is an example of a numerical algorithm in this
sense; we will denote this numerical algorithm by f0. The numerical algorithm
f0(x1, . . . , xn) computes the “zero function”, i.e., a function which is identically 0.

Definition 2. By a feasible enclosure-computing method, we mean a feasible algo-
rithm A that, given a numerical algorithm f(x1, . . . , xn) and n bounded intervals x1,
. . . , xn with rational endpoints, computes a bounded interval A(f,x1, . . . ,xn) with
rational endpoints that contains the range

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

Comment. We only consider bounded intervals, i.e., intervals for which both end-
points are real numbers (and not infinities). So, by this definition, a method is appli-
cable to all numerical algorithms (in the sense of Definition 1) and all tuples of bounded
intervals with rational endpoints. For example, straightforward interval computations
is an example of a feasible enclosure-computing method – in the sense of this definition.

Proposition. If P 6= NP, then for every feasible enclosure-computing method A,
there exist two numerical algorithms g(x1, . . . , xn) and h(x1, . . . , xn) and n intervals
x1, . . . , xn for which

• g(x1, . . . , xn) = h(x1, . . . , xn) for all x1 ∈ x1, . . . , xn ∈ xn, but

• A(g,x1, . . . ,xn) 6= A(h,x1, . . . ,xn).

Comment. The proof of this proposition is presented after the next paragraph. Thus,
it is not possible to have a feasible enclosure-computing method which is independent
of the equivalent form.

Interesting open question. In general, when a general problem is proven to be
NP-hard, a next natural question is to find important cases in which a feasible algo-
rithm is possible. In our proposition, we prove that (if P 6= NP, then) it is impossible
to have a feasible enclosure-computing method which is applicable to all possible nu-
merical algorithms (in the sense of Definition 1). So, a natural next question is to find
interesting classes of numerical algorithms for which there exists a feasible enclosure-
computing method which is independent of equivalent form. Or maybe it will turn out
that for every class of numerical algorithms which is large enough (in some reasonable
sense), no such feasible method is possible?1

1The authors are thankful to the anonymous referee for this idea.
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Proof.

1◦. In our proof, we will use a result proved at the end of the proof of Theorem 3.1 from
[5]. This result is about a class of quadratic polynomials P with rational coefficients.
For each polynomial f(x1, . . . , xn) from this class P, its maximum

Mf
def
= max{f(x1, . . . , xn) : x1 ∈ [0, 1], . . . , xn ∈ [0, 1]}

on the box [0, 1]× . . .× [0, 1] is either less than or equal to 0, or greater than or equal
to 1 (Mf ≤ 0 or Mf ≥ 1). The result from [5] is that the following problem is NP-hard:

• given: f ∈ P,

• check: whether Mf ≤ 0 or Mf ≥ 1.

In our proof, we will consider these same intervals x1 = . . . = xn = [0, 1].

This class of polynomials comes from a modification of the historically first proof
[1, 2] that the main problem of interval computations – the problem of computing
the range of a given function over give intervals – is NP-hard even for polynomials.
This proof was done by reducing a known NP-hard problem – checking whether a
given 3-CNF propositional formula is satisfiable – to the main problem of interval
computations.

In this known problem, we start with Boolean variables z1, . . . , zv, i.e., variables
which take two possible values: “true” and “false”. A literal is defined as a variable
zi or its negation ¬zi, a clause is defined as an expression a ∨ b or a ∨ b ∨ c, where
a, b, and c are literals, and a 3-CNF formula is defined an expression of the type
F1 & . . . &Fk, where F1, . . . , Fk are clauses. An example of such a formula is F =
(z1 ∨ z2 ∨ z3) & (z1 ∨¬z2). A formula is called satisfiable if it is true for some Boolean
values z1, . . . , zv.

To each formula F , we put into correspondence a quadratic polynomial p[F ] with
n = v + k variables as follows:

• to each Boolean variable zi, we put into correspondence a real-valued variable

p[zi] = xi;

• to a negation ¬zi, we put into correspondence a linear expression

p[¬zi] = 1− xi;

• to each clause Fj = a ∨ b, we put into correspondence an expression

p[Fj ] = (p[a] + p[b] + xv+j − 2)2;

• to each clause Fj = a ∨ b ∨ c, we put into correspondence an expression

p[Fj ] = (p[a] + p[b] + p[b] + 2xv+j − 3)2;

• finally, to the formula F1 & . . . &Fk, we put into correspondence an expression

p[F ] =

v∑
i=1

xi · (1− xi) +

k∑
j=1

p[Fj ].
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For example, to the above formula F = F1 &F2, where F1 is z1 ∨ z2 ∨ z3 and F2

is z1 ∨ ¬z2, we assign p[z1] = x1, p[z2] = x2, f [z3] = x2, p[¬z2] = 1 − x2, p[F1] =
(x1 + x2 + x3 + 2x4 − 3)2, p[F2] = (x1 + (1− x2) + x5 − 2)2, and

p[F ] = x1 · (1− x1) + x2 · (1− x2) + x3 · (1− x3) + p[F1] + p[F2].

It can be proven that for every 3-CNF formula F , the smallest value m of the
polynomial p[F ] on the box [0, 1]× . . .× [0, 1] satisfies the following two properties:

• if the formula F is satisfiable, then m ≤ 0; and

• if the formula F is not satisfiable, then m ≥ 0.09.

For the polynomial f [F ]
def
= 1 − p[F ]

0.09
, its maximum Mf = 1 − m

0.09
on the box

[0, 1]× . . .× [0, 1] has the following properties:

• if the formula F is satisfiable, then Mf ≥ 1; and

• if the formula F is not satisfiable, then Mf ≤ 0.

By P, we mean the set of all polynomials f [F ] obtained from all possible 3-CNF
formulas F . Clearly, for each f ∈ P, we have Mf ≤ 0 or Mf ≥ 1, and – since checking
satisfiability is NP-hard – it is NP-hard to check whether Mf ≤ 0 or Mf ≥ 1.

2◦. We will prove our result by contradiction. Let us assume that there exists a
feasible enclosure-computing method A for which, for every two numerical algorithms
g(x1, . . . , xn) and h(x1, . . . , xn) that compute the same function on the box

[0, 1]× . . .× [0, 1],

we have A(g, [0, 1], . . . , [0, 1]) = A(h, [0, 1], . . . , [0, 1]):

(∀x1 . . . ∀xn (x1 ∈ [0, 1] . . . xn ∈ [0, 1]⇒ g(x1, . . . , xn) = h(x1, . . . , xn))⇒

A(g, [0, 1], . . . , [0, 1]) = A(h, [0, 1], . . . , [0, 1]).

Let us show that in this case, we will be able to feasibly check, given a polynomial
f ∈ P, whether Mf ≤ 0 or Mf ≥ 1.

3◦. The method A is applicable to all numerical algorithms, including a numerical
algorithm f0(x1, . . . , xn) that simply returns a constant 0. Let us denote the result
A(f0, [0, 1], . . . , [0, 1]) of applying the method A to this numerical algorithm f0 by
[z−, z+]. By Definition 2, both endpoints z− and z+ are rational numbers.

Since the method A is enclosure-computing, the range [z−, z+] is an enclosure for
the actual range [0, 0] of the zero function f0. Thus, z− ≤ 0 ≤ z+.

4◦. For a given f ∈ P, to check whether Mf ≤ 0 or Mf ≥ 1, we do the following:

• First, we design a new (auxiliary) numerical algorithm

gf (x1, . . . , xn)
def
= max((z+ + 1) · f(x1, . . . , xn), 0).

Since the original polynomial f is a composition of +, −, ·, and rational con-
stants, the new expression gf is also a composition of +, −, ·, min, max, and
rational constants, – i.e., it is a indeed a numerical algorithm in the sense of
Definition 1.
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• Then, we apply the method A to the numerical algorithm gf and intervals
[0, 1], . . . , [0, 1]. As a result, we get a rational-valued enclosure
A(gf , [0, 1], . . . , [0, 1]) for the range of the function gf on the box [0, 1]×. . .×[0, 1].
Let us denote this enclosure by [Af , Af ].

• We will then prove – in Part 5 – that the following two implications hold:

– if Mf ≤ 0, then Af = z+, and

– if Mf ≥ 1, then Af ≥ z+ + 1.

Because of these two implications, by following above procedure and checking whether
Af = z+ or Af ≥ z+ + 1, we will be able to check, in feasible (= polynomial) time,
whether Mf ≤ 0 or Mf ≥ 1. However, we know that the problem of detecting whether
Mf ≤ 0 or Mf ≥ 1 is NP-hard. Thus, the fact that we can solve this problem is
polynomial time means that P = NP – and we assumed that P 6= NP.

This contradiction proves that our original assumption – that there exists a feasible
enclosure-computing method which is independent of the equivalent form – is wrong.
The fact that a method is not independent of the equivalent form means that for
every feasible enclosure-computing method A, there exist two numerical algorithms
g(x1, . . . , xn) and h(x1, . . . , xn) with the following properties:

• the numerical algorithms g(x1, . . . , xn) and h(x1, . . . , xn) compute the same
function for given n intervals x1 = . . . = xn = [0, 1], and

• A(g,x1, . . . ,xn) 6= A(h,x1, . . . ,xn).

5◦. To complete the proof, we thus need to prove the two above implications:

• that if Mf ≤ 0, then Af = z+, and

• that if Mf ≥ 1, then Af ≥ z+ + 1.

Let us consider them one by one.

5.1◦. Let us first consider the case when Mf ≤ 0. Let us prove that in this case, we
have Af = z+.

Indeed, since Mf ≤ 0, and Mf is the largest value of the polynomial f(x1, . . . , xn) on
the box [0, 1]× . . .× [0, 1], this means that f(x1, . . . , xn) ≤ 0 for all xi ∈ [0, 1]. Since
z+ ≥ 0, for all values (x1, . . . , xn) from the box [0, 1]× . . .× [0, 1], we have

(z+ + 1) · f(x1, . . . , xn) ≤ 0

and therefore, gf (x1, . . . , xn) = max((z+ + 1) · f(x1, . . . , xn), 0) = 0. Hence, in
this case, the numerical algorithm gf (x1, . . . , xn) computes the same function as
f0(x1, . . . , xn) for all the values x1, . . . , xn from the box. Since we assumed that
the method A is independent of the equivalent form, we can hence conclude that
A(gf , [0, 1], . . . , [0, 1]) = A(f0, [0, 1], . . . , [0, 1]) = [z−, z+]. Thus, the upper endpoint
Af of the interval A(gf , [0, 1], . . . , [0, 1]) is indeed equal to z+. The first implication is
proven.

5.2◦. Let us first consider the case when Mf ≥ 1. Let us prove that in this case, we
have Af ≥ z+ + 1.

Indeed, let x′1 ∈ [0, 1], . . . , x′n ∈ [0, 1] be a tuple on which the polynomial f(x1, . . . , xn)
attains its maximum Mf on the box [0, 1]× . . .× [0, 1], i.e., for which f(x′1, . . . , x

′
n) =
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Mf . Since we assumed that Mf ≥ 1, this means that for these values x′i, we have
(z+ + 1) · f(x′1, . . . , x

′
n) = (z+ + 1) ·Mf ≥ z+ + 1 > 0, and therefore,

gf (x′1, . . . , x
′
n) = max((z+ + 1) · f(x′1, . . . , x

′
n), 0) ≥ z+ + 1.

By Definition 2, the interval [Af , Af ] = A(gf , [0, 1], . . . , [0, 1]) is an enclosure for the
range of the function gf (x1, . . . , xn) on the box [0, 1] × . . . × [0, 1]. Thus, for each
xi ∈ [0, 1], the corresponding value gf (x1, . . . , xn) must be contained in this enclosure.
In particular, the enclosure [Af , Af ] must contain the value gf (x′1, . . . , x

′
n):

Af ≤ gf (x′1, . . . , x
′
n) ≤ Af .

From gf (x′1, . . . , x
′
n) ≥ z+ + 1 and Af ≥ gf (x′1, . . . , x

′
n), we can now conclude that

Af ≥ z+ + 1. So the second implication is also proven.

5.3◦. Both implications are proven and thus, the Proposition is true.
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