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Abstract

The paper describes the properties of boundedness and unboundedness
of outer polyhedral (parallelepiped-valued) estimates for reachable sets
of linear differential systems with stable matrices over the infinite time
interval. New results concerning tight estimates are presented.
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1 Introduction

The problem of constructing trajectory tubes (in particular, reachable tubes which
describe a dynamic of reachable sets) is an essential theme in control theory [14].
Since practical construction of these tubes may be cumbersome, different numerical
methods have been devised for this purpose. Among them are techniques developed
for estimating reachable sets by domains of some fixed shape such as ellipsoids, par-
allelepipeds, and zonotopes (see, for example, [1, 3, 5, 7–9, 12–15, 21] and references
therein). In particular, box-valued estimates may be constructed by means of interval
calculations (see, for example, [7]), but such estimates can be rather conservative and
even unbounded due to the well-known wrapping effect [4, 17, 19]. Several ideas have
been proposed to reduce this effect (see, for example, [18] and references therein). In
particular, Tucker [22] proposed a method based on a partitioning process and using
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sub-pavings of interval vectors. Tucker’s method may require extensive computation
and memory for large dimensional systems.

To make representations of reachable sets as nearly exact as possible, A.B. Kurzhan-
ski proposed using families of fixed shape estimates [12, 14, 15], especially families of
tight estimates [15]. We expanded this approach to polyhedral (parallelepiped-valued)
estimates. The family P of outer polyhedral estimates of reachable sets for linear dif-
ferential systems with parallelepiped-valued uncertainties in initial states and additive
inputs was introduced [9]. These estimates are determined by a given dynamics of
orientation matrices P (t) ∈ R

n×n (this function is the parameter of the family) and
by corresponding parametrized differential equations, which describe the dynamics of
centers and “semi-axis” values of parallelepipeds. Considering different types of the
orientation matrix dynamics P (·), we obtain several subfamilies Pi ∈ P of the es-
timates with different properties, in particular, subfamilies P3 and P1 of tight and
touching [8] (tight in n specific directions) estimates (both ensure the exact represen-
tations of reachable sets through intersections of their units). Box-valued estimates
may be attributed to the subfamily P2 of estimates with constant orientation matri-
ces. In fact, the orientation matrix V = P (0) at the initial time is the parameter of
all subfamilies Pi.

The paper presents our recent results on studying the properties of boundedness
and unboundedness on the infinite time interval of outer polyhedral estimates for
reachable sets of linear differential systems with constant stable matrices. The proper-
ties mentioned are determined by interactions of three factors: the matrix V , the real
Jordan matrix for system’s matrix, and the properties of the bounding sets for uncer-
tainties. The results of this interaction are different for different subfamilies Pi. We
recall some of the corresponding criteria [10,11] for boundedness / unboundedness of
estimates from P1 and P2, including characterizing the possible degree of the growth
of the estimates in terms of the exponents. Then we present new results concerning
the subfamily P3 of tight estimates. In particular, for two-dimensional systems, all
estimates from P3 are bounded, and they are orthogonal parallelepipeds. The results
of numerical simulations are presented.

We use the following notation: R
n is the n-dimensional vector space; ⊤ is the

transposition symbol; ‖x‖2 = (x⊤x)1/2, ‖x‖1 =
∑n

i=1 |xi|, ‖x‖∞ = max1≤i≤n |xi| are
vector norms for x=(x1, . . . , xn)⊤ ∈ R

n; the symbol ‖x‖ without a subscript means
‖x‖ = ‖x‖2; ei=(0, . . . , 0, 1, 0, . . . , 0)⊤ is the unit vector oriented along the axis xi (the
unit stands at position i); e=(1, 1, . . . , 1)⊤; R

n×m is the space of real n×m-matrices
A = {aj

i} = {aj} = {a1, . . . , am} with elements aj
i and columns aj (the upper index

numbers the columns and the lower index numbers the components of vectors); I is
the identity matrix; 0 is the zero matrix (vector); AbsA={|aj

i |} for A = {aj
i} ∈ R

n×m;
AbA for A∈R

n×n is the matrix such that (AbA)i
i = ai

i, (AbA)j
i = |aj

i |, i 6= j; and the
notation k = 1, . . . , N is used instead of k = 1, 2, . . . , N for brevity.

2 Problems

Let x ∈ R
n denote the state. Consider the system

ẋ = A(t)x+w(t), t ∈ T = [0, θ]. (1)

The initial state x(0) = x0 ∈ R
n and the input (control/disturbance) w(t) ∈ R

n

(assumed to be a Lebesgue measurable function) are unknown but subjected to set-
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valued constraints

x0 ∈ X0, w(t) ∈ R(t), a.e. t ∈ T , (2)

where X0, R(t) are given convex compact sets in R
n, and the set-valued map R(t) is

continuous.
First, recall some definitions that will be used below.
Let X (t) = X (t, 0,X0) be a reachable set of the system (1), (2) at time t > 0, that

is, the set of all points x ∈ R
n, for each of which there exist x0 and w(·) that satisfy (2)

and generate a solution x(·) of (1) that satisfies x(t) = x. The multivalued function
X (t), t ∈ T , is known as a trajectory (or reachable) tube X (·).

By a parallelepiped P(p, P , π) ⊂ R
n, we mean a set such that P = P(p,P , π) =

{x ∈ R
n| x = p +

∑n
i=1 p

iπiξi, Abs ξ ≤ e}, where p ∈ R
n; P = {pi} ∈ R

n×n is a
nonsingular matrix (detP 6= 0) such that ‖pi‖=1; π ∈ R

n, π ≥ 0, e = (1, . . . , 1)⊤.
Vector inequalities (≤, <,≥, >) are understood component-wise; the condition ‖pi‖ =
1 may be omitted to simplify formulas. It may be said that p determines the center
of the parallelepiped, P is the orientation matrix, pi are the “directions”, and πi are
the values of its “semi-axes”.

We call P an outer estimate for X ⊂ R
n if P ⊇ X .

An outer estimate P of X is tight (in direction l) [15] if ρ(±l|P ) = ρ(±l|X ), where
ρ(l|X ) = sup{l⊤x |x ∈ X} stands for the support function of a set X ⊂ R

n at l ∈ R
n.

A parallelepiped-valued outer estimate P (p,P, π) for X is touching if it is a tight

estimate in n specified directions li = P−1⊤ei, i = 1, . . . , n.
Everywhere below we accept the following
Assumption 1 The sets X0 and R(t) are parallelepipeds:

X0 = P0 = P(p0, P0, π0), R(t) = P(r(t),R(t), ρ(t)), (3)

where r(·), ρ(·) and R(·) are continuous vector and matrix functions.
The definition of a parallelepiped implies its support function satisfies

ρ(l|P(p,P, π)) = l⊤p+ Abs (l⊤P )π.
It is known that the reachable sets of the system (1), (2), (3) are determined by

the multivalued Aumann integral

X (t) = p(t) + Φ(t, 0)(P0 − p0) +

∫ t

0

Φ(t, τ )(R(τ ) − r(τ ))dτ ; (4)

the support function of X (t) has the form

ρ(l|X (t)) = l⊤p(t) + Abs (l⊤Φ(t, 0)P0)π0 +

∫ t

0

Abs (l⊤Φ(t, τ )R(τ ))ρ(τ ) dτ. (5)

Here, p(t) is determined by the differential system

ṗ = A(t) p+ r(t), p(0) = p0, (6)

Φ(t, τ ) = Φ(t)Φ−1(τ ) is the Cauchy matrix, where Φ(t) is the fundamental matrix
solution of ẋ = A(t)x satisfying Φ̇ = A(t)Φ, Φ(0) = I . If A is a constant matrix,
then Φ(t) = eAt and the following estimates are valid for any ε > 0 [2, p.57] (where
C = Const (ε) > 0):

‖eAt‖ ≤ Ce(−m+ε)t, ‖e−At‖ ≤ Ce(M+ε)t, t ∈ [0,∞), m=min |Reλk|, M=max |Reλk|,
(7)
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where λk = Reλk+Imλk ·
√
−1 for k = 1, . . . , n are eigenvalues of the matrix A ∈ R

n×n

(the estimates can be improved for a diagonalizable matrix A by setting ε = 0).
Thus, the sets X (t) are not obliged to be parallelepipeds under Assumption 1. We

investigate the possibilities of the outer polyhedral estimation of the tubes X (·).
In [9], there is a description of a parametrized family P of parallelepiped-valued

estimates P (t) = P(p(t), P (t), π(t)), t ∈ T , that are outer for reachable set X (t)
and possess the evolutionary properties [8] (the“upper” semigroup property [14] and
the superreachability property [1]), which are analogs of the semigroup property [1,
14] inherent in reachable sets X (t). The parameter of the family is an arbitrary
continuously differentiable function P (t) ∈ R

n×n with detP (t) 6= 0, t ∈ T , which
specifies the dynamics of the orientation matrices. The functions p(·) and π(·) are
determined by the equations (6), and

π̇ = Ab (P−1(AP − Ṗ ))π + Abs (P−1R)ρ, π(0) = Abs (P (0)−1P0)π0, (8)

where AbsB and AbB stand for the operations of replacing all the elements and all
the off-diagonal elements of B, respectively, by their absolute values.

Choosing different types of the orientation matrix dynamics P (·), we obtain esti-
mates with different properties. Let us recall two subfamilies of estimates we consid-
ered earlier.

Let P1 be a subfamily of P for which the functions P (·) satisfy Ṗ = AP , P (0) = V
(the nonsingular matrix V is a parameter of P1). Such estimates are touching ones and
ensure exact representations for X (t) through the intersections of estimates (see [8]).

If P (t) ≡ I , then the above equations give coordinate-wise estimates of the reach-
able sets in the form of boxes (interval vectors), which are used as estimating sets in
classical interval analysis. Note that in the special case (P (t) ≡ I , X0 and R(t) are
boxes centered at the origin), these estimates become known ones (see [21]).

Let P2 ⊂ P denote a subfamily of estimates with constant orientation matrices
P (t) ≡ V (evidently, including coordinate-wise estimates).

In [10,11], the issues related to the boundedness or unboundedness on the interval
T = [0,∞) of estimates from Pi ∈ P, i = 1, 2, were investigated under the following
assumption, which guarantees the boundedness of the reachable sets X (t) themselves.

Assumption 2 The matrix A(t) ≡ A is constant and stable (i.e., all its eigen-
values have negative real parts), and the mapping R(t), t ∈ T = [0,∞], is bounded.

We found for which matrices V , the estimates P (·) from the subfamilies P1 and
P2 are bounded or unbounded; under which conditions on A, P0 and R(·) there are
bounded estimates in P1 and P2, and under which conditions there are unbounded
estimates in these families; and what is a possible growth degree of the estimates, i.e.,
what are possible values of their exponents.

To be more precise concerning the possible growth degree, let us recall that esti-
mates can be compared with each other with respect to a chosen criterion, namely, a
functional µ(P ) = µ(P(p, P , π)) satisfying the known conditions [14, p.101]. Let us in-
troduce a vector q = (AbsP )π (we have qi = ρ(±ei|P −p)). Then, a possible criterion
is [10] the functional µ(P ) = ‖q‖, where ‖q‖ is any of the three standard norms ‖q‖∞,
‖q‖1, or ‖x‖2. In particular, it is convenient to use this functional for the investigation
of the boundedness properties of set-valued functions P (t) = P(p(t), P (t), π(t)), be-
cause if p(·) is bounded, then the boundedness (unboundedness) of P (·) is equivalent
to the boundedness (unboundedness) of µ(P (·)). Recall that a set-valued mapping
Z(t), t ∈ T , is called bounded if Z(t) ⊆ Z̃ for all t ∈ T , where Z̃ is a bounded set.

To characterize a degree of possible increasing parallelepiped-valued tubes P (·),
the exponent χ = χ(P) can be used, which was introduced in [11] by analogy with [2].
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By the exponent χ = χ(P) of the tube (estimate) P (t), t ∈ [0,∞), we mean the char-
acteristic exponent χ[µ] [2, p.125] of the function µ(P (·)), where µ is any of the three
functionals mentioned above, namely, the number χ = χ(P) = limt→∞t

−1 lnµ(P (t))
(it is independent of the norm ‖q‖ chosen in the definition of µ).

Below, we recall (for completeness) some of results concerning the issues mentioned
above for the estimates from P1 and P2. Further, we investigate the similar issues for
one more subfamily P3 ⊂ P of (tight) estimates under the same Assumption 2. This
is the main contribution of this paper.

3 Known Auxiliary Facts from Matrix Theory

To make the exposition self-sufficient, we recall pertinent results from matrix theory.

If A is a matrix from R
n×n, and λk = αk + βk

√
−1, k = 1, . . . ,m, are all its

eigenvalues with βk ≥ 0 (some of which may be equal to each other), then A can be
written [2, p.465], [20, Sect. 6.6] in the form

A = T−1JT, where J = diag {J1, . . . , Jm};

Jk =













Sk I . . . 0 0
0 Sk . . . 0 0

. . .
0 0 . . . Sk I
0 0 . . . 0 Sk













∈ R
(νkγk)×(νkγk),

Sk, I, 0 ∈ R
νk×νk , νk = 1 or 2, k = 1, . . . ,m;

νk = 1, Sk = αk, if βk = 0; νk = 2, Sk =

[

αk −βk

βk αk

]

, if βk 6= 0,

(9)

where diag {J1, . . . , Jm} is a block-diagonal matrix with square cells (blocks) Jk on the
main diagonal. A matrix A ∈ R

n×n is called [16] diagonalizable or simple if γk = 1,
k = 1, . . . ,m, (in other words, if it has n linearly independent complex eigenvectors)
and defective otherwise. The matrix J is called [20] the real Jordan matrix. For n = 2,
there are three different structures of J corresponding to the following cases:

case A: Imλ1 = Imλ2 = 0, and A is diagonalizable. Then, J = diag {λ1, λ2};
case B: Imλ1 = Imλ2 = 0, λ1 = λ2 = α, and A is defective. Then, J =

[

α 1
0 α

]

;

case C: λ1,2 = α±β
√
−1 with β 6= 0. Then, J =

[

α −β
β α

]

; A is a diagonalizable.

It is known [2, p. 56, 63], that the exponential of Jk in (9) is

eJt=









σ1
1e

St σ2
1te

St . . . σγ
1 t

γ−1eSt

0 σ2
2e

St . . . σγ
2 t

γ−2eSt

. . .
0 0 . . . σγ

γe
St









∈R
(νγ)×(νγ), where J=Jk, S=Sk, γ=γk,

σj
i = 1/(j − i)! > 0 for all j > i, σi

i = 1 (i = 1, . . . , γ);

eSt = eαtH(t) ∈ R
ν×ν ; H = 1 if ν = 1; H(t) =

[

cos(βt) − sin(βt)
sin(βt) cos(βt)

]

if ν = 2;

α = αk, β = βk, ν = νk.
(10)

We have the identities H(t)⊤H(t)≡H(t)H(t)⊤≡I , which are also useful for the future.
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4 Properties of Estimates from P1 and P2

In this section, let Assumption 2 be satisfied. It appears, not only the estimates from
P2 can be unbounded on T = [0,∞) (for V = I this is the well-known “wrapping
effect”) but also touching and tight estimates from P1 and P3 under the following
condition of nondegeneracy for R(·):

R(t) ⊇ P(r(t), I, ε0 e), t ∈ T = [0,∞), where ε0 > 0. (11)

Estimates from P2 can be unbounded also under the nondegeneracy condition for the
initial set :

P0 ⊇ P(p0, I, ε0 e), where ε0 > 0. (12)

The main properties of boundedness of tubes from P1 are summarized in

Theorem 1 (See [10,11]). For P (·) ∈ P1, the exponent χ(P ) satisfies χ(P ) ≤ M−m,
where M and m are introduced in (7).

If the sets R(t) are singletons (R(t) ≡ r(t)), then the sets P (t) contract to their
centers p(t) (i.e., π(t) → 0) as t→ ∞ for any P (0) = V . In the general case:

(1) If the matrix A is diagonalizable and M = m, then tubes P (·) are bounded for
any P (0) = V .

(2) Suppose that A is diagonalizable, M 6= m, T is the matrix from (9), and the
matrices Ṽ = TV and W̃ = V −1T−1 are decomposed into the corresponding blocks
Ṽ j

i ∈ R
νi×νj and W̃ i

j ∈ R
νj×νi (i, j=1, . . . ,m) (the numeration of blocks and eigen-

values λi below is determined by (9)). If V is such that, for any pair of eigenvalues
λi and λj satisfying the inequality |Reλi| < |Reλj |, the relation Zj

i = 0 ∈ R
νi×νj is

valid, where Zj
i =

∑m
k=1 Abs Ṽ k

i Abs W̃ j
k , then the corresponding tube P (·) is bounded

on T . In the case when V is such that, for some pair λi, λj with |Reλi| < |Reλj |,
the relation Zj

i 6= 0 ∈ R
νi×νj is valid, then, under nondegeneracy condition (11), the

tube P (·) is unbounded on T and χ(P ) ≥ |Reλj | − |Reλi|. There exist matrices V
that generate both bounded tubes (in particular, V = T−1) and unbounded tubes.

(3) If A is defective and R(·) satisfies (11), then P (·) is unbounded for any V .

The properties of boundedness of the tubes from P2 depend not only on the
eigenvalues λk of the matrix A, but also on eigenvalues ωk of the important auxiliary
matrix AP = Ab (P−1AP ), where P = V is the constant orientation matrix.

Proposition 1 (See [11]). A tube P (·) ∈ P2 is bounded if one of the following two
groups of conditions is satisfied:

(1) the matrix AP = Ab (P−1AP ) is stable;
(2) all ωk ≤ 0, the equality γk(ωk) = 1 is satisfied for all ωk with Reωk = 0, and

in addition, the sets R(t) are singletons (R(t) ≡ r(t)), where γk(ωk) are defined for
AP similarly to the definition of γk for A in (9).

A tube P (·) ∈ P2 is unbounded if one of the following two groups of conditions is
satisfied:

(3) nondegeneracy condition (12) is satisfied for P0, and either there is an ωk with
Re (ωk) > 0, or there is an ωk with Re (ωk) = 0 and γk(ωk) ≥ 2;

(4) condition (11) is satisfied for R(·), and there exists ωk with Re (ωk) ≥ 0.

Proposition 2 (See [10,11]). The following statements are true for tubes P (·) ∈ P2.
(1) If A = αI, where α ∈ R

1, then the tubes P (·) are bounded for any P .
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(2) If A 6= αI, where α ∈ R
1, and either P0 or R(·) satisfies the nondegeneracy

condition ((12) or (11)), then there are unbounded tubes P (·) ∈ P2 with arbitrarily
large exponents χ(P ).

(3) If all eigenvalues λk of the matrix A are such that |Imλk| < |Reλk|, then there
exist bounded tubes in P2.

(4) If n = 2, case C with |β| > |α| takes place (see Sec. 3), and either P0 or R(·)
satisfies the nondegeneracy condition, then all tubes P (·) ∈ P2 are unbounded.

For the clarity and convenience of comparing the properties of tubes from P1 and
P2 for two-dimensional systems, we present a summary of the above results for n = 2 in
Figure 1. Namely, for different types of the real Jordan form of the system matrix and
either general or additional conditions on the bounding sets, four possible situations
of boundedness and unboundedness of tubes from our subfamilies are shown1.

Addi-

tional

condi-

tions on

P0,R(·)

Im λ1 = Im λ2 = 0 λ1,2 = α ± β
√
−1, β 6= 0

A—diagonalizable: A–defective: A — diagonalizable:

J =

[

λ1 0
0 λ2

]

J=

[

α 1
0 α

]

J=TAT−1=

[

α −β

β α

]

λ1=λ2 |λ1|<|λ2| λ1=λ2=α |α|>|β| |α|=|β| |α|<|β|
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

– � � � � � � � � �

R(t)≡r(t),

intP0 6=∅
� � � �� � �� � �� � �� � �

intR(t)6=∅ � � �� �� � �� � �� � � � �

Figure 1: Boundedness / unboundedness of P (·) ∈ Pi, i = 1, 2, 3 (case n = 2).
Notation: � — all tubes from Pi are bounded; � — there exist bounded tubes;
� — there exist unbounded tubes; � — all tubes are unbounded; intX means
the interior of X ⊆ R

n. It should be the case “�” for P3 for any A, P0, R(·)
due to Theorem 3

5 Properties of Estimates from P3

Now let us return to the system (1)-(3) and consider a subfamily P3 ⊂ P of tubes
P (·) such that the columns of the orientation matrices P (t) = {pi(t)} satisfy

ṗi = A(t)pi, i = 1, . . . , n−1, ṗn = −A(t)⊤pn, t ∈ T ;

P (0) = {pi(0)} = V = {vi} ∈ R
n×n;

detV 6= 0, vn⊤vi = 0, i = 1, . . . , n−1.

(13)

The following lemma reveals the specificity of differential equations (8) for π(t)
caused by relations (13).

1The existence of bounded tubes P (·) ∈ P2 for case C with |β| = |α| follows from Propo-
sition 1 and [11, Lemma 2] (this lemma describes a nonempty class of “quasi-orthogonal”
matrices P ∈ R

2×2 for which we have ω1 = 0, ω2 < 0 in the case mentioned).
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Lemma 1 Parameters P (·) and π(·) of tubes P (·) ∈ P3 satisfy the properties:
(1) Columns of the orientation matrices P (t) = {pi(t)} satisfy the orthogonality

relations
pn(t)⊤pi(t) ≡ 0, t ∈ T , i = 1, . . . , n− 1, (14)

detP (t) 6= 0, t ∈ T , and the last column qn(t) of the matrix Q = (P−1)⊤ = {qi} is
equal to

qn(t) = ‖pn(t)‖−2pn(t), t ∈ T . (15)

(2) The first n− 1 values of semi-axes πi(t) can be found from the relations

πi(t) = π̃i(t), t ∈ T , i = 1, . . . , n− 1, (16)

where the n-vector function π̃(t) = (π̃1(t), . . . , π̃n(t))⊤ ∈ R
n satisfies

˙̃π = Abs (P−1(A+ A⊤)pn)πn + Abs (P−1R)ρ, t ∈ T , π̃(0) = π(0). (17)

(3) The last value πn(t) satisfies

π̇n = ‖pn‖−2pn⊤(A+ A⊤)pn πn + ‖pn‖−2Abs (pn⊤R)ρ, t ∈ T , (18)

and can be found in the following explicit form:

πn(t) = ‖pn(t)‖−2

(

‖pn(0)‖2πn(0) +

∫ t

0

Abs (pn(τ )⊤R(τ ))ρ(τ )dτ

)

, t ∈ T . (19)

Proof. Identities (14) follow from the identity pn(t)⊤pi(t) = vn⊤vi +
∫ t

0
d

dτ
(pn⊤pi) dτ

and (13). Nonsingularity of P (t) is the effect of (14) and linear independence of the
vectors pi(t), i = 1, . . . , n−1. Equality (15) follows from the definition of Q (i.e., the
equality Q⊤P = I) and (14). Relations (16)-(18) follow from (8) and (13), taking into
account that the first n − 1 columns of the matrix P−1(AP − Ṗ ) are zeros, and the
last one is equal to P−1(A + A⊤)pn, and also using relation (15) for the last row of
P−1 and the definition of the operation Ab . Equality (19) is obtained by concrete
definition of the well known formula [6, Sec. 9.2-4] for a solution of a linear differential
equation using ‖pn‖−2pn⊤(A+ A⊤)pn= − ‖pn‖−2d ‖pn‖2/d t. �

Thus the system, which describes parameters P (·) and π(·) of the tubes P (·) ∈ P3,
is broken into n equations (13) for pi, equation (18) for πn (which can be integrated
in the form (19)), and n− 1 relations for the other values πi (see (16), (17)).

Relations (13) ensure the following attractive properties of the tubes P (·) ∈ P3.

Theorem 2 The tubes P (·) ∈ P3 are tight (in directions pn(t)) outer estimates for
X (t), t ∈ T , and X (t) =

⋂ {P (t) | V ∈ V}, t ∈ T . Here, V ⊂ R
n×n is an arbitrary

set of matrices V satisfying (13), where vn range over all vn ∈ R
n with ‖vn‖ = 1.

Proof. Let us prove that

ρ(±pn(t)|P (t)) = ρ(±pn(t)|X (t)), t ∈ T , (20)

i.e., P (t) are tight (in directions pn(t)) estimates for X (t). To simplify arguments, we
put here and everywhere below in the arguments (only), without loss of generality,
p0 = 0, r(t) ≡ 0. It is not difficult to see, using (14) and (13), (18), (8), that

ρ(±pn(t)|P (t)) = Abs (pn(t)⊤P (t))π(t) = ‖pn(t)‖2πn(t); (21)
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d

dt
(‖pn‖2πn) = Abs (pn⊤R)ρ, ‖vn‖2πn(0) = Abs (vn⊤P0)π0. (22)

Using (21), (22), and (5), we obtain (20). The relations X (t) =
⋂ {P (t) | V ∈ V} are

the consequence of (20) and the convexity of X (t). �

For the future, it is convenient to associate the nonsingular matrix V from (13)
with an arbitrary matrix V̄ such that

V̄ = {v̄i} ∈ R
n×n; v̄i = vi, i = 1, . . . , n− 1; det V̄ 6= 0, (23)

and to associate the corresponding pair of matrices P (t) and Q(t) satisfying (13) and

P (t) = {pi(t)}, Q(t) = {qi(t)} = (P (t)−1)⊤ (24)

with the pair of matrices P 0(t) and Q0(t) satisfying the following relations

Ṗ 0 = A(t)P 0, t ∈ T ; P 0(0) = V̄ ; P 0(t) = {p0,i(t)}; Q0(t) = {q0,i(t)} = (P 0(t)−1)⊤.
(25)

Lemma 2 Under conditions (13), (23)-(25), the columns of Q(t) satisfy the relations

qi(t) = q0,i(t) − q0,i(t)⊤q0,n(t)

‖q0,n(t)‖2
q0,n(t) = q0,i − q0,i⊤pn

‖pn‖2
pn, i = 1, . . . , n−1;

qn(t) = ‖pn(t)‖−2pn(t) = κ(t)q0,n(t), t ∈ T ,
(26)

where κ(t) is some scalar factor, κ(t) 6= 0 for any t ∈ T .

Proof. We have the collinearity of vectors pn, qn, and q0,n because they are orthogonal
to n − 1 linearly independent vectors pi = p0,i, i = 1, . . . , n−1. It is easy to verify,

by direct calculations using (14), that vectors qi from (26) satisfy qi⊤pj = δij , i, j =
1, . . . , n, where δij is the Kronecker delta. �

The rest of the paper is devoted to investigating the properties of boundedness
and unboundedness of tubes P (·) ∈ P3 on T = [0,∞) under Assumption 2, which
is assumed everywhere below. First, we formulate several auxiliary criteria of bound-
edness / unboundedness of tubes P (·) ∈ P3 in terms of functions P (·) and Q(·), or
P 0(·) and Q0(·). Then, on this base, we obtain more concrete criteria of boundedness
/ unboundedness in terms of the matrices V (or V̄ ), T , J , and the sets P0, R(·).

Lemma 3 Under Assumption 2, a tube P (·) ∈ P is bounded if the following n func-
tions

si(t) = ‖pi(t)‖πi(t), i = 1, . . . , n, (27)

are bounded, and P (·)∈P is unbounded if at least one of these functions si(t), i∈{1, . . . ,
n}, is unbounded. For tubes P (·) ∈ P3, the last function sn(t) turns out to be bounded;
if, in addition, the sets R(t) are singletons (ρ(t) ≡ 0), then sn(t) → 0 as t→ ∞.

Proof. It is known [10] that the tube P (·) ∈ P is bounded (unbounded) on T =
[0,∞) if and only if the vector function q(t) = (AbsP (t))π(t) is bounded (unbounded,
respectively). We have

qj(t) =
n

∑

k=1

|pk
j |πk ≤

n
∑

k=1

‖pk‖πk =
n

∑

k=1

sk(t), j = 1, . . . , n. (28)
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Therefore, if all sk(t) are bounded, then q(t) is bounded too. Conversely, if there exists
some unbounded function sk, then at least one of the functions |pk

j |πk, j ∈ {1, . . . , n},
is unbounded, and from the first equality in (28), we see that the corresponding com-
ponent qj(t) is unbounded.

For tubes P (·) ∈ P3, we have sn(t) = ρ(±pn(t) ‖pn(t)‖−1 | X (t)) (see (20) and
(21)). Hence, we can obtain boundedness of sn(t) and the relation sn(t) → 0 as
t → ∞ (if R(t) are singletons) from the corresponding properties of the sets X (t)
under Assumption 2. The same conclusions (with more accurate estimates) as well as
several estimates, which will be used below, can be obtained by the following way.

Using (13), (9), (10), and the well known property of an exponential of similar
matrices exp(SXS−1) = S(expX)S−1 [2, p. 55], we have

C1‖e−J⊤tun‖2≤‖pn‖2=un⊤e−JtTT⊤e−J⊤tun≤C2‖e−J⊤tun‖2, un=(T⊤)−1vn; (29)

C3‖eJtui‖2 ≤ ‖pi‖2 = ui⊤eJ⊤t(T−1)⊤T−1eJtui ≤ C4‖eJtui‖2,

ui = Tvi, i = 1, . . . , n−1,
(30)

where C1 and C2 are minimal and maximal eigenvalues of the symmetric matrix TT⊤,
and C3 and C4 are similar positive constants for the matrix (T−1)⊤T−1.

From (19) and boundedness of R(·), we have

sn(t)=sn,1(t)+sn,2(t), sn,1=
‖pn(0)‖2 πn(0)

‖pn(t)‖ , sn,2≤Const
1

‖pn(t)‖

∫ t

0

‖pn(τ )‖ dτ,
(31)

where sn,2(t) ≡ 0 if ρ(t) ≡ 0.
Let us concretize estimates (29) for ‖pn(t)‖ using (10). Namely, let us repre-

sent the vector un in the form un = ((un
1 )⊤, . . . , (un

m)⊤)⊤, where vectors un
k =

((un
k,1)

⊤, . . . , (un
k,γk

)⊤)⊤ ∈ R
νkγk , k = 1, . . . ,m, and un

k,j ∈ R
νk are either scalars

or two-dimensional vectors. Then

‖pn(t)‖2 =
m

∑

k=1

′

e−2αkt

γk
∑

i=1

∥

∥

∥

∥

∥

i
∑

j=1

σi
j(−t)i−jHk(−t)⊤un

k,j

∥

∥

∥

∥

∥

2

, (32)

where Hk(t) is H(t) from (10) at β = βk. The prime in the sum over k means that
this sum contains only those summands for which ‖un

k‖ 6= 0. To obtain an estimate
from below, it is sufficient to keep and estimate in the sum over i in (32) only those
summands, which correspond to i = γk. Let jk be minimal of j ∈ {1, . . . , γk} for which
un

k,j 6= 0. Then, using H(t)H(t)⊤ ≡ I and properties of polynomials, we can see that
there exist a constant C5 > 0 and t∗ > 0 such that

‖pn(t)‖2 ≥ C5

m
∑

k=1

′

e−2αktt2(γk−jk)‖un
k,jk

‖2, for t > t∗. (33)

It is also not difficult to see that there exists a constant C6 > 0 such that

‖pn(t)‖2 ≤ C6

m
∑

k=1

′

e−2αktt2(γk−jk)‖un‖2, t > 0, (34)

where the values C5, C6, t∗, jk depend on un, i.e. on V . Relations (33), (31), and
vn 6= 0 give ‖pn(t)‖ → ∞, sn,1(t) → 0 as t → ∞. Inequalities (33) and (34) give
an estimate from above for sn,2(t) of the form sn,2(t) ≤ Constψ(t), where ψ(t) has
an ∞/∞ indeterminacy as t → ∞. Using l’Hôpital’s rule, we obtain limt→∞ ψ(t) ≤
Const . Hence, boundedness of sn(t) is proved. �



36 E. Kostousova, On Boundedness of Estimates for Reachable Sets

Lemma 4 A tube P (·) ∈ P3 is bounded if the following n− 1 functions

ai(t) = ‖pi(t)‖
∫ t

0

‖qi(τ )‖dτ, i = 1, . . . , n− 1, (35)

are bounded, where pi(t), qi(t) are columns of matrices P (t), Q(t) from (13), (24).

Proof. Using (27), (16), (17), and boundedness of sn(t), we have

si(t) = si,1(t) + si,2(t) + si,3(t), si,1(t) = ‖pi(t)‖πi(0), si,3(t) ≤ Const ai(t),

si,2(t) ≤ ‖pi(t)‖
∫ t

0

‖qi(τ )‖Const ‖pn(τ )‖πn(τ ) dτ ≤ Const ai(t), i = 1, . . . , n−1,

(36)
where si,3(t) ≡ 0 if ρ(t) ≡ 0. It remains to take into account that ‖pi(t)‖ → 0 as
t→ ∞ (due to (13), (7)) and to apply Lemma 3. �

Lemma 5 If n = 2, P (·) ∈ P3 is bounded if the two following functions are bounded:

c1(t) = ‖p1(t)‖
∫ t

0

‖p1(τ )‖−1 dτ, c2(t) = ‖p2(t)‖−1

∫ t

0

‖p2(τ )‖dτ. (37)

Proof. If n = 2, matrices P (t) are orthogonal, and qi(t) = pi ‖pi‖−2, i = 1, 2. Hence,
a1(t) = c1(t) and boundedness of c1(t) is sufficient for boundedness of P (·) ∈ P3 due
to Lemma 4. Boundedness of c2(t) ensures boundedness of s2(t) due to (31) and the
relation ‖p2(t)‖ → ∞ (boundedness of s2(t) has already been proved in Lemma 3). �

Theorem 3 If n = 2, then all tubes P (·) ∈ P3 are bounded. If, in addition, the
sets R(t) are singletons (R(t) ≡ r(t)), then estimates P (t) from P3 contract to their
centers p(t) as t → ∞ for any P (0) = V .

Proof. From (30), we have c1(t) ≤ Const
∫ t

0
ϕ(τ ) dτ /ϕ(t), where ϕ(t) = (u1⊤eJ⊤t ·

eJtu1)−1/2. Using (9) and (10), the function ϕ(t) can be written in the following

form: ϕ(t) = (
∑2

k=1 e
2λkt(u1

k)2)−1/2 in case A; ϕ(t) = e−αt(u1⊤F (t)u1)−1/2, where

F (t) =

[

1 t
t t2+1

]

in case B; ϕ(t) = e−αt‖u1‖−1 in case C. Using l’Hôpital’s rule in

each of these cases, we obtain boundedness of P (·).
Note that si(t) are values of semi-axes of parallelepipeds P (t) with the normalized

directions of their semi-axes pi(t)/‖pi(t)‖. Let ρ(t) ≡ 0. Taking into account (36), (27),
(31), the convergence ‖p1(t)‖ → 0, and Lemma 3, it is sufficient to verify that s1,2(t) →
0 as t → ∞, and we have s1,2(t) ≤ Const ‖p1(t)‖

∫ t

0
‖p1(τ )‖−1‖p2(τ )‖−1 dτ . Also, we

have C7ϕ(t) ≤ ‖p1(t)‖−1 ≤ C8ϕ(t), ‖p2(t)‖−1 ≤ C9ψ(t), where ϕ(t) is described

above, ψ(t) = (
∑2

k=1 e
−2λkt(u2

k)2)−1/2 in case A; ψ(t) = eαt(u2⊤Ψ(t)u2)−1/2, Ψ(t) =
[

t2+1 −t
−t 1

]

in case B; ψ(t) = eαt‖u2‖−1 in case C. Using u1 6= 0, u2 6= 0 (and,

for case B, the relations y⊤F (t)y ≥ (y1)
2 if y2 = 0, y⊤F (t)y ≥ (y2)

2 otherwise, which
hold for any y = (y1, y2)

⊤, and the similar ones for Ψ(t)), we can obtain, by direct
calculations, the estimates of the type s1,2(t) ≤ Const tζe−mt, where ζ = 1 for cases
A and C, and ζ = 2 for case B. �
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This result is unlike to the properties of two other subfamilies Pi considered above,
because there are two-dimensional systems for which all the estimates from P1 and
P2 are unbounded (these systems are of different kinds for P1 and P2 — see the black
squares in Figure 1).

Now, let us return to the general case n ≥ 2.

Lemma 6 A tube P (·) ∈ P3 is bounded (unbounded) if the vector function q̃(t) =
(Abs P̃ (t)) π̃(t) is bounded (unbounded), where P̃ (t) = {p1, . . . , pn−1, 0} ∈ R

n×n, the
vectors pi(t), i = 1, . . . , n− 1, satisfy (13), and π̃(t) ∈ R

n satisfies (17) and (18).

Proof. This follows from (23), (25), the relation q(t) = q̃(t) + (Abs pn(t))πn(t), and
Lemma 3. �

Corollary 1 Let P 0(t) satisfy (23) and (25). A tube P (·) ∈ P3 is bounded if the
vector function q0(t)= (AbsP 0(t)) π̃(t) is bounded.

Proof. It is evident because q̃(t) ≤ q0(t). �

Lemma 7 A tube P (·) ∈ P3 is bounded if the following n− 1 functions

bi(t) = ‖p0,i(t)‖
∫ t

0

‖q0,i(τ )‖ dτ, i = 1, . . . , n− 1, (38)

are bounded, where p0,i and q0,i are columns of matrices P 0 and Q0 from (23), (25).

Proof. From (17) and boundedness of the function sn(t), we have π̃(t) ≤ π(0) +
Const

∫ t

0
AbsP (τ )−1 e dτ . Then, due to (7) and Corollary 1, it is sufficient to verify

the boundedness of the vector function q̂(t) = AbsP 0(t)
∫ t

0
AbsP (τ )−1 e dτ . Using

Lemma 2, we have

q̂i(t) =
n

∑

k=1

|p0,k
i |

∫ t

0

n
∑

j=1

|qk
j | dτ ≤ Const

n
∑

k=1

‖p0,k‖
∫ t

0

‖qk‖ dτ

≤ Const
(

n−1
∑

k=1

2 bk(t) + ‖p0,n(t)‖
∫ t

0

dτ

‖pn(τ )‖
)

, i = 1, . . . , n,

(39)

where ‖p0,n(t)‖
∫ t

0
‖pn(τ )‖−1 dτ ≤Const e(−m+ε)t→0 as t→∞ due to (7) and (33). �

Proposition 3 If P (·) ∈ P3, then µ(P (t)) ≤ Const e(M−m+ε)t, t ≥ 0, for any ε > 0,
where Const > 0 is some constant depending on ε, V , P0, and R(·). Hence, the
exponent χ(P ) satisfies the inequality χ(P ) ≤ M − m (similarly for tubes from P1).

Proof. Using estimates from the proofs of Lemmas 6, 7, 3, and Corollary 1, we have
the following rough estimate for q(t): ‖q(t)‖ ≤ Const ‖P 0(t)‖

∫ t

0
‖Q0(τ )‖dτ , which,

together with (7), ensure the mentioned estimate for the tube exponent. �

Two following lemmas give some sufficient conditions for unboundedness of tubes
P (·) ∈ P3.

Lemma 8 Under the nondegeneracy condition (11), a tube P (·) ∈ P3 is unbounded
if at least one of n− 1 functions ai(t) from (35) is unbounded.
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Proof. Due to Lemma 6 and (17), it is sufficient to obtain unboundedness of the
vector-function Abs P̃ (t)

∫ t

0
Abs (P (τ )−1R(τ ))ρ(τ )dτ , but this follows from relations

p̃i(t) ≡ pi(t), |qi(t)⊤R(t)ρ(t)| = ρ(qi(t)) | R(t) − r(t)) ≥ ρ(qi(t)) | P(0, I, ε0e)) ≥
Const ε0 ‖qi(t)‖, i = 1, . . . , n−1, and conditions of Lemma 8. �

Lemma 9 Under the nondegeneracy condition (11), a tube P (·) ∈ P3 is unbounded
if at least for one of i ∈ {1, . . . , n− 1}, the function bi(t) from (38) is unbounded, and
in addition, the following inequality is valid for the same i, some ε > 0, and for all
sufficiently large t > 0:

di(t) = 1 − (q0,i(t)⊤q0,n(t))2

‖q0,i(t)‖2‖q0,n(t)‖2
= 1 − (q0,i(t)⊤pn(t))2

‖q0,i(t)‖2‖pn(t)‖2
≥ ε. (40)

Proof. This follows from equalities ‖qi(t)‖2 = ‖q0,i(t)‖2 di(t) (which are true due to
Lemma 2) and Lemma 8. �

Now let us formulate boundedness conditions in terms of matrices V . Although it
is possible to mark out some special cases when estimates P (·) ∈ P3 turn out to be
bounded for the systems with defective matrices (see, for example, Theorem 3), it is
seemingly useless to hope to obtain a similar good result in the general case of systems
with defective matrices because n− 1 columns of the orientation matrices satisfy the
same relations as for the tubes P (·) ∈ P1. Therefore, we concentrate our attention on
systems with diagonalizable matrices. In this connection, the following lemma may be
useful for investigating the case when the matrix A is diagonalizable. It also can be
used for verifying the conditions of Theorem 1.

Lemma 10 Let Ṽ ∈ R
n×n be an arbitrary nonsingular matrix and W̃ = Ṽ −1. Let

the set of indices {1, . . . , n} be partitioned into m consecutive groups such that each
group consists of νk elements, where νk = 1 or νk = 2, k = 1, . . . ,m. Let us consider
two ways to represent the matrices Ṽ and W̃ in block-wise form:

(1) Ṽ and W̃ are decomposed into the corresponding blocks Ṽ j
i ∈ R

νi×νj , W̃ i
j ∈

R
νj×νi , i, j = 1, . . . ,m;

(2) Ṽ and W̃ are represented by their columns and rows correspondingly: Ṽ = {ṽl},
W̃⊤ = S̃ = {s̃l}, where vectors ṽl, s̃l ∈ R

n, in turn, are decomposed into vectors of
dimensions νk: ṽ

l=((ṽl
1)

⊤, . . . , (ṽl
m)⊤)⊤, s̃l=((s̃l

1)
⊤, . . . , (s̃l

m)⊤)⊤, where ṽl
k, s̃

l
k∈R

νk .
Then, for any i, j ∈ {1, . . . ,m}, relations (41) and (42) are equivalent:

Zj
i =

m
∑

k=1

Abs Ṽ k
i Abs W̃ j

k = 0 ∈ R
νi×νj ; (41)

‖ṽl
i‖ · ‖s̃l

j‖ = 0, l = 1, . . . , n. (42)

Proof. Relation (41) is equivalent to m equalities Abs Ṽ k
i Abs W̃ j

k = 0 ∈ R
νi×νj ,

k = 1, . . . ,m. We have Ṽ k
i = ṽlk

i ∈ R
νi×1 for some lk ∈ {1, . . . , n} if νk = 1,

and Ṽ k
i = {ṽlk

i , ṽ
lk+1
i } ∈ R

νi×2 for some lk ∈ {1, . . . , n−1} if νk = 2. Similarly,

W̃ j
k = (s̃lk

j )⊤ ∈ R
1×νj if νk = 1, and W̃ j

k = {s̃lk
j , s̃

lk+1
j }⊤ ∈ R

2×νj if νk = 2. If k ranges

over values {1, . . . ,m}, then the index l of vectors ṽl
i, s̃

l
j in (42) ranges over values

{1, . . . , n} and vice versa. Therefore, the lemma can be obtained by considering eight
possible forms of matrices Abs Ṽ k

i Abs W̃ j
k corresponding to different cases νi ∈ {1, 2},

νj ∈ {1, 2}, νk ∈ {1, 2} and by direct calculations, which we omit here. �
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Theorem 4 Let the matrix A be diagonalizable and let P (·) ∈ P3 be a tube corre-
sponding to the matrix P (0) = V from (13). Then the following situations are possible.

(1) If M = m, then P (·) is bounded for any V .
(2) Let M 6= m, T be the matrix from (9), and V̄ be an arbitrary matrix satisfying

(23). Let matrices Ṽ = T V̄ and W̃ = Ṽ −1 = V̄ −1T−1 be decomposed into blocks
as described in Lemma 10 (the enumeration of blocks and eigenvalues λi below is
determined by the matrix T and (9)). If V is such that, for any pair of eigenvalues λi

and λj satisfying the inequality |Reλi| < |Reλj |, the following equalities are valid:

‖ṽl
i‖ · ‖s̃l

j‖ = 0, l = 1, . . . , n− 1, (43)

(or any of more strong conditions (42) or (41) are valid), then the tube P (·) is bounded.

Proof. Let us verify the conditions of Lemma 7. Similarly to (30), we have

‖p0,i‖ ≤ Const ‖eJtṽi‖, ‖q0,i‖ ≤ Const ‖e−J⊤ts̃i‖, i = 1, . . . , n. (44)

Using the structure of exponentials of diagonalizable matrices and equivalence of vector
norms, we obtain

bi(t) ≤ Const
m

∑

k=1

eαkt‖ṽi
k‖

∫ t

0

m
∑

l=1

e−αlτ‖s̃i
l‖ dτ, i = 1, . . . , n.

Under m = M, boundedness of all bi(t) is evident; otherwise it follows, from the
assumptions of the theorem, from the inequalities

lim
t→∞

bi(t) ≤ Const

m
∑

k,l=1

e(αk−αl)t‖ṽi
k‖ ‖s̃i

l‖, i = 1, . . . , n,

which can be obtained by l’Hôpital’s rule. �

Corollary 2 If V̄ = T−1, then Zj
i =0 for any i, j, i6=j, and the above sufficient condi-

tions for boundedness are satisfied. Therefore, it is clear how to find at least Cn
n−1 = n

matrices P (0) = V such that the corresponding tubes P (·) ∈ P3 are bounded: we
can construct such V if we take n−1 columns of T−1 as the first n−1 columns of V
(then the last column of V is determined uniquely, up to a scalar factor, because it is
orthogonal to the previous ones). We have n choices for the first n−1 columns of T−1.

Lemma 9 provides the following simple proposition.

Proposition 4 Let n ≥ 3, the matrix A be diagonalizable, all its eigenvalues be real,
and m 6= M. Then, under the nondegeneracy condition (11), there exist matrices V
that generate unbounded tubes P (·) ∈ P3.

Proof. Let us consider a matrix V , which is associated (according to (13), (23)) with
the matrix V̄ = T−1Ṽ , where Ṽ has a specific structure similar to Ṽ from [10, proof
of Theorem 3]. In (9), we have, without loss of generality, |λ2| > |λ1|. Let Ṽ = {ṽj

i }
(i, j = 1, . . . , n) be such that all diagonal elements of Ṽ and also the element ṽi∗

1 are
equal to 1, where i∗ = ν1 +1 = 2, and the other elements are zeros. Let us attempt to
apply Lemma 9 with i = i∗ = 2 assuming that n > i∗. It is not difficult to verify that
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ṽi∗ = (1, 1, 0, . . . , 0)⊤, s̃i∗ = ei∗ , s̃n = en. Then, similarly to the proof of Theorem 4,
we have

‖p0,i∗(t)‖2 ≥ Const (e2λ1t + e2λ2t), ‖q0,i∗ (t)‖2 ≥ Const e−2λ2t,

and, consequently, unboundedness of bi∗(t). Also, it is not difficult to verify that

di∗(t) ≡ di∗ = 1 − ((TT⊤)n
i∗)2

(TT⊤)i∗
i∗

(TT⊤)n
n

= 1 − ((gi∗)⊤gn)2

‖gi∗‖2‖gn‖2
,

where we use the notation T⊤ = G = {gi}. Evidently, di∗ > 0 (because the equality
di∗ = 0 is possible only if gi∗ and gn are collinear, but they are the columns of the
nonsingular matrix T⊤), and we have (40) for i = i∗. We can apply Lemma 9. �

Let us formulate some conditions, which ensure contracting the sets P (t) to their
centers.

Let matrices V = {vi}, Ṽ = {ṽi}, and S̃ = {s̃i} = W̃⊤ be as in Theorem 4, and
the columns of Ṽ and S̃ be decomposed as is described in Lemma 10. Let the vector
un = (T⊤)−1vn ∈ R

n be decomposed similarly to vectors ṽl and s̃l:

un = (T⊤)−1vn = ((un
1 )⊤, . . . , (un

m)⊤)⊤,

where vectors un
k ∈ R

νk , k = 1, . . . ,m. Let us denote

δ∗ = max{|Reλj | | j ∈ {1, . . . ,m}, ‖un
j ‖ 6= 0},

δi = max{|Reλl| − |Reλk| | k, l ∈ {1, . . . ,m}, ‖ṽi
k‖ · ‖s̃i

l‖ 6= 0}, i = 1, . . . , n− 1.

Proposition 5 Let the matrix A be diagonalizable and the sets R(t) be singletons. If
V is such that

−δ∗ + δi < 0, i = 1, . . . , n− 1, (45)

then the sets P (t) contract to their centers p(t) as t→ ∞.

Proof. Due to Lemma 3 and (36), it is sufficient to verify that si,2(t) → 0 as t→ ∞,
i = 1, . . . , n−1. Using relations ‖qi(t)‖ ≤ 2‖q0,i(t)‖ for i = 1, . . . , n−1 (see Lemma 2),
(44), (31), (29), we can obtain, similarly to the proof of Theorem 4, that

si,2(t) ≤ Const
m

∑

k=1

eαkt‖ṽi
k‖

∫ t

0

∑m
l=1 e

−αlτ‖s̃i
l‖

∑m
j=1 e

−αjτ‖ũn
j ‖

dτ, i = 1, . . . , n− 1. (46)

If, for some i ∈ {1, . . . , n − 1} the integral in (46) is bounded, then the relation
si,2(t) → 0 is evident for this i. Otherwise, by l’Hôpital’s rule, we have

lim
t→∞

si,2(t) ≤ Const
m

∑

k,l=1

e(αk−αl)t‖ṽi
k‖ ‖s̃i

l‖
(

m
∑

j=1

e−αjt‖ũn
j ‖

)−1

, (47)

and (45) ensures that the right-hand side of (47) tends to 0 as t→∞. �

Corollary 3 Under conditions of Theorem 4, if the sets R(t) are singletons, then the
sets P (t) contract to their centers p(t) as t→ ∞.

Proof. Under the conditions of Theorem 4, the numerators in (47) are bounded for
i = 1, . . . , n− 1; therefore si,2(t) → 0 as t→ ∞, i = 1, . . . , n−1. �
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Figure 2: Estimates in Example 2
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Figure 3: Estimates in Example 3

6 Examples of Estimates from P3

In [11], examples of constructing estimates from P1 and P2 for two-dimensional sys-
tems of five types were presented with corresponding illustrations that also demon-
strate the form and size of reachable sets in the examples. Here, we consider the
same systems and present the estimates from P3 in Figures 2–5 to have an occasion
for comparison with figures from [11]. The estimates are calculated using the Euler
approximations similarly to [8], with N = 300 time steps in almost all examples.

In the left-hand side of each figure, we demonstrate some tube P (·) ∈ P3 calculated
for the corresponding example. The right-hand side of each figure shows the initial
set (dashed line) and several tight outer estimates for the reachable set at time t = θ.
The estimates correspond to several orthogonal matrices V of the form V = {v1, v2},
v1 = (cosϕ, sinϕ)⊤, v2 = (− sinϕ, cosϕ)⊤, where ϕ runs through a uniform grid of
angles.

In Examples 1–3, we set P0 = P((0,−1.5)⊤, I, (1, 0.5)⊤), R(t) ≡ P(0, I, (0.5, 1)⊤).
We set θ = 6 in all examples.

Example 1 A = −I . We have case A with λ1 = λ2 = −1. Estimates from the
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Figure 5: Estimates in Example 5
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three families Pi, i = 1, 2, 3, look the same in this example (see [11, Figure 1]).

Example 2 A =

[

−1.2 −0.2
−0.3 −1.3

]

. We have case A with λ1 = −1, λ2 = −1.5.

Example 3 A ≡
[

−0.8 0.2
−0.2 −1.2

]

. We have case B with λ1 = λ2 = −1. Note that

there is a misprint in the data of [11, Example 3]. In fact, the data for [11, Figure 5]
are the same as in the present Example 3.

Example 4 A ≡
[

−0.5 −0.5
1 −1.5

]

. We have case C with α = −1, β = 0.5, and

|β| < |α|; P0 = P((0,−1.5)⊤, I, (1, 0.5)⊤), R ≡ P(0, I, (0, 1)⊤).

Example 5 A ≡
[

2.5 −3.5
7 −4.5

]

. We have case C with α = −1, β = 3.5, and

|β| > |α|; P0 = P((0,−1.5)⊤, I, 0) (it is a singleton), R ≡ P(0, I, (0, 1)⊤); N = 3600.
Note that although the depicted estimates correspond to the bounded tubes P (·) ∈ P3,
each of them provides quite a rough estimate of the reachable set at time t = θ in this
example, but in aggregate, they outline the reachable set.
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