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Abstract
Verified integration of initial value problems for sets of ordinary dif-

ferential equations can be performed by numerous approaches. The most
important ones are based on either interval or Taylor model arithmetic
and enclose with certainty the sets of reachable states at a given point
of time. Commonly, such tools are based on a Taylor series expansion
of the solution of differential equations in time and sometimes in the ini-
tial conditions and uncertain parameters. However, the use of high series
expansion orders prevents one from applying these tools in real-time en-
vironments. This becomes necessary if model-based predictive control
strategies are implemented, exploiting an online evaluation of state equa-
tions over a finite time horizon. Therefore, it is desirable to reduce the
computational effort as far as possible by finding a trade-off between the
simplicity of the descriptions of verified state enclosures on the one hand
and the amount of overestimation that is contained in the solutions on the
other. In ValEncIA-IVP, such enclosures are defined either by interval
boxes computed by a simple iteration scheme on the basis of a non-verified
numerical approximate solution or by means of exponential enclosures. In
this paper, the technique of exponential state enclosures is extended to a
novel iteration scheme based on complex-valued interval arithmetic. This
iteration reduces overestimation significantly for oscillatory linear state
equations. Simulation results for different practically motivated systems
with an extension to nonlinear models conclude this paper.
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1 Introduction

ValEncIA-IVP is a verified solver which computes guaranteed enclosures of exact
solutions of initial value problems (IVPs) for systems of ordinary differential equations
(ODEs) [23, 3, 22]. Originally, this solver has been implemented on the basis of a simple
iteration scheme that allows us to determine guaranteed state enclosures for IVPs
with continuously differentiable right-hand sides. These state enclosures are given by
a numerically computed approximate solution (for example by means of a classic, i.e.,
floating point-based, explicit Euler or Runge-Kutta method) with additive guaranteed
error bounds. In [24, 22], this solution procedure was extended by an exponential
enclosure approach, allowing us to compute tighter state enclosures for asymptotically
stable processes.

To efficiently exploit the exponential enclosure approach, the state equations are
first decoupled as far as possible. For that purpose, linear dynamic systems are trans-
formed into their real Jordan normal form. After that, the IVP is solved for the
equivalent problem. Finally, guaranteed state enclosures in the original coordinates
are determined by a suitable verified backward transformation.

However, this decoupling procedure does not manage to eliminate the wrapping
effect in cases in which the original system is nonlinear or in cases in which a linear
system has an oscillatory behavior. In the case of nonlinear systems, the transforma-
tion is determined for a locally linearized model. The reason for the missing capability
to eliminate the wrapping effect results from the fact that the transformed system
matrix of the (linearized) model is no longer purely diagonal but has a block diagonal
structure. Geometrically, each block corresponds to a rotation (and scaling) of state
enclosures between two subsequent time steps, which is the reason for the wrapping
effect if the state enclosures are propagated over time.

To eliminate the wrapping effect that originates from this rotation, the real-valued
IVP with a block diagonal system matrix can be replaced by a transformation into a
complex-valued diagonal form if the linear system model does not have multiple eigen-
values. In this contribution, a novel solution procedure for the computation of state
enclosures is presented which operates on complex-valued IVPs in the corresponding
normal form. This allows us to determine contracting state enclosures for linear ODE
systems with asymptotically stable, conjugate complex eigenvalues of multiplicity one
by means of a complex-valued exponential enclosure approach with a suitable back-
ward transformation onto the original problem.

This paper is structured as follows: In Sec. 2, the task of verified simulation of
sets of ODEs is reviewed briefly with a short summary of possible solution procedures.
In Sec. 3, the basic iteration schemes implemented in ValEncIA-IVP are described.
Afterwards, Sec. 4 gives an overview of the theory of the novel solution procedure
based on complex-valued interval arithmetic. Possible real-life applications originating
from modeling of mechatronic systems and from the field of control engineering are
presented as benchmark scenarios in Sec. 5. These scenarios include both single and
multiple eigenvalues, parameters with bounded uncertainty, and simple nonlinearities.
Conclusions and an outlook on future work are given in Sec. 6.
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2 Verified Integration of Initial Value Problems
with Interval Uncertainties

The goal of the numerical procedures presented in this paper is the computation of
guaranteed enclosures of all possible states at a given point of time t that belong to the
solution of an IVP for a finite-dimensional set of ODEs. Here, uncertainties in both
the initial states and system parameters are taken into account by means of interval
variables.

2.1 Problem Formulation

As a basic setup, the nonlinear continuous-time state equations

ẋs (τ) = f̃s (xs (τ) ,u(τ),p (τ) , τ) = fs (xs (τ) ,p (τ) , τ) (1)

are considered with the given initial states xs (0) = xs0. Here, xs (τ) denotes the
vector of system states, that can be influenced by means of a control signal u(τ) =
u (xs(τ), τ). In many practical applications, feedback controllers u (xs(τ), τ) are de-
signed in such a way that the closed-loop system has a dominating linear behavior.
Hence, linear systems of ODEs containing uncertain parameters are the focus of this
paper1. In contrast to xs (τ), the parameter vector p (τ) is only subject to external
influences, which are not directly controllable.

For the dynamic system (1), uncertainties are taken into account for the initial
conditions and parameters according to

[xs0] := [xs0 ; xs0] and [p (τ)] :=
[
p (τ) ; p (τ)

]
. (2)

In (1) and (2), it is furthermore possible (cf. [23]) to take into consideration a
dynamical model for all time-varying parameters

ṗ (τ) = ∆p (τ) , (3)

where their range-bounded variation rates are given by

∆p (τ) ∈ [∆p (τ)] :=
[

∆p (τ) ; ∆p (τ)
]
. (4)

Since the focus of this paper is the derivation of a novel simulation procedure for
this type of systems, the dynamical system model is abbreviated in the following by
the ODEs

ẋ (t) = f (x (t)) :=

fs (xs (t) ,p (t) , t)
∆p (t)

1

 (5)

after definition of the extended state vector

x (t) :=

xs (t)
p (t)
t

 , x (t) ∈ Rn (6)

1Throughout this paper, vectors are denoted by boldface small letters and matrices by
uppercase bold letters to distinguish them from scalar variables. Moreover, intervals are

denoted explicitly by square brackets, e.g., [x] =
[
[x1] . . . [xn]

]T
represents an interval

vector with [xi] = [xi ; xi], xi ≤ xi ≤ xi, i = 1, . . . , n.
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with the corresponding initial conditions

x (0) := x0 :=

xs (0)
p (0)

0

 ∈ [x (0)] := [x0] :=

[xs (0)]
[p (0)]
[0 ; 0]

 . (7)

To be able to apply the verified ODE solver ValEncIA-IVP to this type of systems
without any specific modifications, it is assumed that the vector-valued function f
defined in (5) is at least once continuously differentiable.

2.2 Overview of Different Solution Procedures

In the last decades, numerous verified solution procedures have been developed to
compute guaranteed enclosures to the type of IVPs that has been defined in the previ-
ous subsection. Based on Moore’s basic research studies about the verified solution of
IVPs for ODE systems [17], Lohner has developed the solver AWA [14, 15]. It is based
on a Taylor series expansion of the solution to the IVP with respect to time, where
guaranteed bounds are determined for the resulting discretization errors by means of
a Picard iteration. Basically, the corresponding enclosure technique can be derived by
means of Banach’s fixed point theorem. The fundamental solution procedures in AWA
were improved in the solvers VNODE and VNODE-LP [19, 18, 20]. These solvers do
not only provide a QR-preconditioning of the state equations (as in AWA) to reduce
the wrapping effect but also use the Interval-Hermite-Obreshkoff method instead of
simple Taylor expansions (VNODE, VNODE-LP) to further tighten the guaranteed
enclosures. Efficient strategies for a reduction of the wrapping effect are necessary
since it may lead to unusably wide interval enclosures of the true solution sets in the
worst case.

Moreover, further arithmetics were investigated for the description of solution sets.
The most successful alternative approach is implemented in COSY VI [5, 4, 16] and
RiOT [7], where Taylor models are used to describe both convex and non-convex
solution sets. The idea of using Taylor models is also included in VSPODE [13]:
Here, a Taylor series expansion is used to account for the time dependency of the
solution, while Taylor models are employed to handle the dependency of the solution
on (uncertain) initial conditions and parameters. Further approaches aiming at the
computation of reliable bounds for the sets of reachable system states make use of
ellipsoidal enclosures or zonotopes [12].

However, the common problem of most of the techniques summarized above is the
computational effort that may become quite high even for linear systems if tight state
enclosures are desired. This computational burden may prevent the online application
in predictive control procedures [26, 27]. To implement such procedures, it is nec-
essary to provide verified ODE solvers which are both fast and accurate. Therefore,
approaches which do not have an a priori upper bound for the computational effort
— or which do not provide solutions in typically a few milliseconds — cannot be em-
ployed for this type of application. For these reasons, techniques for the reduction of
overestimation using global optimization techniques, forward-backward evaluation of
state equations, other consistency tests, or subdivision procedures are typically not
applicable in real-time environments [23].

In the following, extensions of the verified ODE solver ValEncIA-IVP are pre-
sented which fulfill the requirements with respect to real-time applicability. These
extensions make use of the stability properties of the considered systems as well as of
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a special structure of the state equations which typically are guaranteed due to widely
used design procedures for feedback controllers.

3 ValEncIA-IVP — VALidation of state EN-
Closures using Interval Arithmetic for IVPs

3.1 Basic Iteration Scheme

ValEncIA-IVP uses an a posteriori approach to enclose the solution of the IVP (5)
with a continuously differentiable right-hand side f . In the basic version of ValEncIA-
IVP, the true solution x∗(t) is enclosed by a tube [x] (t) that consists of a non-verified
approximation x̃(t) and an iteratively computed verified error bound [R] (t) according
to

x∗(t) ∈ [x] (t) := x̃(t) + [R] (t) . (8)

For the following derivation of the iteration scheme, consider a point in time t ∈
[0 ; T ] with the corresponding exact solution x∗(t) ∈ [x] ([0 ; T ]). In this notation,
[x] (t) is an interval inclusion function of the point-valued exact trajectory x∗(t) at a
given point of time t, while [x] ([0 ; T ]) is an interval box that contains all reachable
state values over the complete time interval [0 ; T ] 3 t. As the derivation principle
below shows, the function [x] (t) is an interval extension of x(t) in the sense that
x(t) ∈ [x] (t) holds for all t ∈ [0 ; T ]. Due to the inclusion monotonicity and due
to the explicit time dependency of this enclosure, differentiation with respect to t is
admissible in such a way that ẋ(t) ∈ d

dt
[x] (t) ⊆ [ẋ] (t) holds for all t ∈ [0 ; T ]. Further

details can be found in Appendix A.
If a starting interval [x](0) := [x](0) ([0 ; T ]) exists such that x∗(t) ∈ [x](0) holds2,

the exact solution x∗(t) and an interval inclusion function [x] (t) can be defined ac-
cording to

x∗(t) = x0 +

t∫
0

f (x∗(s)) ds ∈ [x0] +

t∫
0

f
(

[x](0)
)

ds (9)

= [x0] + f
(

[x](0)
)
· t =: [x](1) (t) . (10)

If [x](1) := [x](1) ([0 ; T ]) ⊆ [x](0) holds, a Picard iteration is performed according
to

x∗(t) ∈ [x](κ+1) (t) := [x0] + f
(

[x](κ)
)
· t , κ ≥ 0 , (11)

where [x](κ) := [x](κ) ([0 ; T ]) represents a guaranteed enclosure for [x] (t).
Using the definition (11) of the verified state enclosure, it is desired to compute

the interval bounds

x∗(t) ∈ x̃(t) + [R](κ+1) (t) with [R](κ) (0) = [R](κ+1) (0) = [x0]− x̃(0) (12)

in an iterative scheme such that they correspond to the original definition (8). For
that purpose, the term [Ṙ](κ+1)(t) is defined as an interval inclusion function of the
derivative of [R](κ+1)(t) according to

[Ṙ](κ+1)(t) := − ˙̃x(t) + f
(

[x](κ)
)
, (13)

2Note that the subscript index 0 always denotes initial values at the point of time t = 0,
and superscript indices (κ), κ ≥ 0, denote the number of an iteration.



Reliable Computing 19, 2013 71

where the interval enclosure of the range f
(

[x](κ)
)

is to be as tight as possible to

minimize overestimation. For example, the mean value theorem or monotonicity tests
might be used to compute it (cf. [22, 3]).

If the property
[Ṙ](κ+1) ([0 ; T ]) ⊆ [Ṙ](κ) ([0 ; T ]) (14)

holds, the iteration can continue, leading to the enclosure [Ṙ](κ+1) ([0 ; T ]) that con-
tains the derivatives of the error term for the complete time interval [0 ; T ] 3 t. This
enclosure is then integrated with respect to time to calculate the error bound itself:

[R](κ+1) (t) ⊆ [R](κ+1) (0) +

t∫
0

[Ṙ](κ+1) ([0 ; T ]) ds

= [R](κ+1) (0) + [Ṙ](κ+1) ([0 ; T ]) · t ,

(15)

that is,

[R](κ+1) (t) ⊆ [R](κ+1) (0) + [Ṙ](κ+1) ([0 ; T ]) · [0 ; T ] (16)

=: [R](κ+1) ([0 ; T ]) .

By combining (8) and (16), the verified enclosure [x](κ+1) given in (8) and (12) is
obtained over the interval [0 ; T ] 3 t, assuming that the approximation x̃(t) can be
determined using a method from usual floating-point numerics. Note that the last
equality in (16) corresponds to a verified integration of the time-invariant interval
bounds of [Ṙ](κ+1) ([0 ; T ]), see also Appendix A.

The enclosure of the set of all reachable states at t = T then is given by a re-
evaluation of (15) for this point of time, where [Ṙ] ([0 ; T ]) has been determined for
the complete interval [0 ; T ]. Extensions of this basic approach to systems with non-
smooth right-hand sides can be found in [2].

3.2 ValEncIA-IVP — Exponential State Enclosures

To prevent the growth of the interval diameters characterizing the verified solutions
determined by ValEncIA-IVP especially for asymptotically stable dynamic systems
with a minimum computational effort, the exponential state enclosures

x∗(t) ∈ [xe] (t) := exp ([Λ] · t) · [xe] (0) with 0 6∈ [xe,i] (0) , [xe] (0) = [x0] (17)

and
[Λ] := diag {[λi]} , i = 1, . . . , n (18)

can be used in an extended version of this solver. In this case, an iteration scheme
has to be derived for the coefficients λi that are used in (17) and (18). In (17), the
interval matrix exponential is only required for diagonal matrices. It can be defined
according to

exp ([Λ] · t) := diag {exp ([λ1] · t) , . . . , exp ([λn] · t)} . (19)

As shown in Subsection 3.1, a Picard iteration

x∗(t) ∈ [xe]
(κ+1) (t) := [x0] +

t∫
0

f
(

[xe]
(κ) (s)

)
ds (20)
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is used to determine guaranteed enclosures of the exact solution x∗(t). If this itera-
tion (20) is evaluated for the exponential state enclosures (17) and (18), the explicitly
time-dependent expression

x∗(t) ∈ exp
(

[Λ](κ+1) · t
)
· [xe] (0) = [xe]

(κ+1) (t)

=: [x0] +

t∫
0

f
(

exp
(

[Λ](κ) · s
)
· [xe] (0)

)
ds

(21)

is obtained.

Its differentiation with respect to time (which is the upper bound of the above-
stated integration (21)) yields

ẋ∗(t) ∈ diag
{

[λi]
(κ+1)

}
· exp

(
[Λ](κ+1) · t

)
· [xe] (0)

:= f
(

exp
(

[Λ](κ) · t
)
· [xe] (0)

)
.

(22)

Now, the evaluation of (22) is replaced by an evaluation for the complete time
interval t ∈ [0 ; T ] according to

ẋ∗ ([0 ; T ]) ∈ diag
{

[λi]
(κ+1)

}
· exp

(
[Λ](κ+1) · [0 ; T ]

)
· [xe] (0)

⊆ f
(

exp
(

[Λ](κ) · [0 ; T ]
)
· [xe] (0)

)
.

(23)

In the case that (21), (22), and (23) describe a converging iteration process with

[xe]
(κ+1) ⊆ [xe]

(κ), the expression

exp
(

[Λ](κ+1) · t
)
· [xe] (0) ⊆ exp

(
[Λ](κ) · t

)
· [xe] (0) (24)

holds. According to Appendix B, the inclusion monotonicity of the exponential func-
tions implies

exp
(

[Λ](κ+1) · t
)
⊆ exp

(
[Λ](κ) · t

)
(25)

and thus also

exp
(

[Λ](κ+1) · [0 ; T ]
)
⊆ exp

(
[Λ](κ) · [0 ; T ]

)
. (26)

This is equivalent to the relations

[λi]
(κ+1) ⊆ [λi]

(κ) and [Λ](κ+1) ⊆ [Λ](κ) . (27)

For that reason, a conservative over-approximation of the interval [λi]
(κ+1) by

[λ̃i]
(κ+1) can be determined for the complete time interval t ∈ [0 ; T ] on the left-hand

side of (23) according to

diag
{

[λ̃i]
(κ+1)

}
· exp

(
[Λ](κ) · [0 ; T ]

)
· [xe] (0)︸ ︷︷ ︸

[xe](κ)([0 ; T ])

:= f
(

exp
(

[Λ](κ) · [0 ; T ]
)
· [xe] (0)

)
.

(28)
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Since [λi]
(κ+1) ⊆ [λ̃i]

(κ+1) holds in the case of convergence of the Picard iteration

(i.e., [λi]
(κ+1) ⊆ [λi]

(κ), see Appendix B), the iteration formula for [Λi] can be defined
as

[λi]
(κ+1) :=

fi
(

exp
(

[Λ](κ) · [0 ; T ]
)
· [xe] (0)

)
exp

(
[λi]

(κ) · [0 ; T ]
)
· [xe,i] (0)

, i = 1, . . . , n . (29)

The solution of all reachable states at t = T then is given by

x∗(T ) ∈ [xe] (T ) := exp ([Λ] · T ) · [xe] (0) , (30)

where [Λ] is the final result of the iteration (29).

Note that this iteration formula and its derivation are only admissible if 0 6∈
[xe,i] ([0 ; T ]) holds for all i = 1, . . . , n over the complete time interval t ∈ [0 ; T ].
This prerequisite can be checked easily by first applying the basic iteration summa-
rized in Subsection 3.1.

For linear state equations

fi (x) =

n∑
j=1

aij · xj , (31)

the iteration formula (29) can be rewritten as

[λi]
(κ+1) :=

n∑
j=1,i 6=j

{
aij · exp

((
[λj ]

(κ) − [λi]
(κ)
)
· [0 ; T ]

)
· [xe,j ] (0)

[xe,i] (0)

}
+ aii (32)

to reduce overestimation for the interval-based evaluation for long time intervals [0 ; T ]
with aij ∈ [aij ]. A more detailed analysis of the applicability of (29) and (32) and an
extension by preconditioning are given in the following. Contracting state enclosures
can be expected for dynamic systems (5) and (6) in which f is linear according to (31)
and additionally describes asymptotically stable dynamics.

3.3 Preconditioning of the State Equations

The exponential enclosure approach is most efficient if the state equations are dom-
inated by asymptotically stable, linear dynamics and if they are decoupled as far as
possible. Moreover, f (0) = 0 should be guaranteed by a suitable choice of the coordi-
nate system. For that reason, linear dynamic systems (31) are transformed into their
real Jordan normal form according to the procedure described in [8].

For systems with n real, pairwise different eigenvalues, the Jordan normal form is
given by

ż(t) = Σ · z(t) with Σ =


λ1 0 . . . 0

0 λ2

. . .
...

...
. . .

. . . 0
0 . . . 0 λn

 and z(0) ∈ [z(0)] . (33)

For systems with real eigenvalues, where λi has the multiplicity δi > 1 and all



74 Rauh et al, Exponential Enclosure Techniques in ValEncIA-IVP

other eigenvalues are pairwise different, the Jordan normal form is given by

ż(t) = Σ · z(t) with Σ = blkdiag{λ1, λ2 . . . ,Σi, . . . λn} ,

Σi =


λi 1 . . . 0

0 λi
. . .

...
...

. . .
. . . 1

0 . . . 0 λi

 ∈ Rδi×δi , and z(0) ∈ [z(0)] .
(34)

According to [8, 9, 10], further block diagonal entries are added to Σ which have
the same structure as Σi, if a linear dynamic system has more than one multiple real
eigenvalue.

For nonlinear systems as well as for uncertain linear systems, the transformation
is performed using the matrix of the eigenvectors of the system’s Jacobian that is
evaluated for the interval midpoints of all uncertain variables.

It is well known that the exact solution to the case (33) is given by

z∗i (t) = eλit · zi(0) , i = 1, . . . , n . (35)

Even if the parameters λi and the initial conditions zi(0) are uncertain with λi ∈ [λi]
([λi] ∩ [λj ] = ∅, i, j = 1, . . . , n, i 6= j) and zi(0) ∈ [zi(0)] (0 6∈ [zi(0)]), zi(t) 6= 0 holds
for any t > 0. Thus, the exponential enclosure technique of ValEncIA-IVP is always
applicable in this case.

For multiple real eigenvalues λi of multiplicity δi, corresponding to case (34), the
solutions are given by

z∗i+j(t) = eλit ·

δi−1∑
ζ=j

tζ−j

(ζ − j)! · zi+ζ(0)

 , j = 0, . . . , δi − 1 . (36)

Here, the exponential enclosure technique of ValEncIA-IVP is applicable if

0 6∈

χj
∣∣∣∣∣χj =

δi−1∑
ζ=j

tζ−j

(ζ − j)! · zi+ζ(0), zi+ζ(0) ∈ [zi+ζ(0)] , t ∈ [0 ; T ]

 (37)

holds for any j = 0, . . . , δi − 1.

If this transformation into real Jordan normal form is applied to systems with con-
jugate complex eigenvalues λ∗i,i+1 = σi ± jωi of multiplicity δi = 1, the transformed
linear system is characterized by a block diagonal structure of its system matrix ac-
cording to

Σ = blkdiag{. . . , Σ̄i, . . .} , Σ̄i =

[
σi ωi
−ωi σi

]
. (38)

Then, the above-mentioned advantageous property of the solutions (35) not containing
the value zero in any component zi(t) is no longer valid since the solutions contain
the terms sin (ωit) and cos (ωit), which change their sign periodically according to the
system’s eigenfrequency ωi. In such cases, a transformation of the state equations
into their complex Jordan normal form according to the procedure in Sec. 4 helps to
resolve this problem.
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4 Exponential State Enclosures Based
on Complex-Valued Interval Arithmetic

In analogy to the decoupling of linear state equations by means of a transformation
into real Jordan normal form, it is possible to replace the block diagonal entries (38)
for systems with pairwise different conjugate complex eigenvalues corresponding to the
structure of the system model (31) by the equivalent complex Jordan normal form

Σ = blkdiag{. . . ,Σi, . . .} , Σi =

[
σi + jωi 0

0 σi − jωi

]
. (39)

For conjugate complex eigenvalue pairs of multiplicity δi > 1, the complex-valued
Jordan normal form results in

Σ = blkdiag{. . . ,Σ+
i ,Σ

−
i , . . .} (40)

with

Σ+
i =


σi + jωi 1 . . . 0

0 σi + jωi
. . .

...
...

. . .
. . . 1

0 . . . 0 σi + jωi

 ∈ Cδi×δi (41)

and

Σ−i =


σi − jωi 1 . . . 0

0 σi − jωi
. . .

...
...

. . .
. . . 1

0 . . . 0 σi − jωi

 ∈ Cδi×δi (42)

for each eigenvalue pair σi ± jωi with δi > 1.
Now, the corresponding complex-valued initial value problem ż(t) = Σ · z(t) with

z(0) ∈ Cn, z(0) ∈ [z(0)] is solved by an application of either the basic iteration
scheme of ValEncIA-IVP or by its exponential approach. In both cases, the iteration
formulas (13), (16), and (29) are evaluated in complex interval arithmetic [21]. In this
paper, the midpoint-radius implementation provided by IntLab [29] is used for this
purpose. After the evaluation of these iteration formulas, the solution enclosures
are transformed back into the original coordinates by left multiplying the solutions
by an interval-based, guaranteed inverse of the matrix that has been used for the
transformation of the state equations into the (complex) Jordan normal form and by
taking the real part of the solution of the before-mentioned product. Note that the
techniques for reduction of overestimation (mentioned in Subsection 3.1), which are
based on monotonicity tests, are not yet generalized for the complex case.

Now, the applicability of the complex iteration scheme is analyzed as in Subsec-
tion 3.3. For conjugate complex eigenvalue pairs of multiplicity δi = 1, the solution of
the transformed state equations (39) is given by

zi(t) = e(σi+jωi)·t · zi(0)

zi+1(t) = e(σi−jωi)·t · zi+1(0) .
(43)

The computation of the squared absolute value of zi(t) yields

|zi(t)|2 =
(
e(σi+jωi)·t · e(σi−jωi)·t

)
· |zi(0)|2 = e2σit · |zi(0)|2 . (44)
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Hence, the complex iteration scheme based on (29) is applicable for any t ≥ 0 if
0 6∈ |[zi(0)]| holds for the evaluation of |zi(0)| with the initial state intervals given at
t = 0. Taking into account the relation |zi(0)|2 = <{zi(0)}2+={zi(0)}2, this condition
can be replaced by the precondition that

0 ∈ <{[zi(0)]} and 0 ∈ ={[zi(0)]} (45)

must not hold simultaneously. This requirement typically is fulfilled in the case (38)
and (39), where the exponential enclosure techniques failed for a real-valued system
model.

This analysis can be carried out analogously for conjugate complex eigenvalue
pairs (40) of multiplicity δi > 1. Then, the corresponding solutions zi+j(t), j =
0, . . . , δi − 1, are given by

z∗i+j(t) = e(σi+jωi)·t ·

δi−1∑
ζ=j

tζ−j

(ζ − j)! · zi+ζ(0)

 , j = 0, . . . , δi − 1 . (46)

The square of its absolute value is given by

|z∗i+j(t)|2 = e2σi·t ·

∣∣∣∣∣∣
δi−1∑
ζ=j

tζ−j

(ζ − j)! · zi+ζ(0)

∣∣∣∣∣∣
2

= e2σi·t · |χj |2 . (47)

Hence, the exponential enclosure technique of ValEncIA-IVP is applicable if

0 6∈

{
χj

∣∣∣∣∣χj = <{χj}+ j={χj}, zi+ζ(0) ∈ [zi+ζ(0)] , t ∈ [0 ; T ]

}
(48)

holds for any j = 0, . . . , δi − 1.

5 Application Scenarios

In this section, the practical applicability of the exponential enclosure approach in
ValEncIA-IVP is demonstrated for several engineering examples. The resulting state
enclosures are compared qualitatively with the results that are obtained with VNODE-
LP. In ValEncIA-IVP, a constant integration step size is chosen with ∆t = 0.001,
while VNODE-LP uses an automatic step-size control with the series expansion or-
der 20.

5.1 Basic Models of Oscillatory Dynamics in Electrical
and Mechanical Systems

The first application is a typical linear system model with conjugate complex eigen-
values. It arises in many situations in control of electrical and mechanical systems. In
electrical engineering, the following type of state equations resembles an RLC series
oscillator (resistor, inductance, capacitance) which may represent an equivalent circuit
model of an electric drive. As a mechanical system, the system model

z̈ (t) +
bD
m
ż (t) +

cF1 + cF2

m
z (t) =

cF2

m
u (t) (49)
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Figure 1: Schematic representation of a quarter vehicle model.

describes a spring-mass-damper system, which is a typical quarter vehicle model (see
Fig. 1) and is used widely in the design of strategies for active and passive oscillation
damping.

Choosing the parameters m = 1, bD = 3, cF1 = 5, cF2 = 5 and introducing the

state vector x′(t) =

[
z (t)
ż (t)

]
, we obtain the state-space representation

ẋ′(t) =

[
0 1
−10 −6

]
x′(t) +

[
0
5

]
u (t) (50)

with the eigenvalues λ1,2 = −3 ± 1j = σ ± ωj. These state equations are now trans-
formed automatically into their real Jordan normal form

ẋ(t) = Ax(t) with A =

[
σ1 ω1

−ω1 σ1

]
, σ1 = −3 , ω1 = 1 (51)

with u(t) = 0.

5.2 Example 1

Using the initial conditions

x(0) ∈
[
[0.9 ; 1.1]
[0.9 ; 1.1]

]
(52)

for the state equations (51), guaranteed enclosures of x(t) can only be determined by
the exponential approach in ValEncIA-IVP until the point of time at which the value
zero is included in the enclosure for x2(t), see Fig. 2. After that point of time, only
the basic iteration scheme is applicable (as long as the value zero is included in any of
the state enclosures, unless no interval subdivision is performed).

Transforming the state equations (51) into their complex Jordan normal form leads
to

ż(t) = Ãz(t) with Ã =

[
σ1 + jω1 0

0 σ1 − jω1

]
, σ1 = −3 , ω1 = 1 (53)

with the initial conditions

z(0) ∈
[
〈 1

2

√
2 · (1− j) , 1

10

√
2〉

〈 1
2

√
2 · (1 + j) , 1

10

√
2〉

]
(54)

given in their midpoint-radius representation. All computations in the new iteration
scheme of ValEncIA-IVP are performed in this section by means of the midpoint-
radius arithmetic that is available in IntLab as a toolbox for MATLAB [29].
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Figure 2: State enclosures computed by the real-valued exponential enclosure
approach in ValEncIA-IVP (example 1) in comparison with a grid-based ref-
erence solution, for which each of the uncertain initial state intervals has been
gridded independently into 10 equally spaced points (gray).

The resulting state enclosures for the complex enclosure approach are shown in
Fig. 3. The corresponding results of VNODE-LP are displayed in Fig. 4. The com-
parison shows that the initial interval widths of the ValEncIA-IVP enclosures are
significantly wider than the ones obtained by VNODE-LP.
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Figure 3: State enclosures computed by the complex-valued exponential enclo-
sure approach in ValEncIA-IVP (example 1).

This is caused by the fact that the axis-parallel interval vector (52) first has to
be mapped into the complex plane by the state transformation from x to z, and
later on has to be mapped back. This leads to an additional wrapping of intervals as
long as the initial state domains at t = 0 are given by intervals and not by discs in
midpoint-radius form. However, it is possible to intersect the results of the complex-
valued iteration formula (after backward transformation) with the results of the real-
valued exponential enclosure approach in a future implementation. The fact that
only function evaluations and no time-consuming computations of Taylor coefficients
are necessary in the exponential enclosure approach in ValEncIA-IVP improves its
usability for real-time applications. Besides the above-mentioned interval enclosures,
Figs. 3 and 4 also contain point-valued solutions to the problem (51) and (52), where
each of the interval parameters has been gridded into 10 independent, equally spaced
points (curves in gray color).
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Figure 4: State enclosures computed by VNODE-LP (example 1).

5.3 Example 2

To show that the novel extension of ValEncIA-IVP is also applicable to systems with
uncertain eigenvalues, the dynamic system model

ż(t) = Ãz(t) with Ã =

[
σ1 + jω1 0

0 σ1 − jω1

]
, σ1 = −3 , ω1 ∈ [0.95 ; 1.05]

(55)
with the initial conditions

z(0) ∈
[
〈 1

2

√
2 · (1− j) , 1

10

√
2〉

〈 1
2

√
2 · (1 + j) , 1

10

√
2〉

]
(56)

in midpoint-radius form is considered.

The resulting state enclosures of ValEncIA-IVP and VNODE-LP are shown in
Figs. 5 and 6, including also grid-based solutions in gray color as in to Example 1. For
a more detailed discussion, see the end of Sec. 5.2.

x
1
(t
)

0

t

−0.2

0.0

0.2

0.4

0.6

1.0

0.8

1.2

0.5 1.0 1.5 2.0 2.5

interval enclosure

interval diameter

x
2
(t
)

0

t

−0.2

0.0

0.2

0.4

0.6

1.0

0.8

1.2

0.5 1.0 1.5 2.0 2.5

interval enclosure

interval diameter

Figure 5: State enclosures computed by the complex-valued exponential en-
closure approach in ValEncIA-IVP for a system with uncertain eigenvalues
(example 2).
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Figure 6: State enclosures computed by VNODE-LP for a system with uncer-
tain eigenvalues (example 2).

5.4 Example 3

As a final introductory example, the dynamic system model

ẋ(t) = Ax(t) +

[
sin (x1(t))

0

]
with A =

[
σ1 ω1

−ω1 σ1

]
, σ1 = −3 , ω1 = 1 (57)

with the initial conditions x(0) =
[
1 1

]T
is considered. Here, the transformation ma-

trix into complex Jordan normal form in ValEncIA-IVP is determined for the linear
part Ax(t). Since the linear part has dominant influence on the system dynamics, the
novel exponential enclosure approach in ValEncIA-IVP yields results comparable to
those from VNODE-LP, see Figs. 7 and 8.
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Figure 7: State enclosures computed by the complex-valued exponential enclo-
sure approach in ValEncIA-IVP for a system with nonlinearities (example 3).

5.5 Robustness Verification of Linear Closed-Loop Con-
trol Procedures for Flexible High Speed Rack Feeders

As a final application scenario, the robustness analysis of a simplified closed-loop
control procedure of a high-bay rack feeder system taken from [1] is considered, see
Fig. 9.
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Figure 8: State enclosures computed by VNODE-LP for a system with non-
linearities (example 3).
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Figure 9: Experimental set-up of the high-speed rack feeder (left) and the cor-
responding elastic multibody model (right).

During the mathematical description of this rack feeder, which is built up as a test
rig at the Chair of Mechatronics at the University of Rostock, an elastic multibody
system model was derived to design a feedback control structure. The mathematical
description for the rack feeder can be derived as a model with three rigid bodies,
consisting of a carriage (mass mS), a cage movable on a vertical double beam structure
(mass mK , mass moment of inertia θK), and the end mass at the tip of the beam (mass
mE), and an elastic Bernoulli beam (density ρ, cross sectional area A, Youngs modulus
E, second moment of area IzB , and length l). The varying vertical position xK(t) of
the cage on the beam is denoted by the dimensionless system parameter

κ (t) =
xK (t)

l
. (58)

The elastic degrees of freedom of the beam concerning the bending deflection can be
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described by the following Ritz ansatz

v (x, t) =
[

¯̄v1 (x) ¯̄v2 (x)
] [ v1 (t)

v2 (t)

]
, (59)

with

¯̄v1 (x) =
3

2

(x
l

)2

− 1

2

(x
l

)3

and ¯̄v2 (x) =
(x
l

)2

, (60)

which takes into account the first and the second bending mode. The vector of gener-
alized coordinates results in

q (t) =
[
yS (t) v1 (t) v2 (t)

]T
. (61)

The nonlinear equations of motion can be derived either by Lagrange’s equations or,
more efficiently, by the Newton-Euler approach, cf. [30]. For this purpose, position
vectors to the corresponding centers of gravity are introduced: the position vector to
the carriage rS , to the cage rK , to the mass at the beam tip rE , and to a mass element
of the Bernoulli beam rBE are given by

rS =

[
0
yS

]
, rK=

[
xK

yS + v(xK)

]
, rE =

[
l

yS + v(l)

]
, rBE=

[
xBE

yS + v(xBE)

]
.

(62)

By computing the Jacobians of translation

JTi = ∂ri
∂q
, i = {S,K,E,BE} (63)

for the vectors defined in (62) and the Jacobian of rotation

jRj =
∂ϕj
∂q
, j = {K,E,BE} (64)

for the angles, the nonlinear equations of the motion

M̃ (q) q̈ + k̃ (q, q̇) = h̃ (q, q̇, FSM , FSR)

are obtained as follows

M̃ (q) =mSJTTSJTS +mKJTTKJTK +mEJTTEJTE + θKjRKjTRK

+ ρ

∫ l

0

(
AJTTBEJTBE + IzBjRBEjTRBE

)
dx ,

k̃ (q, q̇) =mSJTTSJ̇TSq̇ +mKJTTK J̇TK q̇ +mEJTTEJ̇TEq̇

+ θKjRK
d

dt

(
jTRK

)
q̇

+ ρ

∫ l

0

(
AJTTBEJ̇TBEq̇ + IzBjRBE

d

dt

(
jTRBE

)
q̇

)
dx ,

h̃ (q, q̇, FSM , FSR) = JTTS

[
FSM − FSR

0

]
− ∂U (q)

∂q
− ∂R (q̇)

∂q̇
,

(65)

(66)

(67)

with the drive force of the carriage FSM and the associated friction force FSR.
Here, the potential energy U (q) consists of the gravity potential of all rigid and

elastic bodies, as well as the strain energy of the elastic beam. The Rayleigh function
R (q̇) allows for an efficient computation of the stiffness-proportional damping matrix.
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After a linearization for small bending deflections, the equations of motion can be
stated in M-D-K form

Mq̈ (t) + Dq̇ (t) + Kq (t) = h · (FSM (t)− FSR (ẏS (t))) . (68)

The symmetric mass matrix is given by

M(κ) =

 m11 m12 m13

m12 m22 m23

m13 m23 m33

 (69)

with

m11 = mS + ρAl +mK +mE ,

m12 =
3

8
ρAl +

mKκ
2

2
(3− κ) +mE ,

m13 =
1

3
ρAl +mK · κ2 +mE ,

m22 =
33

140
ρAl +

6ρIzB
5l

+
mKκ

4

4
(3− κ)2 +

9θKκ
2

4l2
(2− κ)2 +mE ,

m23 =
13

60
ρAl +

5ρIzB
4l

+
mKκ

4

2
(3− κ) +

3θKκ
2

l2
(2− κ) +mE ,

m33 =
1

5
ρAl +

4ρIzB
3l

+mKκ
4 +

4θKκ
2

l2
+mE .

(70)

(71)

(72)

(73)

(74)

(75)

The damping matrix, which is assumed to be stiffness-proportional, and the stiffness
matrix become

D =

 0 0 0

0 3kdEIzB
l3

3kdEIzB
l3

0 3kdEIzB
l3

4kdEIzB
l3

 , K(κ)=

 0 0 0
0 k22 k23

0 k23 k33

 , (76)

with

k22 =
3EIzB
l3

− 3

8
ρAg − 3mKgκ

3

l

(
1 +

3κ2

20
− 3κ

4

)
− 6mEg

5l
,

k23 =
3EIzB
l3

− 7

20
ρAg +

mKgκ
3

l

(
3κ

4
− 2

)
− 5mEg

4l
,

k33 =
4EIzB
l3

− 1

3
ρAg − 4mKgκ

3

3l
− 4mEg

3l
.

(77)

(78)

(79)

In (76), the parameter kd denotes the coefficient of stiffness-proportional damping for
the elastic beam. The input vector of the generalized forces, which accounts for the
control input FSM as well as the disturbance input FSR, reads

h =
[

1 0 0
]T

. (80)

The electric drive for the carriage is operated with a fast underlying velocity control
on its current converter. The resulting dynamic behavior is characterized by a first-
order lag system with a time constant T1y

T1y ÿS (t) + ẏS (t) = vS (t)− vS0 , (81)

where the input disturbance vS0 represents remaining uncertainties. In the follow-
ing, this differential equation replaces the equation of motion for the carriage in the
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mechanical system model (68), which leads to a modified mass matrix as well as a
modified damping matrix

My(κ) =

 T1y 0 0
m12 m22 m23

m13 m23 m33

 , Dy=

 1 0 0

0 3kdEIzB
l3

3kdEIzB
l3

0 3kdEIzB
l3

4kdEIzB
l3

 . (82)

The stiffness matrix Ky(κ) = K(κ) and the input vector for the generalized forces
hy = h, however, remain unchanged. Hence, the equations of motion are given by

q̈ = −M−1
y Kyq−M−1

y Dyq̇ + M−1
y hyvS −M−1

y hyvS0 , (83)

with the carriage velocity vS as the new control input uy.

For feedforward and feedback control design, a vanishing input disturbance vS0 is
considered, and the system representation is reformulated in the state-space form

ẋy =

[
q̇
q̈

]
=

[
0 I

−M−1
y Ky −M−1

y Dy

]
︸ ︷︷ ︸

Ay(κ)

[
q
q̇

]
︸ ︷︷ ︸

xy

+

[
0

M−1
y hy

]
︸ ︷︷ ︸

by(κ)

vS︸︷︷︸
uy

. (84)

In the remainder of this paper, it is assumed that the cage is positioned at a fixed,
exactly known, position κ. First extensions of the simulation approach to a joint
control of the carriage and the cage can be found in [28].

For the following simulation, the control law

uy = −kTy · xy (85)

is designed in such a way that the constant operating point xy = 0 is stabilized. For
that purpose, the controller gain ky is determined by a minimization of the quadratic
cost function

J =
1

2

∞∫
0

(
xTy Qyxy + ryu

2
y

)
dt , (86)

which contains the positive definite weighting matrix Qy for the penalization of state
errors and the scalar weight ry for a quantification of the control effort. In the following,
the weighting matrix Qy is chosen as the diagonal matrix

Qy = diag [7500 , 5000 , 5000 , 0.01 , 0.01 , 0.01] = const > 0 , (87)

with the input weighting factor ry = 10 = const.

Considering the system parameters listed in [1], these settings lead to the following
eigenvalues of the closed-loop system:

λ1 = −96.2212226512099 + 334.8463405769027j

λ2 = −96.2212226512099− 334.8463405769027j

λ3 = −118.2015893613681

λ4 = −32.7889993139425

λ5 = −13.6916015502190 + 34.7570591820436j

λ6 = −13.6916015502190− 34.7570591820436j

(88)
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Despite the complexity of this system model and the quite large initial state un-
certainties

xy(0) ∈


0.2000 · [0.95 ; 1.05]
0.0010 · [0.95 ; 1.05]
0.0005 · [0.95 ; 1.05]

[0 ; 0]
[0 ; 0]
[0 ; 0]

 , (89)

ValEncIA-IVP manages to simulate this system model with good accuracy. The
resulting enclosures for two selected state variables determined by ValEncIA-IVP
and VNODE-LP are displayed in Figs. 10 and 11. Note again that the increased
interval diameters in the initial conditions of the exponential enclosure approach result
from a forward and backward transformation of a real-valued initial interval box into
the complex plane with an unavoidable wrapping effect.

Future work will deal with the use of this simulation routine for the validation
of tracking control strategies in which the load mass is no longer located at a fixed
position κ = 0.5. Instead, two different scenarios will be studied:

1. An accurate underlying controller is available for the load position. Hence, κ
can be used as a time-varying parameter during the simulation.

2. A robust controller will be designed which only relies on worst-case bounds for κ.
Hence, this value has to be treated as an interval parameter. This is a challenging
task since κ enters the state equations in terms of rational expressions, in which
its maximum power is κ10.

x
1
(t
)
in

m

0

interval enclosure

interval diameter

0.05 0.10 0.15 0.20 0.25

t in s

−0.1

0.3

0.2

0.1

0.0

x
5
(t
)
in

m
/s

0 0.05 0.10 0.15 0.20 0.25

t in s

interval diameter

interval enclosure

−10

20

15

10

0

−5

5

Figure 10: State enclosures computed by the complex-valued exponential enclo-
sure approach in ValEncIA-IVP for the controlled rack feeder system.

6 Conclusions and Outlook on Future Work

In this paper, an efficient exponential enclosure approach has been presented for
dynamic system models with an oscillatory behavior. It is based on complex-valued
interval arithmetic and serves as an extension of the basic enclosure techniques that
are available in ValEncIA-IVP.

Future work will deal with the development of techniques for the reduction of over-
estimation in complex-valued expressions which can be used as generalizations of the
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Figure 11: State enclosures computed by VNODE-LP for the controlled rack
feeder system.

monotonicity tests that are employed in the real-valued implementation of ValEncIA-
IVP. In such a way, it will become possible to use the presented techniques for further
nonlinear system models, as well as to extend it to the solution of IVPs for differential-
algebraic equations in ValEncIA-IVP [25].

Finally, the presented algorithm will be used within a framework for an interval-
based predictive control design for linear and nonlinear uncertain systems in which
verified state enclosures have to be computed in real time. This goal can be reached
by the presented techniques since, for example, the simulation of the rack feeder system
already can be carried out in real time, although only a prototypical implementation
has been used in IntLab. Further research work will, however, also focus on a C++
implementation in C-XSC [11], which could be shown by the authors to be compatible
with real-time systems for rapid control prototyping, cf. [6].

A Details on the Derivation of the Basic Itera-
tion Scheme in ValEncIA-IVP

Assume that there exists a converging iteration procedure

[x](κ+1) (t) ⊆ [x](κ) (t) for all κ ≥ 0 (90)

that is characterized by the following two properties:

1. [x](κ) (t) and [x](κ+1) (t) contain all possible true solutions x∗ (t) of the IVP

ẋ (t) = f (x (t)) , x (0) = x∗ (0) = x0 (91)

with certainty, and

2. [x](κ) ([0 ; T ]) and [x](κ+1) ([0 ; T ]), T > 0, are inclusion monotonic bounds for
the range of x∗ (t) over the complete time interval [0 ; T ] 3 t.

Using the above-stated properties,

f
(

[x](κ) ([0 ; T ])
)

and f
(

[x](κ+1) ([0 ; T ])
)

(92)

are guaranteed bounds for the exact derivative ẋ∗ (t) over the interval [0 ; T ] 3 t.
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Now, an enclosure for the derivative ẋ∗ (t) over the interval [0 ; T ] is defined ac-
cording to

ẋ∗ (t) ∈ ˙̃x (t) + [Ṙ](κ) ([0 ; T ]) , (93)

where ˙̃x (t) is a continuous approximation of ẋ∗ (t) for all t ∈ [0 ; T ]. This approxi-
mation is computed by exact differentiation of a function x̃ (t) that is assumed to be
at least once continuously differentiable for all t ∈ [0 ; T ]. Guaranteed enclosures for
the range of x∗ (t) over the complete interval [0 ; t̄ ], t̄ ≤ T are obviously obtained by

x∗ (t) ∈ [x̃] ([0 ; t̄ ]) +

t̄∫
0

[Ṙ](κ) ([0 ; T ]) dt

⊆ [x̃] ([0 ; t̄ ]) + [Ṙ](κ) ([0 ; T ]) · [0 ; t̄ ]

=: [x̃] ([0 ; t̄ ]) + [R](κ) ([0 ; t̄ ]) =: [x](κ) ([0 ; t̄ ])

(94)

with time-invariant bounds of [Ṙ](κ) ([0 ; T ]). In (94), [x̃] ([0 ; t̄ ]) denotes the range
of the approximate solution over the corresponding time interval.

Moreover, the solution x∗ (t̄ ) at the point t = t̄ can be enclosed by

x∗ (t̄ ) ∈ [x](κ) (t̄ ) = x̃ (t̄ ) + [Ṙ](κ) ([0 ; T ]) · t̄ . (95)

This justifies the applicability of (8)–(16) and can be transferred in a straightfor-
ward manner to the reasoning for the exponential enclosure technique described in
Sec. 3.2.

B Details on the Derivation of the Exponential
Iteration Scheme in ValEncIA-IVP

A converging iteration process for the exponential enclosure technique in ValEncIA-
IVP is characterized by

exp
(

[Λ](κ+1) · t
)
· [xe] (0) ⊆ exp

(
[Λ](κ) · t

)
· [xe] (0) . (96)

Using a componentwise notation, this expression is equivalent to

exp
(

[λi]
(κ+1) · t

)
· [xe,i] (0) ⊆ exp

(
[λi]

(κ) · t
)
· [xe,i] (0) , i = 1, . . . , n (97)

with [
exp

(
λ

(κ+1)
i · t

)
; exp

(
λ

(κ+1)
i · t

)]
· [xe,i] (0)

⊆
[
exp

(
λ

(κ)
i · t

)
; exp

(
λ

(κ)
i · t

)]
· [xe,i] (0) .

(98)

Because the exponential state enclosure technique is only defined for initial state
intervals [xe] (0) that do not contain the value zero in any of their components [xe,i] (0)

(cf. (17)), the enclosure property [λi]
(κ+1) ⊆ [λi]

(κ) can be checked in the following
way. The expression[

exp
(
λ

(κ+1)
i · t

)
· xe,i(0) ; exp

(
λ

(κ+1)
i · t

)
· xe,i(0)

]
⊆
[
exp

(
λ

(κ)
i · t

)
· xe,i(0) ; exp

(
λ

(κ)
i · t

)
· xe,i(0)

] (99)
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directly follows from (98). For xe,i(0) > 0, the relation (99) implies

exp
(
λ

(κ+1)
i · t

)
≥ exp

(
λ

(κ)
i · t

)
and exp

(
λ

(κ+1)
i · t

)
≤ exp

(
λ

(κ)
i · t

)
(100)

for t ≥ 0. Due to the monotonicity of the exponential function, (100) can be reformu-
lated as

λ
(κ+1)
i ≥ λ(κ)

i and λ
(κ+1)
i ≤ λ(κ)

i , (101)

which is equivalent to the equation (27). This proof can be performed in an analogous
way for xe,i(0) < 0.

Validity of (29) can, furthermore, be shown by

[λi]
(κ+1) :=

fi
(

exp
(

[Λ](κ) · [0 ; T ]
)
· [xe] (0)

)
exp

(
[λi]

(κ+1) · [0 ; T ]
)
· [xe,i] (0)

⊆
[
λ̃i
](κ+1)

:=
fi
(

exp
(

[Λ](κ) · [0 ; T ]
)
· [xe] (0)

)
exp

(
[λi]

(κ) · [0 ; T ]
)
· [xe,i] (0)

,

(102)

which holds due to the fact that

exp
(

[λi]
(κ+1) · [0 ; T ]

)
· [xe,i] (0) ⊆ exp

(
[λi]

(κ) · [0 ; T ]
)
· [xe,i] (0) (103)

corresponds to

1

exp
(

[λi]
(κ+1) · [0 ; T ]

)
· [xe,i] (0)

⊆ 1

exp
(

[λi]
(κ) · [0 ; T ]

)
· [xe,i] (0)

. (104)

A conservative overapproximation of (102) is then given by the redefined coefficient
interval

[λi]
(κ+1) :=

fi
(

exp
(

[Λ](κ) · [0 ; T ]
)
· [xe] (0)

)
exp

(
[λi]

(κ) · [0 ; T ]
)
· [xe,i] (0)

. (105)
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