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Abstract

The paper deals with applications of interval analysis methods to a
special practical problem of parameter identification of a real chemical
catalytic process. Several possible models of the process are given. The
measured data of the process are corrupted by both usual fluctuation
errors and chaotic disturbances. Samples of the input information are
short. Any characteristics (including probabilistic ones) of corruptions
are unknown, but the total corruption in each measurement is assumed to
be bounded. As the result, the identification of model parameters under
the uncertainty is performed by interval methods. The output results
are represented in the form of the information sets (membership sets) of
admissible values of the parameters.
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1 Introduction

The overwhelming majority of methods used in practice for processing corrupted ex-
perimental data are based on the mathematical statistics and regression approaches
(see, e.g., Russian Standards [1]-[3]). For their application, these approaches need the
following crucial assumptions on properties of corruption in the data to be processed:

1) the measurement sample is representative and has sufficient length;

the total error (in measurement) has a probabilistic character;

as a rule, probability distributions of the total error are assumed to be Gaussian;
there are no chaotic components (shifts) in measurements;

U W N

)
)
)
) errors in sequential measurements are independent.

The results from these approaches are represented as point-wise estimations of the

vectors of parameters with their confidential intervals.
Unfortunately in practice, we often encounter an absolutely different situation:

1) the sample is too short and comprises only a few measurements;

2) there is no information about the properties of all components of the total error,
especially about the probabilistic ones, and errors are hardly Gaussian;

3) experimental measurements contain not only usual fluctuating components, but
also apparently chaotic ones (or suspicious shifts) with unknown properties;

4) nothing can be said about dependence of errors in sequential measurements.

Nevertheless, researchers formally apply the regression approach, although the
parameter estimates can have only a qualitative character, and it is impossible to
introduce any (valid) confidence interval probabilities or to give any confidence inter-
vals. We also note that, assuming a Gaussian distribution of errors, classical statistical
and regression approaches cannot take into account the important fact of the physical
boundedness of the total corruption in measurements.

An introduction of idea of physically bounded corruption without any probabilistic
properties leads directly to application of interval analytic approaches. In practice, a
researcher may know approximately the value of this bound and can choose a reason-
able value. Hence, this value is assumed to be a free variable similar to the confidence
interval probability in the statistical approaches. Furthermore, the output results are
represented in the form of the information (membership) sets of admissible values of
parameters.

The paper has the following structure. Section 2 describes the chemical experi-
ment, input information, and possible models (of research interest) of the process. We
describe results of previous analyses of the validity of the standard approach for given
models. In Section 3, interval analysis application features are considered, and the
problem formulation is given. Section 4 presents the interval analysis techniques used
for identification. Section 5 describes results of processing the experimental data by
the elaborated interval approaches.

2 Experiment, Input Data, and Models

The results of measuring the chemical process of catalytic decomposition [4] for three
catalysts are considered (see Fig.1): 1) K,Li,WOs3 (nano-sized); 2) Na,WOs; 3)
Ko.47s WO3. Measurements are marked by circles, squares, and triangles, respectively.

Properties of these catalysts (including the most advanced ones, called active nano-
sized catalysts) are well investigated. Usually, we know the graph of the process,
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Figure 1: Experimental data; decomposition of H2O2 on bronzes (kinetic curves).

the values of its parameters, and activity (the process of the derivative). For each
experiment, a sample of measurements contaminated with noise is given. Conditions
of the experiments are: fixed volume and initial concentration of the standard reactant
H20O2, fixed volume and initial concentration of various catalysts to be tested, the same
(standard) environmental conditions of the experiment (temperature, pressure, etc.),
and the same (standard) procedures of measuring the reactant concentration versus
the time of the decomposition reaction.

On the whole, the experiments have been performed very carefully with very clear
reactants and small actual measurement errors. As a consequence (Fig. 1), the mea-
surements go without jerks, i.e., there are no evident outliers in the samples.

Input data and model of corruption. The values ¢, of the independent argu-
ment (time) are assumed to be known exactly, but an observation of the reaction is
performed on relatively short time interval. The sample is very short; there are only
four measurements. The measurement of the process is indirect, implying the pres-
ence not only of the usual fluctuation errors, but also of additional possible chaotic
corruptions in the measured values of the reactant concentration. It is assumed that
measurements in the sample are contaminated with total additive noise bounded by
modulus; no probabilistic information is known. The model of corruption has the
form:

Sn = Sy, + €n, n=1,N, N =4,

en = €p + Xn, len] < emax,

(1)

where s, is a corrupted measurement, s, is the unknown true value being measured,
en is the absolute total error (corruption) independent of the measured value and
bounded in modulus by the value emax, i.€., an approximate a priori total accuracy
of measurement assumed to be known, e, is the usual fluctuating measurement com-
ponent of the total error, x, is a chaotic component. No assumptions on probabilistic
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Figure 2: Experimental histogram of non-Gaussian and unstable form.

characteristics of the total error are made. In practice, such a refusal can be substan-
tiated by the fact that the experimental histograms of measurement dissipation do not
have the Gaussian character (see Fig. 2, in which some constant EMF is measured)
and often are not stable from one experiment to another.

Several hierarchical models of the process have been investigated [4]-[7].

Model 1. An experimental process is described by a third order polynomial
S(t7ao7a17a27a3) = ao+a1t+a2t2 +a3t3. (2)
Here, the vector of parameters to be identified is four-dimensional: {ao, a1, a2, as}.

Usually, this model is aimed only at analysis of the process trend.

Model 2. An experimental process is described by a single exponent
S(t, A, ) = Aexp(at). (3)

Here, the vector of parameters to be identified is two-dimensional: A > 0 is
the initial value of concentration, and o < 0 is the coeflicient of activity in an
approximate model. This model is also aimed at analysis of the process trend.

Model 3. An experimental process is described by the function
S(t, A, a,B) = Aexp(at) + B. (4)

Here, the vector of parameters to be identified is three-dimensional: A > 0 is
the initial value of concentration, o < 0 is the activity coefficient, and B > 0
is the background value. This model is chosen for more detailed analysis of the
process.

Model 4. The function that describes an experimental process has the form
S(t, A, a,B,B) = Aexp(at + At°) + B. (5)

Here, the vector of parameters to be identified is four-dimensional: A > 0 is
the initial value of concentration, a < 0 is the coefficient of activity of the first
order, 8 < 0 is the coefficient of activity of the second order, and B > 0 is
the background value. This model is used for detailed analysis of the process,
especially in estimation of the nano-sized catalyst activity.
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Previous analysis of validity of the standard least squares mean (LSQ-method)
and various models was performed (Figs. 3-6). For Model 1, the LSQ-method produces
(Fig. 3) invalid results that do not conform in the physical sense. When applied to
Model 2 (Fig.4), it shows its invalidity and the invalidity of this model since its poor
approximation contradicts the high accuracy of the process implementation, i.e., gives
unacceptable (in the experience of the researchers) and incomplete estimations. For
Model 3 (Fig.5), the results seem to be satisfactory, but incomplete. For Model 4
(Fig. 6), the results are unacceptable, because the LSQ-method is not valid. Note that
incompleteness of results is stipulated by an absence of the probability characteristics
of the total error in the input data.

S(t)=-2E-19£+0.00017#-0.005¢+0.65

S(t)= 3E-0673-5E-0.5¢2-0.00487+0.65
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Figure 3: LSQ-approximation; invalidity of the method and Model 1.

3 Interval Analysis Application Features
and Problem Formulation

Let us introduce necessary notions of the interval approach to data analysis (see [8]—
[10]). We are given:

1) a measurement sample {t,,sn}, n =1, N;

2) a model of measurement corruption (1) with the interval bound |en| < emax on
the total error;

3) a model of the process, i.e., the describing function (dependence) S(t,p) with
the argument ¢ and the parameter vector p.

We need the following definitions, attempting to follow standard notations [16].
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Figure 4: Model 2; LSQ-approximation; unacceptable results.
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Figure 5: Model 3; LSQ-approximation; incomplete results.
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Figure 6: Model 4; LSQ-approximation; unacceptable results.

The Uncertainty set of each measurement (USM), i.e., in the case under consid-
eration, the uncertainty interval

Sn = [§n7§n] : S,, = Sn — €max, Sn = Sp + €max, n = 1,N (6)

The Admissible value p of the parameter vector and corresponding admissible de-
pendence

(p,S(t,p)): S(tn,p) € 8n, forallm=1N. (7)

The Information set (INFS, the membership set), i.e., the totality of all values p,
for which

I(emax,p) = {p: S(tn,p) € 8n, forall n=1,N}. (8)

The Consistent (inconsistent) sample

if for the given emax: I(emax,p)# 9,
(if for the given emax : I(€max,p) = 2.

(9)

The tube of admissible dependences, i.e., the totality of all the dependences (func-
tions) for which

T(t) = {S(t,p) : S(tn,p) € sn, forall n=1,N, and p € I(emax,p)}- (10)

Figure 7a and 7b illustrations the introduced concepts above.

Formulation of the problem: Identify and (construct) the set of admissible
values of the model parameters consistent with the given input data under uncertainty.
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Figure 7: Illustrations to the main notions.

4 Interval Analysis Techniques

After rejecting the probability-based statistical paradigm and arriving at the interval
description of the total corruption in measurements, the situation changes crucially
and becomes constructive. As we remarked earlier, the notion of “confidence interval
probability” loses its meaning. Its role is played by the bound emax of a variable level.
In contrast to ephemeral “confidence interval probability”, the work with the variable
value emax is absolutely understood (in an engineering sense) by researchers.

For general description functions (dependences), there are “classical” interval al-
gorithms based on application of interval boxes [8]-[10] for the approximate building
of information sets with any prescribed accuracy. However, constructive application
of properties a specific function allows one to formulate algorithms that provide exact
analytical descriptions of the INFS boundaries and are faster. This is the case when
the describing function originally (or after some transformation) depends linearly on
parameters to be identified (estimated). Typical origins of such transformations are
given in [3], and this idea is used in this paper.

Consider the main applications of the interval algorithms described in [12]-[15] on
the Model 3. The following procedures are performed.

First, the dependence (4) is transformed from the original form S(¢,A,a, B) =
Aexp(at) + B to a linear dependence on parameters log A and «. Shifting the param-
eter B to the left-hand side and then taking the natural logarithm of both sides, we
obtain the inclusions

Y(tn, B,log A,a) = log(sn, — B) 2 log A + atn (11)

with linear dependence between the parameter a and the new parameter log A. The
left-hand side of this membership is an interval for each t,.

Next, we introduce some reasonable a priori interval on the parameter B and
supply it with a grid {Bm,,m =1, M }:

B=[BB|: AB=( (M 2

B,n,=B+AB(m-1), m=1,M.
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Under the circumstances, for each fixed node B,,, we obtain a collection of the
interval inclusions for the parameters o and log A and every t,:

log A + oty € log(sn — Bm), n=1,N. (13)

Let us illustrate the elaborated interval procedures for parameter estimation on an
example of a linear function with a two-dimensional vector (a,b) of parameters. The

function is assumed to be given over a grid {z,}, n =1, N, so that
Y(Tn,a,b) = a+ bxn, n=1,N. (14)

Next, we construct the collection of “pairwise” {Gi,n} partial information sets (PINS).
Due to properties of the linear dependence (11), we consider a pair (y,,y,,) of USM’s
with their endpoints (Fig. 8a, vertical black segments with black circles). Every such
pair defines a collection of dependences admissible (i.e., consistent) with these two
USMs. The marginal (solid) and intermediate (dots and dashes) lines determine the
corresponding quaternary of coefficient points (a1,b1)—(a4,bs) (Fig.8a). In the plane
of parameters, these points are vertices of the partial information set (Fig. 8b, paral-
lelogram in gray) of the corresponding admissible values of the line parameters. The
boundaries of this parallelogram are linear, and they can be described exactly:

Gin={a,b:a+bx; €y, and a+ bz, €y, }, i,n=1,N, andn>i (15)

A _
y(x,a,b) = a+ bx a)
marginal lines ) /,((‘;2»122))
1501

Yi

bmax \_
o o <(a3,b3)

Yy (a45b4)

b, l.— 7 intermediate lines
3 P

min i n

\/

Ay~ Apmin

Figure 8: A pair of USMs and its PINS of parameters.

This technique is rather flexible and allows one to take into account any a priori
information on feasible values of the parameters. Let an a priori rectangle G(a,b) be



206 S.I. Kumkov, Yu.V. Mikushina, Interval Approach to Identification . ..

given (Fig.8b). Then, it is possible to enhance the result of estimation (in red) by
intersecting the PINS G; ,, with é(mb). Such a technique can be termed a partial
pairwise adjustment method. It is similar to techniques from constraint propagation.

Constructing the information set I(a,b) of the parameters a and b for a consistent
sample is performed by intersecting all PINS’s by a standard intersection operation
for convex sets:

I(a,b) = N Gin(a,b) = N Gin (16)

i,m=1,...,N, n>i i=1, n=2,...,N

The latter equality in this formula is valid for a linear dependence on the parameters
a and b. Moreover, in this case, the information set is a convex polygon with exact
description of linear boundaries between its vertices.

The marginal sections of INFS (16) are calculated using necessary adjustment of
the grid {By,}: we shift the position of the interval B = [B, B], change the number
of nodes M, and decrease the step AB around these sections.

Constructing the tube T'(z) of admissible dependences amounts to calculation of
the collection of its lower T(x) and upper T(z) boundary points for each value of the

argument z,, n =1, N,

T(zn) = i ban}t, T(zn) = ban}.

L(wn) = Juin, pleFbond, Tlen) = max tetbon) (17)

For the linear function, the upper (lower) boundaries of the tube over the intervals

[€n, Znt+1] are lines that connect the corresponding upper (lower) edges of the cross—
sections [L(zrn), T(zn)] and [T(n+1), T(zn+1)]. As a result, the data provided to a
user consist of the tube (17), the information set (16), its minimal enclosure box, i.e.,
intervals @ = [a,@] and b = [b, b], and the central point (ac, bc):

a=min{a: (a,b) € I(a,b)}, @=max{a: (a,b) € I(a,b)},
b=min{b: (a,b) € I(a,b)}, b=max{b: (a,b) € I(a,b)},
ac = (a+a)/2, be=(b+b)/2.

It can happen that the information set (16) of the whole sample does not exist
for a corrupted sample, i.e., the set (16) is empty. This means that for the value of
the constraint emax provided by the researcher, the sample is inconsistent. We have
elaborated special algorithms and software [13] based on graph theory that divide
such a sample, inconsistent on the whole, into a collection of consistent subsamples
of various lengths. Usually, researchers are interested in a subsample of the maximal
length. We do not consider subsamples of unacceptably short length that can be
generated by possible outliers.

Remark. Under the above mentioned uncertainty, there is not enough information
to detect reliably detached outliers in the process measurements. Instead, it is suggested
to perform analysis of the information sets of subsamples in the space of parameters;
this seems to be a constructive approach to remove the influence of possible outliers.

Recall that the value of the bound emax is assumed to be known approximately in
practice. This parameter is assumed to be free, and we can be vary it. That provides an
interesting and useful property of the interval approach we have constructed. Namely,
it becomes possible to estimate, from below, the actual level of corruption in the

given input sample. Let, for the given initial constraint e on the value of the total
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corruption, the input sample (16) be inconsistent in spite of absence of “evident”
outliers. Then, increasing the constraint from the initial value et we inevitably
arrive at the situation when, for some critical value e}, ,, the information set becomes
non-empty and consists of the only point I(a,b) = (a*,b"). Such a value e}, can be
a lower estimate of the actual corruption level in measurements of the input sample.
In the case of an initially consistent sample, the outer estimate (from below) e},
of the actual level of corruptions is found similarly by decreasing the constraint from

its initial value e as illustrated in Fig. 9.
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S* . -
1 for the limit \ I(e* — (o
: e . = ;
decreased value €%, (ereeP) = 1.P))
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{I(e: A0 B}

(A,0°,B™)
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Figure 10: Inadmissible LSQ-solution.

Moreover, this procedure allows one to analyze a common LSQ solution obtained
formally, as suggested by Fig. 10. The case is shown for some emax of the value ej., <
emax < € (elements in blue). The LSQ solution (for Model 3) is inadmissible: the
solution (red, Fig. 10a) does not pass through all uncertainty intervals s, (blue), and
the point ASQ,a5Q, BSQ (red, Fig.10b) lies outside the corresponding information
set I(emax, A, a, B) (blue, Fig. 10b). But at the same time, the limit solution (black
circle, Fig. 10b) exists for the value ey,... It is very difficult to compare these two
solutions in the process plane (Fig. 10a), but we can do it constructively in the space
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Figure 11: Comparison with the classical parallelotope approach.

of parameters. Notice that a similar technique of bound evaluation is widely applied
for solving systems of interval inequalities (see e.g., [10]).

A comparison of these results in Fig. 11 with the classical approach based on en-
closure boxes [8]-[10] confirms the idea that applying specific properties of the inves-
tigated dependence allows one to construct exact boundaries of the information set
and crucially accelerate computations. The approach under discussion is similar to the
advanced “strip” method [11], but is faster due to analytical computation of vertices
coordinates for the partial information sets (15) and application of fast program of
intersection of the convex polygons.

5 Practical Examples

The initial bound on the total corruption (taken quite conservatively) was given by
the researcher as e* = (.01 mol/litre. However, for Model 3, estimates of the
limiting values ey, for the actual level of total corruptions are 0.0015, 0.0042, and
0.0050 mol/litre in the experimental samples 1-3 (Fig. 1). Comparison of these values
confirms that the experiments have been performed with high accuracy (about 1.0-
1.5%).

Next, we consider results of processing the experimental data for the nano-catalyst
(Fig. 1, sample 1 in red) using Model 3.

The projection of the INFS sections onto the plane (log A—«) for admissible values
of the parameter B is shown in Fig. 12, where emax = ei;';f( = 0.01 mol/litre were
chosen for computations. Here, the red circle marks the LSQ solution logAS? = 0.565,
a®Q = —0.0718 1/min, BSQ = 0.085 mol/litre (as in Fig.5); and the section in red
is one closest to the BSQ-estimate. The INFS spatial image is given in Fig.13. Its
image in the (A-«a) plane (in its natural scale) is shown in Fig. 14.

The projection of the INFS image onto the (B—A) plane is given in Fig. 15 (in its
natural scale). The projection of the INFS image onto the (B—a) plane is shown in
Fig. 16. In these pictures, red circles mark the points of the LSQ solution, while red
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Figure 16: Information set projection onto the the (B—«) plane.

vertical segments are the INFS sections which are nearest to the value of BS<Q.

Thus, one may conclude that for the value emax = et = 0.01 mol/litre chosen
for demonstration, the LSQ solution is admissible. Moreover, under the uncertainty
considered, the LSQ solution is incomplete, since it cannot give such rich information
(Figs. 12-16) as we obtain by the interval approach.

Next, we consider results of processing the experimental data for a nano-catalyst
(Fig. 1, sample 1 in red) using Model 4. For this model, the algorithms are simi-
lar, but for two grids in the parameters B and . Transforming the initial relation
S(t,A,a, 8, B) = Aexp(at + Bt*) 4+ B into a linear form is performed as follows.

First, we introduce an approximate reasonable interval and grid on the parameter
{Bm,m =1, M} using the results of computations with Model 3:

B=[B,B]: AB=(B-B)/(M—-1), Bn=B+AB(m—-1), m=1,M.

Second, an approximate reasonable interval and grid on the parameter {fx,k = 1, K}
are introduced by taking into account the physical bound 5 < 0 on this parameter:

B=[B8.8: A=B-0)/(M—-1), fr=B+A8Kk-1), k=1,K.
Further, similarly to (13), we obtain for each By,
log(sn — Bm) S log A + atn, +ﬂkt3“ m=1,M, k=1,K, n=1,N.

After transferring the node [ to the opposite side of the above equality, we obtain
for each node B, and each node ) the following collection (on ¢5) of inclusions for
the parameters a and log A:

logA—l—oztnelog(sn—Bm) —Bpt2, m=1,M, k=1,K, n=1,N.
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Finally, having performed the search over the external grid {fx} and the internal
grid {Bm}, we obtain a description of the information set I(emax,log A, a, Bm, Bk) as
a collection of two-dimensional sections over the grids on B and 5. The marginal
sections of the set I(emax,log A, a, Bm, i) are calculated by appropriate adjustment
of the grid {B,,}, through shifting the position of the interval B = [B, B], changing
the number of nodes M, and by decreasing the step AB around these sections. A
similar adjustment is performed over the grid {Sx}.

As a result, we obtain information necessary for description and representation of
all the INFS sections I (emax, log A, &, Bm, Bk), m = 1, M and k = 1, K. The projection
of this set onto the plane (5—B) is shown in Fig. 17. Note that each admissible value
of B determines a corresponding interval of admissible values of B.

For Model 4, the marginal admissible curve s(t) = A(Bmin) €xp (a (Bmin)t+ﬂmint2) +
E(,Bmin) (in red) for the marginal value A(Bmin), @(Bmin); Bmin, E(,Bmin) from the INFS
I(emax, A, v, 8, B) is shown in Fig. 18 in comparison with the LSQ curve s°Q(t) =
ASQ exp(a®92) 4 BSQ (in green, by Model 3). A significant difference is seen between
these curves, especially in levels of B.

e (T e m e n e e e e e o e e e e e AB,
E‘.‘|T||||‘H mol/litre
E 0.14
? 0.12
: Sample 1, Model 4
L ey, = et =0.01 mol/litre,
0.10
{I(emaxaAaaaBka [B(Bk)])} 0.08
minimal “side” projection ’
/ outer box
: 0.06
Bmm ___________________________________ B(B = 0) = B trom Model3
' ' l/miynz‘
-0.0025  -0.0020 -0.0015 -0.0010 -0.005 B0

Figure 17: Model 4, sample 1; projection of the information set I(emax,logA,,
Bm, Br) onto the plane (5-B).

6 Conclusions

We can conclude that the interval approach overcomes the difficulties of the stan-
dard technique and produces a constructive description for the subtle structure of the
information set of parameters as well as the minimal guaranteed enclosure for each
parameter and a lower estimate for the actual level of the total corruption in the pro-
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S(t)“ s, Model 4, the marginal admissible curve
06t S@) = A(Bmin) exp( O“(Bmin)t + Bngnf) * B(Bmin)
forA(Bmin)’ 0L(Bmin)’ Bmin’ B(Bmin)
L from I(emax’Aa a, Ba B) Sample :1
é 051 nano-sized catalyst
g K,Li,Wo,
5 €max = €Mt = 0.01 mol/litre
o
—0.4F
b
g St = A exp(a* ) +B™
03} by Model 3, B =0
2 | _
S sl BB pin) = 0.5 (B(Byyin) BB min) :
i [B(Bmin)» B(B ;)] is practically pointwise
"""" e g
SQ 34
OLF . 0 eeeeesseeeesmseesesssesssssses st
¢, min
0 10 20 30

Figure 18: The marginal admissible curve for A(Bmin), @(Bmin), Bmin, E(ﬂmin) from the
information set I(émax, 4, a, 8, B).

cessed experimental data. Moreover, this allows one to analyze the validity of various
models of the process under study.

In the majority of practical cases, the developed hybrid “grid—analytical” algo-
rithms for constructing the information sets of parameters (together with transforma-
tion of variables) result in fast computational procedures that provide exact description
of boundaries of information set sections.

For the given experimental data, we use our interval procedure to find the limiting
values of the bounds e},., on the total measuring error. The bounds were at the
level 1.0-1.5%. We conclude that the chaotic components of the measuring error are
very small, and the experiments had been performed with very high quality to yield
sufficiently accurate results.
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