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Abstract

An attractor is the set toward which the solutions of a dynamical
system converge. In this paper, the system is described by an autonomous
state equation of the form ẋ = f (x) . When the function f : Rn

→ R
n is

nonlinear, interval analysis is needed to provide a guaranteed conclusion.
Existing interval-based methods cover the state space with small boxes
and perform an interval integration for each of them, which makes the
technique limited to small dimensional problems. This paper shows that
an outer approximation of attractors can be built without any interval
integration. The concept is to perform a quantization of the state equation
into a dynamical graph. The nodes of this graph are polytopes covering the
state space. A test case related to the station keeping of a non-holonomous
robot illustrates the principle of the approach.
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1 Introduction

We consider a dynamical system described by the state equation

ẋ = f (x) , (1)

where x ∈ R
n is the state vector, and f : Rn → R

n is a nonlinear function. For
simplicity, we assume that the state space corresponds to R

n, but the approach
easily extends to manifolds locally equivalent to R

n. We also assume that, for
any initial vector x0 ∈ R

n, the state equation has a unique solution denoted by
φ (t,x0). It is the case, for instance, if f is locally Lipschitz. The limit set [1] of
the system is defined by

X
∞ = {x ∈ R

n s.t. (∀ε ∈ ]0, 1]) (∃t ∈ ]1,∞[) (‖φ (t,x)− x‖ < ε)} .
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This limit set may enclose unstable subsets of Rn, but it always contains the
attractor of the system (i.e., the set to which the system converges when t
tends to infinity). Interval analysis [15, 17] has been used by several authors to
characterize attractors [6, 26] or capture basins [13]. The problem has also strong
similarities with the characterization of reachable sets [3, 20, 21], which also can
be studied efficiently with interval-based methods. All these methods require
bisecting the state space into small boxes and integrating the state equation
for all these small boxes. This makes these approaches limited to very small
dimensional problems (i.e., n ≤ 4). Note that there exist also point methods to
tackle this type of problems [4, 22], but they require some Lipschitz assumptions
that are rarely available, and they also suffer from the same drawbacks with
respect to the dimension of the problem.

The problem to be considered in this paper is to provide an outer approxi-
mation of the limit set (or the attractor) of a dynamical system. The method
does not requires any interval integration [2, 16] of the system. The main idea
is to decompose the state space with polytopes and to build a graph the nodes
of which correspond to the polytopes.

The paper is organized as follows. Section 2 provides the theoretical notions
that are required to quantize our problem into a problem involving discrete
graphs. Section 3 presents an original example of station keeping. The cor-
responding test case can be cast into a two-dimensional problem and allows a
graphical representation of the dynamics of the system. Section 4 illustrates the
method on this simple example. Section 5 concludes the paper.

2 Quantization

This section provides some basic notions which are required to build a discrete
dynamical graph from the state equation (1). This operation can be interpreted
as a tiling of the state space and thus will be called a quantization (the word
discretization that could also have been used is generally devoted to a time
mincing). The quantization is based on interval analysis to guarantee proper-
ties of the initial dynamical system. The principle of using interval analysis for
quantizing a continuous problem into a graph has already been used for path
planning [8, 19] or to analyze the topology of set defined by nonlinear inequal-
ities [5]. In the paper, the same principle will be applied, except that here, a
differential equation is involved.

Paving. A paving (see e.g., [23]) of the state space R
n is a collection

Ω = {X1,X2, . . . ,Xp} of non-overlapping polytopes Xi such that

p
⋃

i=1

Xi = R
n.

Relation. Consider a point x0 ∈ Xi. We define the time ηi (x0) at which
the system leaves Xi for the first time, i.e.,

ηi (x0) = inf {(t ∈ ]0,∞[) (φ (t,x0) /∈ Xi)} . (2)
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Figure 1: Since all trajectories inside the polytope Xi

will escape Xi, we have Xi 6 →֒ Xi.

Consider two polytopes Xi and Xj of Ω. We define the relation →֒ between Xi

and Xj as follows

(Xi →֒ Xj) ⇔

{

(i) (∃x0 ∈ Xi) (φ (η (x0) ,x0) ∈ Xj)
(ii) dim (Xi ∩ Xj) ≥ n− 1.

(3)

The first condition (i) tells us that the trajectory can cross the common frontier
Xi ∩ Xj from Xi to Xj . Condition (ii) requires that the polytope Xi and Xj

intersect each other, but not only on the corner: If the polytope Xi ∩ Xj has a
dimension equal n− 1, then Xi and Xj are bonded to each other through their
common face; If dim(Xi ∩Xj) = n, then we should have Xi = Xj .

Convention. If there exists x0 ∈ Xi, such that ∀t > 0, φ (t,x0) ⊂ Xi, then
η (x0) = ∞. In this situation, we could write φ (η (x0) ,x0) ∈ Xi, and we shall
consider that (Xi →֒ Xi).

Quantization. A quantization of the state equation (1) is a graph G (i.e.,
a subset of Ω× Ω) defined by

(Xi,Xj) ∈ G ⇔ Xi →֒ Xj .

The quantization will by denoted by G = (Ω, →֒).

Proposition 1. Consider a polytope Xi of Ω, a vector n and two real numbers
ε < 0 and a ∈ R. We have

((∀x ∈ Xi) ((nT · f (x) ≥ ε) ∧ (nT · x ≤ a))) ⇒ (Xi 6 →֒ Xi) .

Proof. The proof is by contradiction and is illustrated by Figure 1. Define the
function V (t) = nT · x (t) and assume that for all t > 0, x (t) ∈ Xi. We have
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Figure 2: Interpretation of the relations →֒ and 6 →֒

V̇ (t) = nT · f (x) ≥ ε > 0, and thus V (t) converges to +∞. This is inconsistent
with the fact that nT · x ≤ a. �

Test 1. Consider a set Xi of R
n and take any v, e.g., v = −f (x0), where

x0 ∈ Xi. Take a box [x] enclosing Xi. The lower bound of vT · [x] corresponds to
a. Using interval computation, we can check that vT · f (x) is strictly negative
in Xi. If it is the case, we conclude that Xi 6 →֒ Xi.

Proposition 2. Consider two polytopes Xi and Xj of Ω and assume that
dim(Xi ∩ Xj) = n− 1 (i.e., Xi and Xj are stuck together). Denote by n 6= 0 a
vector orthogonal to Xi ∩ Xj and pointing toward Xj , i.e.,

((a ∈ Xi) ∧ (b ∈ Xj)) ⇒ nT · (b− a) ≥ 0,

then, we have:

(i) ((∀x ∈ Xi ∩ Xj)
(

nT · f (x) > 0
)

) ⇒ (Xj 6 →֒ Xi)
(ii) ((∃x ∈ Xi ∩ Xj)

(

nT · f (x) > 0
)

) ⇒ (Xi →֒ Xj) .

Figure 2 illustrates the two conditions (i) and (ii), respectively. In this figure,
we have dim(Xi ∩Xj) = 1.

Proof. Let us first prove (i) by contradiction. Assume that Xj →֒ Xi. Then,
there exists a trajectory from Xj to Xi that crosses Xi ∩ Xj at a point x̃. At
this point, we have nT · f (x̃) ≤ 0, which is not consistent with the left hand side
of (i). To prove (ii), it suffices to take a point x0 such that x0 ∈ Xi ∩ Xj and
nT·f (x0) > 0. From (2), we have η (x0) = 0 and φ (η (x0) ,x0) = x0 ∈ Xj . Thus,
from (3), we get Xi →֒ Xj . �

Test 2. Since Xi ∩ Xj is a polytope, it can be described by linear inequal-
ities, say Aij · x ≤ bij . The condition in (i) can be checked by proving the
inconsistency of the predicate

(

Aij · x ≤ bij

)

∧
(

nT · f (x) < 0
)

.
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This can easily be done using interval analysis. A similar reasoning can be done
for the condition in (ii).

Proposition 3. If the two polytopes Xi and Xj do not share, at least partly, a
common face, then they are not linked by the relation, i.e.,

dim (Xi ∩Xj) < n− 1 ⇒ (Xi 6 →֒ Xj) .

Proof. The proof is a direct consequence of (3). �

Test 3. Since Xi and Xj are polytopes described by linear inequalities and
that are either non-overlapping or equal, Proposition 3 can be tested easily using
verified linear programming [7].

Proposition 4. Consider a paving Ω = {X1,X2, . . . ,Xp}. We have

∀j 6= i,Xi 6 →֒ Xj ⇒ Xi →֒ Xi,

which means that if all trajectories starting from Xi cannot enter inside any of
the Xj ’s (i.e., Xi 6 →֒ Xj), then at least one trajectory will stay inside Xi forever
(i.e., Xi 6 →֒ Xi).

Proof. The proof is conducted by contradiction. Assuming that Xi 6 →֒ Xi, take
x0 ∈ Xi. It follows from (3) that the trajectory φ (t,x0) escapes from Xi at time
ηi (x0). Since the paving Ω covers Rn, ∃j 6= i such that φ (ηi (x0) ,x0) ∈ Xj . Or
equivalently, ∃j 6= i,Xi →֒ Xj , which is inconsistent with the assumption. �

Test 4. Except for atypical situations (such as for instance when one tra-
jectory almost gets out from Xi), the condition of Proposition 4 can be checked
easily using interval linear algebra to prove that Xi →֒ Xi. The problem is
indeed NP-hard [11] in the general case.

The four previous tests can be used to build a quantization of a system
described by state equations. The following theorem shows how to deduce an
enclosure for the attractor using the associated graph.

Theorem 1. Consider a system described by the state equation ẋ = f (x), a
paving Ω = {X1,X2, . . . ,Xp} of the state space and the graph G = (Ω, →֒).
Define Ω∞ as the set of all Xi ∈ Ω of the attractor of G. The set Ω∞ (or
more precisely the union of the elements it contains) encloses the attractor of
the system.

Proof. Recall first that the attractor of a directed graph Ω is the set of all
nodes Xi such that there exists a path from Xi to Xi. The proof is conducted
by contradiction. Take an element x ∈ Xi ∈ Ω such that (i) Xi /∈ Ω∞ and
(ii) x belongs to the attractor A of the dynamical system. Since x belongs to
A, for all ε, there exists t1 > 1 such that ‖φ (t1,x)− x‖ ≤ ε. The trajectory
crosses the following chain Xi1 ,. . .Xim , with x ∈ Xi1 and φ (t1,x) ∈ Xim . Since
Xi1 /∈ Ω∞ (by assumption), Xi1 6= Xim . Since it should be true for all ε, x should
belong to the boundary of Xi1 . If it is the case, it means that x ∈ Xi1 ∩ Xim ,
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Figure 3: Coordinate transformation for the pose of the robot

and thus there exists a path from Xim to Xim . In such a case, we would have
x ∈ Xim ∈ Ω∞, which is inconsistent with the assumption. �

From Theorem 1, we are able to compute an enclosure of the attractor of a
dynamical system. The procedure that should be followed is the following: (i)
build a paving Ω = {X1,X2, . . . ,Xp} of the state space Rn, (ii) build the graph G
associated with the relation →֒, (iii) compute the attractor of the graph, (iv) and
return the union of the resulting Xi’s. This will be illustrated in the following
section by considering the station keeping problem.

3 Station Keeping Problem

The problem of station keeping for a robot is to stay inside a disk around origin.
Station keeping is needed for instance by sailboat robots [18, 24] that have to
anchor inside a delimited area or to stay inside a given corridor [9]. The control
problem is known to be difficult, especially in the case of non-holonomous robots
[12, 14, 25]. Consider a non-holonomous robot described by the state equations







ẋ = cos θ
ẏ = sin θ

θ̇ = u .

Since ẋ2 + ẏ2 = 1, this robot cannot stop. The objective of this robot is to
stay inside a zone around zero. Since the problem of controlling the robot has
a rotation symmetry, it is possible to describe its relative motion with respect
to zero with only two state equations (instead of three). For this, we have to
change the coordinates from (x, y, θ) to (α, d, ϕ), as illustrated by Figure 3. In
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Figure 4: A robot moving around the origin

this figure, ϕ is the heading of the robot with respect to its direction toward
zero, α is the azimuth angle and d is its distance to 0.
Proposition. The motion of the robot can be described by the state equations







(i) ϕ̇ = sinϕ
d

+ u

(ii) ḋ = − cosϕ

(iii) α̇ = − sinϕ
d

.

(4)

Proof. Proofs for (ii) and (iii) are trivial. To prove (i), from Figure 4, we have

ϕ− θ + α = π.

Thus, the state equation for the azimuth variable is

ϕ̇ = −α̇+ θ̇ =
sinϕ

d
+ u. �

Control. The goal of the station keeping problem is to lead and keep the
robot around zero, for instance inside a disk. We propose the control

u =

{

+1 if cosϕ ≤ 1√
2

(the robot turns left)

− sinϕ otherwise (the robot goes toward zero) .

The idea of this control is to go toward zero using a proportional control if the
robot points approximately toward zero (i.e., if cosϕ > 1√

2
) and to turn left oth-

erwise. Inserting this control law into state equation (5) yields an autonomous
system. The corresponding vector field is not continuous around ϕ = ±π

4
.
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Figure 5: The robot has to stay in a neighbourhood of the origin.

Summary. Since the state variable α is not involved in the first two equa-
tions of (4), it can be eliminated from the state equations of the robot. In a
closed loop form, the motion of the robot can be described by











(i) ϕ̇ =

{

sinϕ
d

+ 1 if cosϕ ≤ 1√
2

(

1

d
− 1

)

sinϕ otherwise,

(ii) ḋ = − cosϕ .

(5)

Figure 5 provides a simulation of the controlled robot. From its initial state
(a), the robot turns left up to state (b). Then, it is controlled by a proportional
law. At (c), the robot does no longer points toward zero and turns left again.
At state (d), it chooses to go straight for a short period. After that, it stays
inside a circle forever.

4 Results

Figure 6 represents the vector field of the controlled robot. The trajectory
corresponds to the motion depicted on Figure 5. A paving X1, . . . ,X6 is pro-
posed. In a two dimensional case (as here), the paving for the quantization can
be deduced directly from a picture of the vector field (which is simple for our
example). For higher dimensions, this paving must be done empirically using
domain knowledge of the behavior of the dynamical system. We know of no
general algorithm able to provide such a significant decomposition (even not
validated) in an automatic way. For our example, we explain how we got this
quantization.

• Origin neighborhood. It corresponds to the box X6, where the robot is
near the point 0. We have no specific strategy inside X6, and the robot
may escape. When the robot is outside X6, the control tries to bring it
back into X6.
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• Cruising corridor. Inside X2 or X5, the robot navigates toward zero with
a proportional control. The heading ϕ = 0 is stable, and its distance to
zero decreases.

• Discontinuity corridor. When the robot is inside X3, it hesitates between
two strategies: to turn left or to go toward the origin. In this corridor,
the distance to the origin decreases.

• Maneuver around the origin. When the robot is inside the origin neigh-
borhood X6, it may maneuver, turning left, to go toward the origin. The
distance increases, but remains bounded. This corresponds to the set X4.

• Maneuver far from the origin. When the robot is far from the origin
neighborhood (inside X1), it first has to maneuver, turning left, to point
toward zero. Then, it will enter inside X2 and will never come back to X1.

Figure 6: Vector field associated with the station keeping problem.
The frame box is [−π, π]× [0, 10].

This decomposition is a translation of the reasoning we had when we built
our controller. It could have been obtained without visualizing the vector field.
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Figure 7: Illustration of the quantization of the state equation

Figure 7 provides the relations we have been able to prove.

Test 1. Using Test 1, we have been able to prove that X1 6 →֒ X1 (take
n = (1, 0)), X2 6 →֒ X2 (take n = (0,−1)), X3 6 →֒ X3 (take n = (0,−1)), X4 6 →֒ X4

(take n = (1, 0)) and X5 6 →֒ X5 (take n = (0,−1)). Test 1 is unable to prove
anything about X6. Of course, from the picture, we guess that X6 →֒ X6, but
none of the four tests is able to prove that.

Test 2. Using Test 2, we are able to prove that X1
→֒
6←֓ X2, X1

→֒
6←֓ X4, X2

→֒
6←֓X5,

X3
→֒
6←֓ X2, X3

→֒
6←֓ X1, X4

→֒
6←֓X5, X5

→֒
6←֓ X6, X4

→֒
←֓ X6, X3

→֒
6←֓X6, X3

→֒
6←֓X5.

Test 3. We get X1
6 →֒
6←֓X5, X1

6 →֒
6←֓X, X2

6 →֒
6←֓X4, X2

6 →֒
6←֓X6, X3

6 →֒
6←֓ X4.

Test 4. Since there exists no Xi such that for ∀j 6= i, Xi 6 →֒ Xj , Test 4 does
not apply to our problem, and nothing has been proved about (X6,X6), even if
we could guess that X6 →֒ X6. Note that Test 4 could apply if we merge X4,
X5, and X6 into a single non-convex polytope. Equivalently, since the vector
field always enters in the set below the bold broken line of Figure 7, we conclude
that X4 ∪ X5 ∪ X6 is a capture basin.
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Figure 8: Graph corresponding to the quantization of the state equations

From all tests, the relation →֒ can be represented in a matrix form by

[G] =
[

G,G
]

=

















0 1 0 1 0 0
0 0 0 0 1 0
1 1 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 1 0 [0, 1]

















,

where [G] is an interval Boolean matrix [10]. The Boolean interval [0, 1] in [G]
means that we could have X6 6 →֒ X6 or X6 →֒ X6. The single difference between
G and G is the (6, 6) element which is 0 for G and 1 for G. Figure 8 depicts
the graph, and the dotted arrow corresponds to the Boolean interval [0, 1].

The transitive closure of this graph is

[

G+
]

=
[

G+,G
+
]

=
[

G+G2 +G3 + . . . , G+G
2
+G

3
+ . . .

]

=

















0 1 0 1 1 1
0 0 0 1 1 1
1 1 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

















,

which is now thin (i.e., with no more interval [0, 1]). The attractor of the graph
is given by the entries equal to 1 in the diagonal of the matrix, corresponding
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to the set X4 ∪ X5 ∪ X6. Hence, the attractor of the controlled robot satisfies

A ⊂ (X4 ∪ X5 ∪ X6) .

Thus, we were able to prove that our robot is trapped inside the disk with center
0 and radius d = 7.6 (see Figure 6).

5 Conclusion

We have proposed an interval-based approach to characterize attractors (or any
other limit set) of a dynamical system. We have shown that this can be done
without any interval integration and that the paving to be generated should
no be made with axis-aligned boxes, but with polytopes instead. The method
allows a quantization of the state equation with a paving containing only few
elements. This step is necessary to tackle problems with dimensions greater
than 5. The paving was built by using a good understanding of the behavior of
the system. A next challenging task is to build the paving automatically.
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