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Abstract

The work examines the problem of model predictive control for uncer-
tain linear dynamic systems with intervally assigned parameters and mul-
tiplicative noise inputs. We use the model predictive control techniques
based on linear matrix inequalities to get an optimal robust control strat-
egy that provides the system with stability in the mean-square sense. The
results are illustrated by an numerical example.
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1 Introduction

The work examines the problem of model predictive control for uncertain linear dy-
namic systems containing both interval and stochastic uncertainties. The system un-
certainties are expressed by the following assumptions. First, we assume that the
system matrices depend on interval-valued parameters [13, 16, 17]. This is a quite
realistic problem statement. In practice, many systems have uncertain parameters
which are not known exactly, either because they are hard to measure or because the
data necessary for a stochastic description are unavailable, etc. Frequently, we can
only estimate intervals that bound the parameters as they vary in the course of time.
In these cases, interval uncertainty description is the most suitable. Second, we allow
that the system is disturbed by multiplicative noise inputs. These assumptions yield
a model with a mix of interval and stochastic uncertainties. Such models can describe
a large family of uncertain systems [22].
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Model predictive control (MPC) to be used in this paper is a popular control
design method in system and control theory [1–4, 6–12, 14, 15, 18, 21]. The papers [3,
8, 14, 21] examine only the systems with polytopic uncertainty descriptions. The
systems with stochastic uncertainty including multiplicative noises are studied in [2,
4, 7, 9–11, 15, 18]. MPC is based on the following concept [1, 6, 12]. At every time
instant, we solve an optimization problem to calculate optimal future control inputs.
Although more than one control move is calculated, only the first one is implemented.
At the next sampling time, the state of the system is measured, and the optimization
is repeated.

We use the MPC techniques based on linear matrix inequalities (LMIs) as intro-
duced in [14]. LMIs have a wide range of applications in system and control theory [5,
19]. Some examples of applications are stability theory, model and controller reduction,
robust control, system identification, and predictive control. LMI-based optimization
problems have low computational complexity and can be solved numerically on-line
very efficiently [20].

The study [14] is devoted to robust MPC for uncertain systems including the
systems with polytopic uncertainties. We consider similar systems, except that our
system is disturbed by multiplicative noise inputs. We consider the problem of de-
signing, at each time step, a state feedback control law which minimizes a worst-case
performance of an infinite horizon objective function. Using the approach proposed in
[14], we formulate the original minimax optimization problem as a convex optimization
problem involving LMIs. Solving it on-line, we get the optimal robust control strategy
providing the system with stability in the mean-square sense. We present a numerical
example to illustrate the results developed in this paper, and we offer some concluding
remarks.

Our notations are standard. E{·} denotes the expectation of a random variable
(matrix), E {·|·} is the conditional expectation. P > 0 (P ≥ 0) means that P is a
positive definite (semi-definite) matrix. Tr(·) is the trace of a matrix, ch {·} denotes
the convex hull. A> is transpose of a matrix, and A−1 is inverse matrix.

2 Problem Statement

We consider discrete-time uncertain dynamic systems of the form

x(k + 1) =

(
A0(p(k)) +

n∑
j=1

Aj(p(k))wj(k)

)
x(k)

+

(
B0(p(k)) +

n∑
j=1

Bj(p(k))wj(k)

)
u(k), k = 0, 1, 2, . . . . (1)

In (1), x(k) ∈ Rnx is the state of the system at time k, and x(0) is assumed to be
defined; u(k) ∈ Rnu is the control input at time k; wj(k), j = 1, . . . , n, are indepen-
dent white noises with zero mean and unit variance, E{wi(k)wj(s)} = δijδks, δij is
Kronecker delta symbol; Aj(p(k)) ∈ Rnx×nx , Bj(p(k)) ∈ Rnx×nu , j = 0, . . . , n, are the
state-space matrices of the system, and p(k) ∈ Rnp is an uncertain parameter vector.

Suppose that the parameter vector p(k) is subject to interval uncertainty; that is,
we only know that p(k) takes its values within an interval box p and any additional
information is absent:

p(k) ∈ p, k = 0, 1, 2, . . . , (2)
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where p ∈ IRnp , IR is the set of the real intervals x = [x, x], x ≤ x, x, x ∈ R [13,17].

The state-space matrices are assumed to depend affinely on p(k). Then condi-
tion (2) can be replaced by the inclusion:(

A0(p(k)), . . . , An(p(k)), B0(p(k)), . . . , Bn(p(k)),
)
∈ Ω, k = 0, 1, 2, . . . , (3)

where the set

Ω = ch
{(
A01 . . . An1 B01 . . . Bn1

)
, . . . ,

(
A0L . . . AnL B0L . . . BnL

)}
, L = 2np ,

is a polytope, and the uncertain state matrices lie in it for all time-varying p(k) ∈ p.
Hence, we can refer the uncertain system (1) to the class of polytopic systems.

Allowing two types of uncertainty in the system (1), we consider the following
minimax performance objective:

min
u(k+i|k), i=0,...,m−1

max(
A0(p(k+i)),...,An(p(k+i)),B0(p(k+i)),...,Bn(p(k+i))

)
∈Ω, i≥0

J(k), (4)

where

J(k) = E

{
∞∑
i=0

(
x(k + i|k)>Qx(k + i|k) + u(k + i|k)>Ru(k + i|k)

) ∣∣∣∣ x(k)

}
.

This is the case of an infinite horizon model predictive control. Here Q ∈ Rnx×nx ,
Q = Q> > 0, R ∈ Rnu×nu , R = R> > 0, are symmetric weighting matrices; u(k+i | k)
is the predictive control at time k+i computed at time k, and u(k|k) is the control move
implemented at time k; x(k+i|k) is the state of the system at time k+i derived at time
k by applying the sequence of predictive controls u(k|k), u(k+ 1|k), . . . , u(k+ i− 1|k)
on the system (1), and x(k|k) is the state of the system measured at time k, the exact
measurement of the state of the system is assumed to be available at each sampling
time k, that is x(k|k) = x(k); m is the number of control moves to be computed, and
it is assumed that u(k + i|k) = 0 for all i ≥ m.

We solve the above problem by using the LMI-based MPC techniques as introduced
in [14]. We apply the linear state-feedback control law

u(k + i|k) = Fx(k + i|k), i ≥ 0, (5)

where F ∈ Rnu×nx is the state-feedback matrix. Then we derive an upper bound
on the worst-case performance of the objective function J(k) over the set Ω. At
each time instant k, we calculate the state-feedback matrix of the control law (5)
to minimize this upper bound. As is standard in MPC, only the first control move
u(k) = u(k | k) = Fx(k | k) is implemented, and we get the feedback control law for
the current state x(k). Then the state x(k + 1) is measured, and the optimization
is repeated at the next sampling time k + 1. As a result, we get the optimal robust
feedback control strategy providing the system with stability in the mean-square sense,

lim
i→∞

E
{
x(k + i|k)x(k + i|k)> | x(k)

}
= 0, k = 0, 1, 2, . . . , (6)

for every trajectory of the system (1) in the polytope Ω.
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3 Main Results

The following theorem gives the state-feedback matrix F in the control law (5).

Theorem 3.1 Let x(k) = x(k|k) be the state of the uncertain system (1) measured at
sampling time k. Then the state-feedback matrix of the control law (5) which minimizes
the upper bound on the worst-case value of J(k) at time k is

F = Y S−1, (7)

where the matrices S = S> > 0 and Y are obtained from the solution (if it exists) to
the optimization problem

min
S=S>>0, Y, γ>0

γ (8)

subject to (
1 x(k|k)>

x(k|k) S

)
≥ 0, (9)

and

S SA>0l + Y >B>0l . . . S A>nl + Y >B>nl SQ1/2 Y >R1/2

A0lS +B0lY S . . . 0 0 0
...

...
. . .

...
...

...

AnlS +BnlY 0 . . . S 0 0

Q1/2S 0 . . . 0 γ I 0

R1/2Y 0 . . . 0 0 γ I


≥ 0,

(10)

l = 1, . . . , L, where I is a unit matrix, 0 is a zero matrix of suitable dimensions.

Proof: We assume that the predicted states of the system (1) satisfy

x(k + i+ 1|k) =

(
A0(p(k + i)) +

n∑
j=1

Aj(p(k + i))wj(k + i)

)
x(k + i|k)

+

(
B0(p(k + i)) +

n∑
j=1

Bj(p(k + i))wj(k + i)

)
u(k + i|k),

(
A0(p(k + i)) . . . An(p(k + i))B0(p(k + i)) . . . Bn(p(k + i))

)
∈ Ω, i ≥ 0.

By setting the control law (5), we arrive at the recurrent relation

x(k + i+ 1|k) =

(
L0(p(k + i)) +

n∑
j=1

Lj(p(k + i))wj(k + i)

)
x(k + i|k),

(
A0(p(k + i)) . . . An(p(k + i))B0(p(k + i)) . . . Bn(p(k + i))

)
∈ Ω, i ≥ 0, (11)

where Lj(p(k+ i)) = Aj(p(k+ i))+Bj(p(k+ i))F, j = 0, . . . , n. The objective function
becomes

J(k) = E

{
∞∑
i=0

(
x(k + i|k)>(Q+ F>RF )x(k + i|k)

) ∣∣∣∣ x(k)

}
. (12)
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Consider a positive definite quadratic function

V (k + i|k) = E
{
x(k + i|k)>Px(k + i|k)|x(k)

}
= Tr

(
PX(k + i|k)

)
,

where P ∈ Rnx×nx , P = P> > 0; X(k + i|k) = E{x(k + i|k)x(k + i|k)>|x(k)} ≥ 0.
Note that V (k+i|k) ≥ 0 with V (k+i|k) = 0 if and only if X(k+i|k) = 0. At sampling
time k, we suppose that V meets the condition

V (k + i+ 1|k)− V (k + i|k) ≤ −E
{
x(k + i|k)>(Q+ F>RF )x(k + i|k)|x(k)

}
= −Tr

(
(Q+ F>RF )X(k + i|k)

)
, i ≥ 0, (13)

for every trajectory of the predicted states (11). We get ∆V (k+i|k) = V (k+i+1|k)−
V (k+i|k) ≤ 0 with ∆V (k+i|k) = 0 if and only if X(k+i|k) = 0. Therefore, V (k+i|k)
is a strictly decreasing function and tends to zero as i→∞. Hence, X(k+ i|k)→ 0 as
i → ∞. Thus, condition (13) guarantees the mean square stability (6) of the system
at time k.

Summing (13) from i = 0 to i = t, we obtain

V (k + t+ 1|k)− V (k|k) ≤

≤ −E

{
t∑
i=0

(
x(k + i|k)>(Q+ F>RF )x(k + i|k)

) ∣∣∣∣ x(k)

}
.

As t→∞, we have
−V (k|k) ≤ −J(k).

Then
max(

A0(k+i)...An(k+i)B0(k+i)...Bn(k+i)
)
∈Ω, i≥0

J(k) ≤ V (k|k),

where V (k|k) = E{x(k|k)>Px(k|k)|x(k)} = x(k|k)>Px(k|k). Hence, V is a quadratic
Lyapunov function. At the same time, this gives an upper bound on the worst-case
of the objective function J(k) in Ω. Thus, the goal (4) can be redefined to derive, at
each time step k, a constant state-feedback control law (5) that minimizes the upper
bound V (k|k) on the worst-case J(k).

We can derive

V (k + i+ 1|k) = E{x(k + i+ 1|k)>Px(k + i+ 1|k)|x(k)}

= Tr

(
n∑
j=0

Lj(p(k + i))> P Lj(p(k + i))X(k + i|k)

)
.

Then, condition (13) may be written as

Tr

(( n∑
j=0

Lj(p(k + i))> P Lj(p(k + i))− P +Q+ F>RF

)
X(k + i|k))

)
≤ 0,

P > 0,

and we get

n∑
j=0

Lj(p(k + i))> P Lj(p(k + i))− P +Q+ F>RF ≤ 0, P > 0,
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where Lj(p(k + i)) = Aj(p(k + i)) + Bj(p(k + i))F , j = 0, . . . , n. Defining P = γS−1

and F = Y S−1, where S = S> > 0, γ > 0, we obtain

n∑
j=0

(
Aj(p(k + i)) +Bj(p(k + i))Y S−1

)>
γS−1

(
Aj(p(k + i)) +Bj(p(k + i))Y S−1

)
− γS−1 +Q+ (Y S−1)>RY S−1 ≤ 0.

Pre- and post-multiplying by S and dividing by γ yield

n∑
j=0

(
Aj(p(k + i))S +Bj(p(k + i))Y

)>
S−1

(
Aj(p(k + i))S +Bj(p(k + i))Y

)
− S + γ−1SQS + γ−1Y >RY ≤ 0

or

S −



C0(p(k + i))

C1(p(k + i))
...

Cn(p(k + i))

Q1/2S

R1/2Y



>

S 0 . . . 0 0 0

0 S . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . S 0 0

0 0 . . . 0 γI 0

0 0 . . . 0 0 γI



−1

C0(p(k + i))

C1(p(k + i))
...

Cn(p(k + i))

Q1/2S

R1/2Y


≥ 0,

(14)
where Cj(p(k + i)) = Aj(p(k + i))S +Bj(p(k + i))Y , j = 0, . . . , n.

Now we use the following result of the LMI theory which converts some non-linear
inequalities to LMI form. This is referred to as the non-strict Schur complement [5,
19].

Let C(x) = C(x)> > 0, A(x) = A(x)> and B(x) depend affinely on x. Then the
LMI (

A(x) B(x)

B(x)> C(x)

)
≥ 0

is equivalent to the matrix inequalities

A(x) ≥ 0, A(x)−B(x)C(x)−1B(x)> ≥ 0.

Apply the Schur complement to (14). If S = S> > 0, γ > 0, then (14) is equivalent
to

S C>0 (p(k + i)) . . . C>n (p(k + i)) SQ1/2 Y >R1/2

C0(p(k + i)) S . . . 0 0 0
...

...
. . .

...
...

...

Cn(p(k + i)) 0 . . . S 0 0

Q1/2S 0 . . . 0 γ I 0

R1/2Y 0 . . . 0 0 γ I


≥ 0, (15)
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which is affine with respect to
(
A0(p(k+i)) . . . An(p(k+i))B0(p(k+i)) . . .Bn(p(k+i))

)
.

Hence, condition (15) becomes

S SA>0l + Y >B>0l . . . S A>nl + Y >B>nl SQ1/2 Y >R1/2

A0lS +B0lY S . . . 0 0 0
...

...
. . .

...
...

...

AnlS +BnlY 0 . . . S 0 0

Q1/2S 0 . . . 0 γ I 0

R1/2Y 0 . . . 0 0 γ I


≥ 0,

l = 1, . . . , L. (16)

This is the LMIs in S, Y , and γ. Hence, any S = S> > 0, Y , and γ > 0 satisfying the
above LMIs gives an upper bound V (k|k) and guaranties the mean-square stability of
the system.

Finally, let us introduce an additional constraint

V (k|k) = x(k|k)>Px(k|k) ≤ γ.

We substitute P = γS−1, where γ > 0, S = S> > 0, and divide by γ, which yields

1− x(k|k)>S−1x(k|k) ≥ 0.

Using the Schur complement, the above inequality can be rewritten as(
1 x(k|k)>

x(k|k) S

)
≥ 0. (17)

Hence, the minimization problem for computing the upper bound on V (k|k) is equiv-
alent to

min
S=S>>0, Y, γ>0

γ

subject to LMI constraints (16) and (17). At the same time, the feedback matrix is
given by F = Y S−1, which is required to be proved. �

4 Numerical Example

We consider the system described by the following model:

x(k + 1) =
(
A0(α(k)) +A1(β(k))w(k)

)
x(k) +

(
B0(α(k)) +B1(β(k))w(k)

)
u(k),

k = 0, 1, 2, . . . ,

where the state matrices are given by

A0(k) =

(
1 0.1

0 1− α(k)

)
, A1(k) =

(
β(k) 0

0 0.9

)
,

B0(k) =

(
0.5α(k) 0

0 0.3

)
, B1(k) =

(
β(k) 0

0 0

)
,

α(k) ∈ [0.1, 0.7], β(k) ∈ [0.2, 0.8],
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w(k) is a white noise with zero mean and unit variance. We have a system of the
form (1) with the parameter vector p(k) = (α(k); β(k))>. The weighting matrices of
the performance objective are

Q =

(
1 0

0 1

)
, R =

(
0.1 0
0 0.1

)
.

Figure 1: System dynamics under optimal control strategy with x(0) = (5, −5)>

For simulation, we used the LMI toolbox from Matlab that provides various
routines for solving LMI’s [19]. Fig. 1 illustrates results from our simulation with the
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initial state x(0) = (5, −5)>. We can see that the system approaches the desired zero
trajectory.

5 Conclusions

We have examined the problem of model predictive control for uncertain linear dy-
namic systems with interval-valued parameters and multiplicative noise inputs. Using
the LMI-based MPC approach, we have reduced the original minimax optimization
problem to a convex optimization problem involving LMIs that can be solved effi-
ciently. As a result, we determined the optimal robust control strategy providing the
system with stability in the mean-square sense. We have illustrated the developed
results by a numerical example.

References

[1] A. Bemporad. Model-based predictive control design: New trends and tools. Proc.
45th IEEE Conference on Decision and Control. San Diego, CA, 2006, pp. 6678–
6683.

[2] A. Bemporad and S. Di Cairano. Model-predictive control of discrete hybrid
stochastic automata. IEEE Trans. Automatic Control, 2011, Vol. 56, No. 6,
pp. 1307-1321.

[3] A. Bemporad and M. Morari. Robust model predictive control: A survey. Robust-
ness in Identification and Control. Springer: Berlin, 1999, pp. 207–226.

[4] D. Bernardini and A. Bemporad. Scenario-based model predictive control of
stochastic constrained linear systems. In Proc. Joint 48th IEEE Conf. on De-
cision and Control and 28th Chinese Control Conf., Shanghai, P.R. China, 2009,
pp. 6333–6338.

[5] S. Boyd, L.EL Ghaoui, E. Feron, and Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM, vol. 15 of Studies in Applied Mathematics.
Philadelphia, PA, 1994.

[6] E.F. Camacho and C. Bordons. Model Predictive Control. Springer-Verlag, Lon-
don, 2004.

[7] M. Cannon, B. Kouvaritakis, and X. Wu. Model predictive control for systems
with stochastic multiplicative uncertainty and probabilistic constraints. Automat-
ica, 2009, Vol. 45, No. 1, pp. 167–172.

[8] A.F. Cuzzola, J.C. Geromel, and M. Morari. An improved approach for con-
strained robust model predictive control. Automatica, 2002, Vol. 38, No. 7,
pp. 1183–1189.

[9] V.V. Dombrovskii, D.V. Dombrovskii, and E.A. Lashenko. Predictive control of
random-parameter systems with multiplicative noise. Application to investment
portfolio optimization. Automation and Remote Control, 2005, Vol. 66, No. 4,
pp. 583–595.

[10] V.V. Dombrovskii and T.U. Obyedko. Predictive control of systems with Marko-
vian jumps under constraints and its application to the investment portfolio op-
timization. Automation and Remote Control, 2011, Vol. 72, No. 5, pp. 989–1003.



360 Model Predictive Control for Linear Systems with Uncertainties

[11] E.L. Ghaoui. State-feedback control of systems with multiplicative noise via linear
matrix inequalities. Systems and Control Letters, 1995, No. 24, pp. 223–228.

[12] K.S. Holkar and L.M. Waghmare. An overview of model predictive control. In-
ternational Journal of Control and Automation International Journal of Control
and Automation, 2010, Vol. 3 No. 4, pp. 47-63.

[13] L. Jaulin, M. Kieffer, O. Didrit, and E. Walte. Applied Interval Analysis, with
Examples in Parameter and State Estimation, Robust Control and Robotics.
Springer-Verlag, London, 2001.

[14] M.V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model pre-
dictive control using linear matrix inequalities. Automatica, 1996, Vol. 32, No. 10,
pp. 1361–1379.

[15] B. Kouvaritatakis, M. Cannon, and V. Tsachouridis. Recent developments in
stochastic MPC and sustainable development. Annual Reviews in Control, 2004,
No. 28, pp. 23-35.

[16] V. Kreinovich. Interval uncertainty as the basis for a general description of uncer-
tainty: A position paper. Downloadable from http://www.cs.utep.edu/vladik/

2012/tr12-38.pdf.

[17] R.E. Moore, R.B. Kearfott, and M.J. Cloud. Introduction to Interval Analysis.
SIAM, Philadelphia, PA, 2009.

[18] J.A. Primbs and C.H. Sung. Stochastic receding horizon control of constrained
linear systems with state and control multiplicative noise. IEEE Trans. Automatic
Control, 2009, Vol. 54, No. 2, pp. 221–230.

[19] C. Scherer and S. Weiland. Linear Matrix Inequalities in Control, 2005, http:

//www.dcsc.tudelft.nl/~cscherer/lmi/notes05.pdf.

[20] L. Vandenberghe and V. Balakrishnan. Algorithms and software for LMI problems
in control. IEEE Control Syst. Mag., 1997, pp. 89–95.

[21] Z. Wan and M.V. Kothare. Efficient robust constrained model predictive control
with a time varying terminal constraint set. Systems and Control Letters, 2003,
Vol. 48, pp. 375–383.

[22] F. Wang and V.Balakrishnan. Robust steady-state filtering for systems with de-
terministic and stochastic uncertainties. IEEE Trans. Signal Processing, 2003,
Vol. 51, No. 10, pp. 2550–2558.

http://www.cs.utep.edu/vladik/2012/tr12-38.pdf
http://www.cs.utep.edu/vladik/2012/tr12-38.pdf
http://www.dcsc.tudelft.nl/~cscherer/lmi/notes05.pdf
http://www.dcsc.tudelft.nl/~cscherer/lmi/notes05.pdf

	Introduction
	Problem Statement
	Main Results
	Numerical Example
	Conclusions

