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Abstract

A new “boundary intervals method” is proposed for investigation and
visualization of polyhedral sets determined by systems of linear algebraic
inequalities or represented as the union of solution sets to a finite number
of systems of linear inequalities.

There are several visualization approaches for the solution sets of linear
systems of relations (inequalities and equations), but they are unsatisfac-
tory for unbounded and thin solution sets, and some of them can handle
only square systems of relations. These approaches compute and exploit
vertices of the polyhedral sets. Our new boundary intervals method uses
boundary intervals instead of vertices, making it more informative and
enabling us to overcome the limitations of the previous approaches.

Our boundary intervals method helps visualize AE-solution sets to in-
terval linear relations systems that consist of equations, inequalities, or
both because AE-solution sets are also polyhedral sets whose determin-
ing systems of linear inequalities can be derived from the initial interval
system.

This paper describes the boundary intervals method for systems with
two and three unknown variables and presents software implementations
lineq and IntLinIncXX, designed for visualization of the solution sets to
both interval and non-interval systems of linear relations.
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1 Introduction

1.1 Purpose of the method

Our boundary intervals method was developed to visualize solution sets of interval
linear systems of equations and inequalities. The characteristic feature of every such
solution set is that it is described by a system of linear algebraic inequalities in each
orthant of the space. In early 2012, the author knew of several approaches and software
packages for visualization of such solution sets. However, these packages often failed to
process thin (with empty interior) and unbounded solution sets,1 and some worked only
with square systems. We were also unable to find accessible software with acceptable
functionality to visualize solution sets to usual systems of linear algebraic inequalities.
Our wish was, having determined a rectangular matrix and a right-hand side vector
and then warning about nothing, to get a picture of the solution set, no matter what
it might be. The boundary intervals method has been designed to accomplish these
purposes.

The boundary intervals method is a method for investigation and visualization of
polyhedral sets in the Euclidean spaces R2 and R3 based on computation and use of
a special boundary intervals matrix for systems of linear inequalities.

The first presentation of the new method was made at the international conference
“Algebra and Linear Optimization”, devoted to the centenary of the birth of Sergey
Chernikov, in Yekaterinburg, Russia, May 2012. We described ideas of the method and
demonstrated the package lineq for visualization of solution sets to systems of linear
algebraic inequalities with two and three unknowns [15]. Next, at the 15th GAMM-
IMACS International Symposium on Scientific Computing, Computer Arithmetic and
Verified Numerical Computations, SCAN’2012, in Novosibirsk, Russia, in September
2012, we presented both the new method and specific results produced by the packages
for visualization of the AE-solution sets to interval linear systems of equations [16, 17].

AE-solution sets to interval equations and inequalities are a natural generalization
of the traditional solution sets to the interval case. The reader can find theory and
applications of AE-solution sets for interval systems of equations in the survey [22]. In
the context of our paper, it is important that the intersection of any AE-solution set
with separate orthants of the entire space is a polyhedron for which the determining
system of linear inequalities can be written easily from the initial interval system of
relations. Therefore, every AE-solution set to an interval linear system of equations
is the union of a finite number of polyhedra. This is why the AE-solution sets can be
visualized by methods that process systems of linear inequalities.

There are many approaches to visualization of the solution sets for interval sys-
tems of linear equations and quite a few computer codes that implement them. First,
plotlinsol from the package INTLAB [5], an interval extension of Matlab, was de-
veloped by Siegfried Rump (Hamburg University of Technology). Several approaches
to visualization of the solution sets to interval linear systems have been proposed
and implemented by Walter Krämer (Bergische Universität, Wuppertal) and Evgenija
Popova (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences).
The theoretical foundations of these approaches are presented in [8, 9, 10, 11], and
the corresponding software is implemented in Java and in an interval extension of the
computer algebra system MapleTM. Based on this work, Popova also developed, in co-
operation with Wolfram Research, several versions of the visualization programs within

1Rigorous definitions of all these terms are given at the fourth page of this paper.

http://alopt2012.imm.uran.ru/
http://conf.nsc.ru/scan2012
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the MathematicaTM system and supplemented them by a convenient web-interface.2

One disadvantage of all the above approaches and codes is that they process un-
bounded solution sets badly. Some codes cannot construct solution sets to the systems
in which the number of equations does not coincide with the number of unknowns
(equal to 2 or 3). Apart from the procedure plotlinsol from INTLAB, the remaining
codes work unsatisfactorily with thin solution sets (having empty interior). Finally,
the codes by Rump and by Krämer are designed for visualization of only united solu-
tion sets, that is, they process only one (although the most popular) solution set from
a large family of AE-solution sets to interval linear systems of equations.

The code AE-solset.ps [18] developed by the author for drawing arbitrary AE-
solution sets to interval linear 2×2-systems of equations stands in contrast to the
above visualization techniques and packages. AE-solset.ps successfully copes with
unbounded and thin solution sets. In addition, it may be the most portable such
tool since it is implemented in the vector graphics language PostScript. On the other
hand, restrictions on the accuracy of the data representation in PostScript impose
constraints on the input data for which the code is guaranteed to work correctly.

The visualization methods mentioned above compute vertices of polyhedra that
form the solution set. In contrast, our boundary intervals method uses boundary in-
tervals instead of vertices, which are much more informative in the description and
investigation of polyhedra than traditional vertex representations. The boundary in-
tervals method thereby overcomes the limitations of the previous approaches.

1.2 Structure of the paper

Our paper gives the first detailed exposition of the boundary intervals method. The
necessary background information on topology and polyhedra is gathered in this in-
troductory section. In Section 2, theoretical foundations of the method are presented,
while Sections 3 and 4 describe the basics of the drawing technique in the spaces R2

and R3, respectively. The text of the paper is a revised and expanded version of [21].
The paper is accompanied by open source software packages [15, 19, 20] and their
manuals, which substantially extend and enrich our exposition of the new method and
can be regarded as continuations of this paper.

1.3 Necessary facts about polyhedra

In our text, we use the standard mathematical notation. In particular,

N is the set of positive integer (natural) numbers,
R is the set of real numbers (real axis),
Rn is the set of real n-vectors (considered as column vectors), and

Rm×n is the set of real m× n-matrices.

In geometry, convex analysis, piecewise linear topology, and other branches of mathe-
matics, some terms used in our paper have different interpretations, so we clarify their
meanings. Many definitions below coincide with those from [23], but some well-known
objects appear under new names. For example, what is usually referred to as “a face
exposed by supporting hyperplane” (see, e. g., [23]) is called “support” because “sup-
port” is more convenient for the description of the boundary intervals method. Our

2These programs were working successfully in 2002–2012 on the server of the Bulgarian
Academy of Sciences at http://cose.math.bas.bg/webComputing.
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term is laconic, it represents the geometrical sense of the object more precisely, and it
does not contradict to the use of the word “face” in the elementary geometry of R3.

A polyhedron in Rn (after ancient Greek “polys” = many, “hédra” = base or seat)
is a subset of the space Rn that can be represented as the solution set to a system of
linear algebraic inequalities of the form

A11x1 + A12x2 + . . . + A1nxn ≥ b1,

A21x1 + A22x2 + . . . + A2nxn ≥ b2,

...
...

. . .
...

...

Am1x1 + Am2x2 + . . . + Amnxn ≥ bm,

or in matrix-vector notation,
Ax ≥ b,

where x = (x1, x2, . . . , xn)> ∈ Rn is the unknown variable, A = (Aij) ∈ Rm×n,
b = (bj) ∈ Rm, and m,n ∈ N.

Bounded polyhedra are called polytopes. The space Rn is itself a polyhedron, the
solution to the inequality

(0 . . . 0)x ≥ −1.

The empty set is a polytope, since the empty set is bounded by definition, and it is
the solution set, e. g., to the inequality system{

x1 ≥ 1,

−x1 ≥ 1.

The union of a finite number of polyhedra will be referred to as polyhedral set.3

In Rn considered as a topological space, we can define interior and boundary points
for a set Ω ⊆ Rn (see, e. g., [6, 12]). A point x is an interior point of Ω if there exists
an open ball centered at x which is entirely contained in the set Ω. A point x is
a boundary point of Ω if any ball centered at x contains both points from Ω and points
outside Ω. Boundary points of Ω do not necessarily belong to the set Ω itself. All the
interior points form the interior of a set (we will also use the term interior domain),
while all the boundary points form the boundary, denoted by ∂Ω.

The interior and/or boundary of a polyhedron may be empty. Polyhedra with
nonempty interior are called bodily or solid, while polyhedra having no interior points
are called thin. Such a terminology originates from classical set theory and theory
of convex sets, since bodily polyhedra are bodily (solid) sets, i. e., convex sets with
nonempty interior, while thin polyhedra are thin (meager) sets in the set-theoretic
sense [6]. Thin (meager) sets also are called sets of first Baire category [6].

A point x of a set Ω is called a limit point if every ball centered at x contains at
least one point of Ω different from x itself. If a set contains all of its limit points, it is
said to be closed. A polyhedron is a closed set.

Any polyhedron is a convex set. For every two points belonging to a polyhedron,
each point on the straight line segment that connects them is also within the polyhe-
dron. The dimension of a non-empty polyhedron is the dimension of its affine hull, the

3Our definition of polyhedra may appear not standard (see, e. g., [1, 2, 4]). Very often,
“polyhedron” is used for what we refer to as “polyhedral set”, while polyhedra in our sense are
called “convex polyhedra”. See, e. g., https://en.wikipedia.org/wiki/Polyhedron. Some-
times, polyhedra are defined to be bounded, see [1]. Our definition of polyhedron originates
from optimization theory and its applications, especially linear programming (see, e. g., [13]).

https://en.wikipedia.org/wiki/Polyhedron
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smallest affine space that contains the polyhedron (see, e. g., [12, 13]). The dimension
of the empty set is −1. The dimension of the polyhedron H will be denoted by dimH.
In Rn, n-dimensional polyhedra are bodily, while those having the dimension less than
n, are thin.

A further refinement of the concept of the interior is the relative interior. For con-
vex sets, the relative interior of a set is defined as its interior within the affine hull of the
set [12]. The relative interior is very useful in considerations about low-dimensional
sets placed in higher-dimensional spaces, such as faces and edges of polyhedra and
polyhedral sets. Their usual interiors are empty, while sometimes we need their rela-
tively interior points.

Let Ψ designate a half-space of the space Rn, i. e., the set of points defined by
one non-strict linear algebraic inequality. A half-space Ψ is called supporting for a set
Ω if Ψ contains Ω, and the boundary ∂Ψ of the half-space has at least one common
point with Ω (see [12, 23] for further details). In that case, the boundary of the
supporting half-space is referred to as a supporting hyperplane. For the intersection of
the supporting hyperplane with the set Ω, we use the term support (of the set Ω, of
the half-space Ψ, or of the hyperplane ∂Ψ). In the above definition, we assume that
the set Ω can belong entirely to the hyperplane ∂Ψ; then both closed half-spaces with
the boundary ∂Ψ are supporting half-spaces for Ω.

Any support S of a polyhedron H is also a non-empty polyhedron since the equality
determining the support is equivalent to a pair of opposite non-strict inequalities. For
a thin polyhedron H, dimS ≤ dimH. If H is a bodily polyhedron, dimS ≤ dimH−1.
Supports of dimension zero are called vertices of the polyhedron, and supports of the
dimension one are its edges. For polyhedra in R3, supports of dimension two are faces.

A point from a polyhedron H is a vertex if and only if we cannot find a segment
in H that contains the point in its relative interior. This fact is often formulated in
the following words: vertices of a polyhedron are its extreme points. Any polytope
coincides with the convex hull of its vertices, the smallest convex set that contains
these vertices, i. e., the set of all convex combinations of these vertices.

Any edge has two endpoints, either finite or infinite. An endpoint all of whose
coordinates are finite is a vertex of the polyhedron. We say “the endpoint is at infinity”
for an endpoint with at least one infinite coordinate, either +∞ or −∞. The endpoint
of an edge that is “at infinity” cannot be a vertex of a polyhedron.

An orthant of Rn is the set of points that have constant signs of their coordinates,
taken with its boundary. An orthant is thus the set of the form {x ∈ Rn | sixi ≥
0, i = 1, . . . , n }, where the n-vector s consists of 1’s and −1’s. Orthants of R2 are
also called quadrants, while orthants of R3 are often referred to as octants.

2 Basics of the Boundary Intervals Method

2.1 Boundary inequalities and their supports in Rn

Consider a system of linear algebraic inequalities

Ax ≥ b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, m, n ∈ N, (1)

with the unknown variable x. We denote its solution set by H, the i-th row of the
matrix A by Ai:, and the solution set to the inequality Ai:x ≥ bi, written in the i-th
line of the system, by Hi.
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The solution set of (1) is formed through intersection of the solution sets to the
separate inequalities Ai:x ≥ bi, i = 1, 2, . . . ,m. Hence, the interior points of the
solution set H are exactly the points which are interior for every solution set Hi to the
inequalities of (1), while boundary points of H are those which lie on the boundary
of at least one of Hi. We rewrite the last statement in formal mathematical language
and transform it, changing the order in which the union and intersection are taken:

∂H = H ∩

(⋃
i

∂Hi

)
=
⋃
i

(H ∩ ∂Hi). (2)

Therefore, the boundary of the solution set to the system (1) consists of the contribu-
tions H∩∂Hi, i = 1, 2, . . . ,m, made by separate inequalities. We are going to consider
these contributions in detail. For brevity, we will speak of “hypreplane Ai:x = bi” in-
stead of the full term “hyperplane determined by the equation Ai:x = bi”. In the
two-dimensional case, “hyperplane Ai:x = bi” is just a “straight line Ai:x = bi”.
The same terminology convention is applied to half-spaces determined by non-strict
inequalities Ai:x ≥ bi (half-planes in the two-dimensional case).

If the row Ai: has only zero elements, the contribution of the i-th inequality to the
boundary of the solution set is empty. The inequality (0 . . . 0)x ≥ bi has no solutions
for bi > 0, and every point of Rn satisfies the inequality for bi ≤ 0. In both cases, the
solution set to the inequality (0 . . . 0)x ≥ bi has no boundary, ∂Hi = ∅.

If the row Ai: has non-zero elements, the solution set of the i-th inequality is a
half-space Hi with its boundary ∂Hi being the hyperplane Ai:x = bi. Therefore, the
contribution of the i-th inequality to the boundary of the set H is the intersection of the
solution set to system (1) with the hyperplane Ai:x = bi. Formally, this contribution
is described as {x ∈ Rn | (Ax ≥ b) & (Ai:x = bi) }. Nonemptiness of the intersection
means that the half-space Hi is a supporting half-space for H.

Overall, the contribution of the i-th inequality to the boundary of the solution
set is not empty if and only if the inequality determines a supporting hyperplane for
the solution set. We can fix this relation in the following definitions. For system (1),
an inequality Ai:x ≥ bi written in the i-th line is called a boundary inequality if it
determines a supporting hyperplane for the solution set H. If the i-th inequality is a
boundary one, the intersection of the hyperplane Ai:x = bi with the set H is called
the support of the i-th inequality and denoted by Si. Specifically, Si = H ∩∂Hi. If the
inequality Ai:x ≥ bi from system (1) is not a boundary inequality, it has no support.

We have selected from system (1) all those inequalities that make nonempty contri-
butions to the boundary of the solution set. We refer to such inequalities as boundary
inequalities, and the contribution made by a boundary inequality is called its support.
If we denote the set of indices of the boundary inequalities by Ib, then (2) implies

∂H =
⋃
i∈Ib

(H ∩ ∂Hi) =
⋃
i∈Ib

Si;

the boundary of the solution set H is formed by supports of the boundary inequalities.
Every boundary inequality determines a half-space supporting the polyhedron of

the solution set, but the reverse is not true. A boundary inequality determining a half-
space cannot be found in system (1) for every supporting half-space of the solution
polyhedron. For instance, the system{

x1 ≥ 0,

x2 ≥ 0
(3)
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describes the positive orthant for which the half-space x1 + x2 ≥ 0 is supporting at
the origin of the coordinates. However, system (3) does not have inequalities that
determine this half-space. Meanwhile, there are such supporting half-spaces that we
can always connect with boundary inequalities.

Proposition 1 Let the inequality system

Ax ≥ b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, m, n ∈ N, (1)

be given and have a non-empty solution set. If for a half-space Ψ that is supporting the
solution polyhedron, its support S has dimension n−1, then system (1) has a boundary
inequality that determines the half-space Ψ, and S is a support of this inequality.

For example, in system (3), the support has dimension 0, i. e., n−2, not n−1 = 1.

. Proof. We conduct the proof ad absurdum and suppose that system (1) has no
inequalities determining the half-space Ψ.

a)

Ψ

S

x̃

p

b)

Ψ

S

x̃

pHi

c)

Ψ

S

x̃

x̃+ pτ

p

Figure 1: Illustration of the proof of Proposition 1.

Let x̃ be a point from the relative interior of the support S, and let p be an
outward normal vector with respect to Ψ (Fig. 1, a). Consider the intersection of the
solution set Hi, i = 1, 2, . . . ,m, of every inequality of system (1) with the straight line
{ x̃ + pt | t ∈ R }. The point x̃ lies on the support S, so it lies within the solution
polyhedron H of the system (1), which means its membership in each Hi. Since the
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solution set Hi to the inequality Ai:x ≥ bi is not empty, it is either a half-space
containing the point x̃ or the entire space Rn. Hence, the intersection of the set Hi

with the line { x̃+ pt | t ∈ R } is either the whole line or a ray containing the point x̃.

Next, we show that, apart from x̃, the intersection of the set Hi with the line
{ x̃+ pt | t ∈ R } has a point of the form x̃+ pτi, with a fixed τi ∈ R satisfying τi > 0.
The absence of such a point would mean that Hi intersects the line { x̃ + pt | t ∈ R }
along the ray with the starting point x̃ and direction opposite to p. By assumption, Hi

cannot coincide with Ψ, while S has dimension n−1 due to assertion of the proposition.
Finally, the point x̃ is taken from the relative interior of the support S. Therefore,
S would have to contain points from the complement to the set Hi (see Fig. 1, b).
But this is impossible, because S lies in the solution polyhedron for system (1) and
consequently is in the solution set Hi to its every inequality.

Since the points x̃ and x̃+ pτi belong to the convex set Hi, the entire line segment
with the endpoints x̃ and x̃ + pτi lies within Hi too. The latter is valid for each
i = 1, 2, . . . ,m, and we denote τ = min1≤i≤m τi. The point x̃ + pτ (see Fig. 1, c)
belongs to every Hi, i = 1, . . . ,m. Therefore, it is a solution to the system (1). On the
other hand, for τ > 0, the point lies in the complement to the supporting half-space Ψ.
Hence, the point cannot be a solution to the system (1). The contradiction obtained
implies that our assumption made at the beginning of the proof is wrong.

Thus in system (1), there exists an inequality that determines the supporting half-
space Ψ. By definition, it is a boundary inequality and has the same support S as the
half-space Ψ. /

Proposition 2 The vertex set of the solution polyhedron for system (1) is the union
of the vertex sets of the supports of the boundary inequalities from (1).

. Proof. We show first that each vertex of the solution polyhedron H is a vertex for
support of a boundary inequality. Since the vertex is a boundary point of H and
∂H =

⋃
i∈Ib

Si, then any vertex v of the polyhedron H belongs to the support Si of
a boundary inequality. A point of a polyhedron is known to be a vertex if and only
if the polyhedron does not have a line segment that contains the point in its relative
interior. Since there is no such segment in H, and Si is in H, there is no such segment
in the polyhedron Si. Hence, v is a vertex of the support Si.

Next, the reverse is to be proven, that any vertex of support of a boundary in-
equality is a vertex of the solution polyhedron. Let v be a vertex of support Si of the
boundary inequality with index i. We assume that v is not a vertex of H. Therefore
in H, there exists such a line segment that contains the point v in its relative interior.
This segment cannot be included entirely in the supporting hyperplane Ai:x = bi,
since then it would belong to Si, and v could not be a vertex of Si. But the segment
cannot intersect the hyperplane Ai:x = bi only in the point v, since the hyperplane
is a supporting one, and the whole polyhedron H lies on a one side of it. Hence, our
assumption that v is not a vertex of H is false. /

2.2 Boundary intervals in R2

2.2.1 Introduction of the concept “boundary interval”

We introduce the concept of “boundary interval” for systems of linear algebraic in-
equalities

Ax ≥ b, A ∈ Rm×2, x ∈ R2, b ∈ Rm, m ∈ N, (4)
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with two unknown variables x1 and x2, (x1, x2)> = x. The concept consists of three
constituents: index, support, and direction.

Index of the boundary interval fixes its connection with an inequality from sys-
tem (4). Boundary intervals are defined only for boundary inequalities of (4).
Each boundary inequality generates one boundary interval. The index of the
boundary interval is the number of the row from system (4) in which the bound-
ary inequality generating the boundary interval is written.

Support represents the boundary interval as a set of points on the plane. Support
of the boundary interval with the index i is the support of the i-th inequality of
system (4), the intersection of the line Ai:x = bi with the solution set H.

Both the line and the set H are convex and closed. Hence, the support of
a boundary interval is always a convex and closed subset of a straight line.
Additionally, the support cannot be empty. As a consequence, supports of
boundary intervals are one of the following four types: a point, a straight line
segment, a ray, or an entire line. Fig. 2 presents examples of each type of support
for boundary intervals of index 1. The solution set H is marked by hatching,
while the support S1 is shown as a thick segment of the line A1:x = b1.

Direction of the boundary interval with index i specifies a motion along the line
Ai:x = bi for which the half-plane Ai:x ≥ bi remains on the right-hand side.
The opposite direction can be taken equally well; it is only important that the
directions are chosen uniformly for all the boundary inequalities.

The solution set H to system (4) satisfies the inequality Ai:x ≥ bi, which means
that H is entirely included in the half-plane determined by this inequality.
Therefore, when we are moving along the line Ai:x = bi in the direction of
the boundary interval with the index i, the solution set H also stays at the
right-hand side.4

To get a numerical description of the direction chosen for a boundary interval,
we turn to Fig. 3. For the inequality Ai:x ≥ bi, the vector A>i: = (Ai1, Ai2)> is
perpendicular to the line Ai:x = bi, being directed inward to the solution half-plane
for this inequality. In other words, the vector A>i: = (Ai1, Ai2)> is an inward normal
vector for the solution half-plane. After rotating this vector by 90◦ clockwise, we get
one of two possible directions along the line Ai:x = bi. The other direction (opposite
to the first one) can be obtained after rotating the inward normal vector by 90 degrees
counter-clockwise. We choose a direction of the motion along the line Ai:x = bi such
that the half-plane Ai:x ≥ bi remains on the right-hand side during this motion. It
is not hard to understand that the required direction corresponds to the vector A>i:
rotated by 90◦ counter-clockwise, i. e., it is (−Ai2, Ai1)>.

When a direction of the line Ai:x = bi is fixed, we can define naturally the concepts
of start and finish for the support of a boundary interval (Fig. 4). The start and finish
of the support are called endpoints of the boundary interval.

In the term “boundary interval”, the word “boundary” displays the relation with
the boundary of the solution set and boundary inequalities of system (4), and the
term “interval” is chosen by analogy with the intervals over the extended real axis
R = R ∪ {−∞,+∞}. These intervals have the form [z, z] =

{
x ∈ R | z ≤ x ≤ z } for

some z, z ∈ R. They have an analog of the start — left (or lower) endpoint z, and

4If the set H entirely lies on the straight line Ai:x = bi, we say that it is simultaneously
on both the right-hand side and the left-hand side in any motion along the line Ai:x = bi.
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a)

A1:x ≥ b1

b)

A1:x ≥ b1

A2:x ≥ b2

c) A1:x ≥ b1

A2:x ≥ b2

A3:x ≥ b3

d) A1:x ≥ b1

A2:x ≥ b2

A3:x ≥ b3

Figure 2: Supports of boundary intervals: a) line, b) ray, c) line segment, d) point.

x1

x2

Ai:x = bi

Ai:x ≥ bi

A>i:

(−Ai2, Ai1)>

Figure 3: Choosing direction on the straight line Ai:x = bi.

analog of the finish — right (or upper) endpoint z, while their geometrical images,
similar to the boundary intervals, are a point, a usual interval, a ray, or the whole real
axis R.
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Ax ≥ b

Ai:x = biDirection

Finish

Support

Start

Index

Figure 4: Visual representation of a boundary interval.

2.2.2 Numerical representation of boundary intervals

To use boundary intervals in computation, we need numerical expressions for all of
their components.

General form of numerical representation of boundary intervals. First,
we discuss which quantities and in what order will describe a boundary interval.

We arrange that in the coordinate system associated with the variables x1 and x2,
the abscissa and ordinate take values from the extended real axis R. Then the start
and finish points of any boundary interval may be considered as points of the extended

real plane R2
.

Using the coordinates of the extended real plane, we represent a boundary interval
as an ordered five-tuple of numbers: the first two numbers are the abscissa and ordinate
of the start, then two coordinates of the finish, and the fifth number is the index of
the boundary interval:(

∗ ∗︸ ︷︷ ︸ ∗ ∗︸ ︷︷ ︸ i
)
.

start ∈ R2
finish ∈ R2

index ∈ N
(5)

Such a record represents the boundary interval in numbers convenient for the boundary
intervals method:

1. The index is present in the record as a separate number.

2. The support is described by coordinates of its two endpoints. (Notice that
unbounded support cannot always be reconstructed from the coordinates of its
endpoints. The boundary intervals method does not need such reconstruction,
but the unique reconstruction becomes possible after involving the generating
inequality of the corresponding index.)

3. The direction of the boundary interval is set by dividing the support endpoints
to the start and finish. (If the support is a point, its relation with the direction
of the corresponding straight line fails, but the direction of any point support
does not matter in the boundary intervals method.)
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All the information about any boundary interval can be obtained from its index and
the initial data of the system of inequalities (4), i. e., from the matrix A and vector
b. Still, when introducing the record (5), we had to construct a representation of the
boundary interval convenient for use in our visualization technique.

Computing boundary intervals. Next, we discuss how to reveal, from the
matrix A and vector b, whether the inequality Ai:x ≥ bi generates a boundary interval
of system (4), and if it does, how to compute the coordinates of the start and finish
for this boundary interval. We already know (see Section 2.1) that if Ai: = (0 0), the
inequality Ai:x ≥ bi cannot be boundary and does not generate a boundary interval.
Therefore, we will concentrate on the case Ai: 6= (0 0).

x1

x2 y

Õ

Ai:x ≥ bi

A>i:

(−Ai2, Ai1)>

O

Figure 5: Choosing an internal coordinate system on the line Ai:x = bi.

On the straight line Ai:x = bi, we introduce an internal coordinate system. We
choose the origin of coordinates, a unit vector, and an internal variable. One suitable
variant of this construction is as follows (see Fig. 5):

� As the origin Õ of the internal coordinate system, we take the projection of the
origin (0, 0) of the “external” coordinate system Ox1x2 onto the line Ai:x = bi.

Then the vector Õ is proportional to its normal vector A>i: , and hence, Õ = tA>i:
for some t ∈ R, t 6= 0. On the other hand, Õ lies on the line Ai:x = bi. This
is why the value t can be computed from the equality Ai:

(
tA>i:

)
= bi. We get(

Ai:A
>
i:

)
t = bi, so that t = bi/‖Ai:‖22, where ‖Ai:‖2 =

√
Ai:A>i: =

√
A2

i1 +A2
i2

is 2-norm (Euclidean norm) of the row Ai:. Therefore,

Õ = biA
>
i:

/
‖Ai:‖22.

� We have agreed to choose the direction on the straight line Ai:x = bi to coincide
with the direction of the vector (−Ai2, Ai1)> (see Section 2.2.1). For this reason,
we take the vector (−Ai2, Ai1)> itself as the unit vector (orth) of the internal
coordinate system.

� The internal coordinate is denoted by y.
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Having thus fixed the coordinate system, the straight line Ai:x = bi admits the para-
metric description

bi
‖Ai:‖22

A>i: + (−Ai2, Ai1)>y, y ∈ R. (6)

To find the intersection of the line (6) with the solution set to the system Ax ≥ b,
we make the change of variables

x −→ bi
‖Ai:‖22

A>i: + (−Ai2, Ai1)>y

to arrive at a system of inequalities with only one unknown variable y. The resulting
mono-variable system can be solved easily by treating every inequality (with a single
unknown) separately and intersecting their solutions.

The solution set to the entire system of inequalities is either the empty set or an
interval [y, y] of the extended real axis R. If the solution set is empty, the inequality
Ai:x ≥ bi is not the boundary one, and it generates no boundary interval. If the
solution set is not empty, the inequality Ai:x ≥ bi is a boundary one, and it generates
a boundary interval with index i for which y is the start coordinate and y is the finish
coordinate in the coordinate system we have constructed on the straight line Ai:x = bi.

Next, we transform the start and finish of the boundary interval to the initial
external coordinate system:

start =
bi
‖Ai:‖22

Ai: + (−Ai2, Ai1) y ,

finish =
bi
‖Ai:‖22

Ai: + (−Ai2, Ai1) y .

2.2.3 How edges and vertices of solution polyhedron relate to
supports and endpoints of boundary intervals

The boundary interval is an algebraic construction derived from the initial system of
linear inequalities (1). Nevertheless, the boundary intervals have much in common with
some well-known geometric notions. For the system (4) that determines a polyhedron
in R2, supports and endpoints of the boundary intervals are closely related to edges
and vertices of the solution polyhedron,5 as described by Propositions 3–8.

Proposition 3 Support of a boundary interval can be only a vertex or an edge of the
solution polyhedron.

. Proof. Support of the boundary interval with index i is defined as support of the
boundary inequality Ai:x ≥ bi in system (4). It is the intersection of the straight
line Ai:x = bi, which is supporting the solution polyhedron H, with this polyhedron.
Hence, support of the boundary interval is support for H and has dimension at most
one. /

Proposition 4 If the coordinates of the start and finish for a boundary interval co-
incide with each other, the corresponding support is a vertex. If the coordinates of the
start and finish differ, the corresponding support is an edge of the solution polyhedron.

5We continue speaking of “polyhedra” for uniformity of our style, although these “polyhe-
dra” are actually “polygons” on the plane R2.
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. Proof. From Proposition 3, support of the boundary interval may be either a vertex
or an edge of the solution polyhedron, and there are no other variants. Therefore, it
suffices to prove only the one-way implication that if the support is a vertex, its start
and finish have equal coordinates, and if the support is an edge, then the endpoints of

the boundary interval differ in at least one coordinate in R2
.

Let the support be a vertex. Then a geometrical image of the support is a point
from R2. Both the start and finish coincide with it, so their coordinates must agree.

When the support is an edge, its possible geometrical images are a line segment, a
ray, or a whole straight line. If the support is a segment, its start and finish are different
points of the segment, so at least one of their coordinates must differ. If the support is
a ray, one of the endpoints has finite coordinates, while the other endpoint may have
either +∞ or −∞ in its coordinates. If the support is a line parallel to a coordinate
axis, the start and finish of the support differ in the corresponding coordinate by the
sign at∞’s. If the support is a line not parallel to coordinate axes, the start and finish
of the support differ in both coordinates by the signs at ∞’s. /

Proposition 5 Let H be a solution polyhedron for system (4).

1. Any edge S of the set H is support for at least one boundary interval.

2. If H has the dimension 1, its edge is support for at least two boundary
intervals having opposite directions.

. Proof.
1. An edge of a polyhedron is, by definition, a one-dimensional support S for a

half-space Ψ supporting the polyhedron. In the system of inequalities (4), the number
of unknowns n = 2, so that Ψ is a half-plane, and the dimension of S is 1 = n−1. From
Proposition 1, system (4) has a boundary inequality that determines the half-plane
Ψ and has support S. This inequality, being a boundary one, generates a boundary
interval with the edge S as its support and the direction that specifies motion along
the edge in which the half-plane Ψ remains at the right.

2. If the dimension of the polyhedron H is one, it coincides with its single edge
S. This edge is support of two half-planes Ψ1 and Ψ2 that lie on different sides of S.
For each of these half-planes, Proposition 1 implies that system (4) has a boundary
inequality describing the corresponding half-plane. The boundary intervals generated
by these inequalities have edge S as support, but differ in their directions. /

As distinct from edges, vertices of the solution polyhedron to system (4) are not
necessarily supports of boundary intervals. For example, in the system

x1 ≥ −1,

−x1 ≥ −1,

x2 ≥ −1,

−x2 ≥ −1,

all four supports are edges, the sides of the square solution set ([−1, 1], [−1, 1])>.
Notice that any edge, as well as any vertex, can be support for several boundary

intervals at the same time. Let us consider specific examples:

1. For the system {
x1 + x2 ≥ 0,

2x1 + 2x2 ≥ 0,
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the only (infinite) edge of the solution set are supports of the boundary intervals
generated by both inequalities.

2. For the system 
x1 ≥ 0,

−x1 ≥ 0,

x2 ≥ 0,

−x2 ≥ 0,

the solution set consists only of the point (0, 0). All the inequalities of the system are
boundary, and the vertex (0, 0) is support of the boundary interval for each of them.

We emphasize that coincidence of supports does not mean that the boundary inter-
vals are equal to each other; see example 1 above. The boundary intervals always differ
in their indices, their ordinal numbers within system (4) of the generating inequalities.

The boundary of the solution polyhedron for system (4) is the union of its vertices
and edges. An analogous assertion is valid for supports of the boundary intervals.

Proposition 6 The boundary of the solution set to system (4) is the union of supports
of boundary intervals.

. Proof. In Section 2.1, we showed that the boundary of the solution polyhedron to
a system of linear inequalities consists of supports of the boundary intervals,

∂H =
⋃
i∈Ib

Si, (7)

where Ib are all ordinal numbers (indices) of the boundary inequalities in (4), and Si

is support of the inequality i. Since the index and support of the boundary inequality
are, by definition, the index and support of a boundary interval generated by the
inequality, we can suppose that in representation (7), Ib is the index set of the boundary
intervals, and Si is support of boundary interval i. As a consequence, the boundary
of the polyhedron H consists of supports of the boundary intervals. /

Proposition 6, unlike Propositions 3–5, is valid in the general case, no matter how
many unknowns the system of inequalities (1) has.

We have considered the relation of vertices and edges of the solution polyhedron
with supports of the boundary intervals. Next, we discuss the connection between
vertices and endpoints of the boundary intervals for systems (4) of inequalities with
two unknowns.

Proposition 7 An endpoint of the boundary interval is a vertex of the solution set to
system (4) if and only if both its coordinates are finite.

. Proof. From Proposition 3, support of the boundary interval is either a vertex
or an edge of the solution polyhedron. If the support of the boundary interval is a
vertex, both endpoints coincide with it, and the coordinates of any vertex, abscissa and
ordinate, are finite. If the support of the boundary interval is an edge, the endpoints
of the boundary interval are endpoints of the edge. An endpoint of the edge with finite
coordinates is a vertex of the polyhedron. An endpoint of an edge with at least one
infinite coordinate is not a vertex. /



450 Irene Sharaya, Boundary Intervals Method for Visualization . . .

a)

T H

b)

T

H

c)

T = H

Figure 6: Position of a vertex T depending on the dimension of the polyhedron H:
a) dimension 2, b) dimension 1, c) dimension 0.

Proposition 8 Each vertex of the solution set to (4) is both the start of a certain
boundary interval and the finish of a certain boundary interval.

. Proof. The position of a vertex within the solution polyhedron H depends on its
dimension, which can take values 2, 1, or 0 (see Fig. 6).

If dimH = 2 (Fig. 6, a), two edges meet in the vertex. Proposition 5 implies that
at least one boundary interval corresponds to each such edge. The boundary interval
has direction so that, when moving from the start to the finish, the set H remains on
the right. That is why the vertex should be the finish for a boundary interval that
has one of the edges as support, and at the same time the vertex is the start for the
boundary interval having the other edge as support.

If dimH = 1 (Fig. 6, b), the polyhedron H coincides with its single edge. Propo-
sition 5 implies that this edge has at least two boundary intervals as supports, and
these boundary intervals have opposite directions. For the boundary intervals with one
direction, the vertex is the finish, while for the boundary intervals with the opposite
direction, the vertex is the start.

If dimH = 0 (Fig. 6, c), the polyhedron is a point. It is both the unique vertex and
the boundary of the polyhedron. Proposition 6 implies that this point is the union of
supports of all the boundary intervals. Therefore, the point is both the start and the
finish for every boundary interval. /

2.3 Boundary intervals matrix in R2

We arrange all the boundary intervals of system (4) as rows in the matrix
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

...
...

...
∗ ∗︸ ︷︷ ︸ ∗ ∗︸ ︷︷ ︸ ∗


coordinates

of starts
coordinates
of finishes

indices

and call it the boundary intervals matrix. The boundary intervals matrix is a numer-
ical expression of the solution set H. In Sections 2.3.1 – 2.3.5, we will explain what
information is kept in the matrix and how to derive and use it.
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2.3.1 How to compose a subsystem of boundary inequalities?

There is a one-to-one correspondence between boundary intervals and boundary in-
equalities. Each boundary interval is generated by only one boundary inequality, and
each boundary inequality generates exactly one boundary interval. The index of the
boundary interval is the ordinal number in system (4) of the boundary inequality that
generates the interval. The indices of all the boundary inequalities of (4) are listed
in the last fifth column of the boundary intervals matrix, and the row size of the
boundary intervals matrix is equal to the total number of the boundary inequalities
in (4).

2.3.2 Does the solution polyhedron have a boundary?

A support cannot be the empty set, so the equality ∂H = ∅ in (7) means the absence
of the elements in the index set Ib. Further, since Ib is the set of all indices in the
fifth column of the boundary intervals matrix, Ib is empty if and only if the boundary
intervals matrix has no rows. Therefore, the absence of the boundary in the solution
polyhedron H is equivalent to the absence of rows in the boundary intervals matrix
for the inequality system determining H. The solution polyhedron does not have a
boundary only in two cases: (i) H is the empty set, or (ii) H coincides with the entire
plane R2. The last case is equivalent to the condition

A = 0, b ≤ 0. (8)

We can summarize the above reasoning:

I The solution polyhedron coincides with the entire plane R2 if and only
if the boundary intervals matrix is empty, and condition (8) is satisfied.

I The solution polyhedron is empty if and only if the boundary intervals
matrix is empty, and condition (8) is violated.

In particular, in case A 6= 0, the emptiness of the boundary intervals
matrix is equivalent to the emptiness of the solution set H.

2.3.3 Is the solution polyhedron bounded?

First, we consider the situation when the boundary intervals matrix is empty, which
corresponds to a solution set with no boundary points. Then the results of the previous
Section 2.3.2 imply that the boundedness of the solution set H can be tested in the
following way:

(a) the solution polyhedron is unbounded (coincides with the entire plane)
when condition (8) holds true,

(b) the solution polyhedron is bounded (coincides with the empty set)
when condition (8) is not valid.

Next, we consider the situation when the boundary intervals matrix is not empty,
i. e., when the set H has boundary points. If the solution polyhedron having boundary
points is unbounded, it has an edge with an endpoint at infinity. Hence from Propo-
sition 7, at least one boundary interval with the endpoint coordinates +∞ or −∞
corresponds to such an edge. If the polyhedron having boundary points is bounded,
the endpoints of all its boundary intervals have finite coordinates. So for the case
when the boundary intervals matrix is not empty, recognizing whether the solution set
is bounded can be organized as follows:
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(a) when the first four columns of the boundary intervals matrix have at least
one element “+∞” or “−∞”, the solution polyhedron is unbounded, or

(b) when there are no elements “+∞” and “−∞” in the first four columns
of the boundary intervals matrix, the solution polyhedron is bounded.

2.3.4 How to get matrix of vertex coordinates?

The matrix of vertex coordinates is constructed from the boundary intervals matrix
in the following way:

1. From Proposition 8, each vertex is the start of a boundary interval. Take the
first two columns of the boundary intervals matrix in which the coordinates of
the starts are specified. Alternatively, we can use the third and fourth columns
specifying the coordinates of the finishes.

2. Delete the rows having elements “+∞” or “−∞”, i. e., all the rows that do not
correspond to vertices according to Proposition 7.

3. A vertex can be the start of several boundary intervals. To avoid unnecessary
repetitions of vertices, delete duplicates of rows from the constructed matrix.

As the result, all the vertices of the solution polyhedron are written out in the
matrix obtained. Each row of the matrix represents a separate vertex as a pair of its
coordinates in the form “(abscissa, ordinate)”. The number of rows in the matrix is
equal to the number of vertices of the solution set.

2.3.5 How to construct a path around the solution polytope?

At this point, we assume that the solution set of system (4) is bounded and non-empty.
From a matrix M of the boundary intervals, we can construct a closed path P around
the solution polytope. The path is a sequence of vertices, moving from one vertex to
the next, visiting all edges of the boundary (if there are edges), and returning to the
initial point. The primary purpose of constructing the path is to help visualizing the
solution polytope by standard drawing tools used in 2D visualization (see Section 3.2).

Geometry of the path. We examine paths from two, one, and zero dimensions
of the polytope (see Fig. 7) and specify a sequence of vertices T1, T2, . . . in each case.

I) The boundary of a two-dimensional polytope (Fig. 7, a) is a closed broken line
with a finite number of sections that do not intersect. The line being closed means
that starting from an arbitrary vertex and moving along the sections of the line, we
return to the initial vertex. The line not intersecting itself means that the polytope
always stays on the one side chosen at the start of the line during our motion. We fix
the clockwise direction of the path so that the polytope is on the right of the line. The
sequence of vertices that corresponds to the path has the form {T1, T2, T3, . . . , T1}.

II) A one-dimensional polytope is a line segment (Fig. 7, b). A closed path around
it is a sequence of vertices {T1, T2, T1}. In this case, the closed broken line of the path
along the boundary is composed of two subsequent sections T1T2 and T2T1. When
moving along the edge in one direction, one of the half-planes supporting the edge
stays on the right, while moving in the opposite direction retains the other half-plane
supporting the edge on the right.
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III) A zero-dimensional polytope is a point (Fig. 7, c). A closed path along its
boundary is a sequence {T1} of only one vertex. Such path does not have sections,
and there is no actual broken line corresponding to it.

Path can be represented by boundary intervals. The path chosen in each
of these cases can be made up of the boundary intervals:

I) For a two-dimensional polytope, the sections of the broken line that specifies
the path are edges of the solution set. Every edge, by virtue of Proposition 5,
serves as support of a boundary interval. Additionally, moving along the section
coincides with the direction of the boundary interval.

II) A one-dimensional polytope coincides with its sole edge, say, T1T2. Proposition 5
suggests that the edge is support of at least two boundary intervals with opposite
directions. One of them corresponds to the move from T1 to T2, and the other
corresponds to the backward move from T2 to T1.

III) The boundary of a zero-dimensional polytope is a single point. By Proposi-
tion 6, it coincides with support of each boundary interval for the system that
determines the polytope.

Pseudocode of the algorithm. We choose boundary intervals from the bound-
ary intervals matrix in the appropriate order to arrange a path around the polytope.
Using the boundary intervals selected, we represent the path as a sequence of vertices
of the polytope. In Tab. 1, we give pseudocode for one of the possible algorithm. The
assignment operator is “←”, and the sense of the variables used in Tab. 1 should be
clear from their names and further explanation. We illustrate the pseudocode using
Fig. 7.

The boundary intervals matrix M = (Mkl) is input of the algorithm. Since the
solution set H is non-empty and bounded, the matrix M is not empty too (see Sec-
tion 2.3.2); it has at least one row. On the other hand, as shown in Section 2.3.1, the

a)

b) c)

T1

T2 T3

. . .

. . .

T1

T2

T1

Figure 7: Non-empty polytopes in R2: a) 2-dimensional (bodily polytope),
b) 1-dimensional (segment), c) 0-dimensional (point).
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Table 1: Algorithm for constructing a closed path around the solution polytope

Input: boundary intervals matrix M = (Mkl) of a polytope.

Output: matrix P in which the rows represent coordinates
of subsequent verticies of a path around the polytope.

1: WorkingMatrix ← M ;

2: BeginningOfPath ← (M11,M12) ;

3: P ← BeginningOfPath ;

4: WorkingStart ← BeginningOfPath ;

5: DO WHILE ( number of rows in WorkingMatrix ) > 0

6: // find the number j of such row of WorkingMatrix

7: // for which WorkingStart coincides with the start

8: DO k = 1 TO ( number of rows in WorkingMatrix )

9: IF
(
WorkingMatrix(k, 1), WorkingMatrix(k, 2)

)
= WorkingStart

10: j ← k ;

11: BREAK

12: END IF

13: END DO

14: WorkingFinish ←
(
WorkingMatrix(j, 3), WorkingMatrix(j, 4)

)
;

15: IF WorkingFinish 6= WorkingStart

16: put WorkingFinish into the matrix P as the last row ;

17: IF WorkingFinish = BeginningOfPath

18: // a closed path P has been constructed ;

19: // end of the algorithm execution

20: RETURN

21: ELSE

22: // begin a new section of the path broken line

23: // from the end of the preceding section

24: WorkingStart ← WorkingFinish

25: END IF

26: END IF

27: delete the j-th row from WorkingMatrix

28: END DO
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number of rows in the boundary intervals matrix is equal to the number of boundary
inequalities in system (4), so it does not exceed the total number of inequalities m
in the system under consideration. The boundedness of the solution set also implies
(see Section 2.3.3) that there are no elements “+∞” or “−∞” in M . Therefore from
Proposition 7, all the endpoints of the boundary intervals are vertices.

The algorithm yields a two-column matrix P (“path matrix”) whose rows represent
subsequent vertices of the path, and each row gives two coordinates of the respective
vertex.

To begin the path, we take the vertex T1, the start in the first row of the boundary
intervals matrix M . We put the coordinates (M11,M12) of the vertex into the first
row of the matrix P . Then we assign T1 to be the working start Tw, a point that we
want to continue the path from it along an appropriate boundary interval. We keep
processing the boundary intervals from the matrix M , storing intermediate results in
a matrix WorkingMatrix that is initialized as M .

Each step of the algorithm attempts to find a boundary interval whose start is the
working start Tw and to determine from the support of this boundary interval the next
vertex Tw+1 of the constructed path. A step of the algorithm consists of four actions:

1) Consider the rows of WorkingMatrix consecutively until we find a row j for
which the start has the coordinates of the current working start Tw.

2) We call the finish in the j-th row,
(
WorkingMatrix(j, 3), WorkingMatrix(j, 4)

)
,

the working finish.

3) From Proposition 4, coincidence of the working finish and working start means
that the support of the boundary interval from the j-th row of WorkingMatrix is
a vertex. Such a boundary interval does not engender a move along the boundary
to a new vertex Tw+1. Therefore, it is not necessary in the construction of the
path.

Distinction between the working finish and the working start implies, in view of
Proposition 4, that the support of the boundary interval from the j-th row of
WorkingMatrix is an edge. In this case, we continue our path along the marked
boundary interval, putting the working finish Tw+1 as another row into the path
matrix P . If in doing so, the working finish coincides with the beginning of the
path T1, the path has been closed, and the algorithm completes its work.

If the working finish does not coincide with T1, the path should be continued
after taking the working finish as a new working start.

4) The boundary interval from the j-th row of WorkingMatrix, no matter whether
we have used it or not, will not be involved in the further construction of the
path, so we delete it from WorkingMatrix.

The steps of the algorithm are repeated as long as WorkingMatrix has rows or until
the conditional operator in lines 17–20 of Tab. 1 breaks the execution when a closed
path is built ahead of the natural termination of the algorithm.

Substantiation of the algorithm. To ensure that the algorithm, having per-
formed a finite number of steps, constructs the matrix of the path vertices correctly,
it is sufficient to examine which boundary intervals constitute the matrix M .

Suppose the dimension of the polytope H is zero (Fig. 7, c). All the boundary
intervals from the matrix M have support T1. It is both the start and finish for
each. Therefore at every step, the algorithm chooses and deletes the first row from
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the current boundary intervals matrix. As the result, the number of steps taken by
the algorithm equals the number of rows in the input boundary interval matrix. The
algorithm completes its work, having added nothing to the beginning of the path T1

recorded in path matrix P .

Finally, let us consider the remaining cases, when the dimension of the polytope
H is either one or two (see Fig. 7, a, b). For each vertex Tw of the bodily polytope,
there is a unique edge along which we can move to the next vertex (which we label
Tw+1) retaining the polytope on the right. We know that the supports of the boundary
intervals are all edges and possibly some vertices of the polytope (see Propositions 3
and 5), and that the boundary intervals can have equal supports. Therefore, in the
boundary intervals matrix M , all the boundary intervals with the start Tw have Tw or
Tw+1 as the finish. Boundary intervals with the finish Tw need not be present, while a
boundary interval with the finish Tw+1 must be present. Hence, when processing the
working start Tw, the algorithm performs one more step than the number of boundary
intervals with the support Tw recorded in the initial boundary intervals matrix M
before the first occurrence of the boundary interval that has TwTw+1 as the supporting
edge. At any rate, the algorithm finds the next path vertex Tw+1 correctly.

In summary, the algorithm subsequently inserts all the vertices of the path into
the matrix P , starting with the vertex T1 = (M11,M12) and ending in it too, as the
result of coinciding the current working finish Tw+1 with the beginning of the path.
As every step of the algorithm finds an appropriate row j and deletes it, the total
number of steps executed by the algorithm, including the last incomplete step, does
not exceed the number of rows in the original boundary intervals matrix M .

3 Visualization in R2

When designing software for visualization of polyhedral sets determined as the unions
of finite numbers of the solution sets to linear inequality systems, we had to resolve
several questions including

1) How to choose the drawing box?

2) How to depict a polytope?

3) How to depict an unbounded polyhedron?

Solving the first two problems resulted in the boundary intervals method. In this
section, we describe our experience of resolving each of these questions in R2.

3.1 Choosing the drawing box

A box (a term borrowed from interval analysis) is a geometrical image of an interval
vector in Rn. It represents the solution set of a component-wise vector inequality
z ≤ z ≤ z with the unknown vector variable z ∈ Rn for some given z, z from Rn.
The box is the direct (Cartesian) product of the intervals (closed segments) on the
coordinate axes. Any interval can degenerate to a point. A drawing box is a coordinate
range (direct product of the intervals over the coordinate axes) in which we will draw.

When visualizing a set, the main problem with choosing the drawing box is that
our picture within the box should allow us to conceive the structure of the set clearly
and unambiguously. Specifically, if the set visualized is bounded, it should be rendered
entirely in the drawing box. If the set visualized is not bounded, we should be able to
imagine what is outside the drawing box from what is depicted within the box.
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For polyhedral sets in R2, the problem of choosing a drawing box is solvable because
the boundary of solution sets has relatively simple structure. Except for a finite
number of points, the boundary is composed of line segments. We say the boundary
is rectilinear at the point y, if there exists a neighborhood of this point (an open
ball centered at this point) where the boundary lies on a line going through y. This
feature enables us to choose the drawing box so that the boundary is either absent or
everywhere rectilinear outside the drawing box. The construction of the drawing box
reduces to finding some special points, their total number being finite, that should be
put into the box. We refer to these as “orientation points”.

Orientation points. For a polyhedral set H, orientation points are points from
H whose presence in the drawing box are sufficient to give us clear and complete
information on the structure of H. The number of orientation points should not be
large.

The concept of “orientation point” is not strict and formal; for the same subclass
of polyhedral sets, we can take the collection of orientation points at will, depending
on programming convenience, easiness of description, or any other reasons. Our ex-
perience allows us to make some recommendations about the choice of the orientation
points using the boundary intervals matrix.

A collection of the orientation points of a polyhedral set should include all the
points from the boundary where it is not a part of a straight line, but in general, such
“non-straight-line points” are not sufficient. They cannot exhaust the collection of the
orientation points, particularly since we should depict polyhedra that may not have
such points (straight lines, half-spaces, and strips). We recommend the following rules
for collecting the orientation points:

1. A polyhedron with vertices. This case corresponds to the boundary intervals
matrix having a start, both of whose coordinates are finite. Ideally, the orientation
points should be the set of all polyhedron vertices. In Section 2.3.4, we have explained
how to get the vertex coordinates matrix.

2. A polyhedron without vertices, but with a boundary. This is the case when the
boundary intervals matrix is not empty, but its every start has an infinite coordinate.
A half-plane, a strip, and a straight line are polyhedra with boundaries, but without
vertices. It is convenient to take as the orientation points projections of the origin
of coordinates onto the boundary straight lines; see the derivation of the formula for
such projection in Section 2.2.2. We thus find all the points x̃i = biA

>
i: /‖Ai:‖22, where

the index i runs through the numbers of the boundary inequalities recorded in the
fifth column of the boundary intervals matrix. After removing repetitions, we have
one orientation point for a half-plane and a straight line and two orientation points
for a strip.

3. A polyhedron without a boundary. This is the case when the boundary intervals
matrix is empty. Polyhedra without boundaries are the empty set (providing that
condition (8) is violated) and the entire space R2 (providing that condition (8) is
satisfied). It is useful to agree that the empty set has no orientation points, while the
only orientation point of the space R2 is the origin of its coordinates. Anticipating our
further explanation, under the above agreement, we say that the empty set is the only
polyhedral set without orientation points, and depicting it results in a special output
message “the visualized set is empty”. The whole space as the solution set appears as
a completely colored drawing box.
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4. A polyhedral set for which the intersection with every orthant is determined
by a system of linear inequalities. Under these conditions, the intersection of the
polyhedral set with a separate orthant is either empty (see case 3) or a polyhedron
with vertices (see case 1). For each orthant, we can find orientation points of the
intersection and then unite them to get a collection of vertices of all the polyhedra
determined by the specified systems of linear inequalities.

5. An arbitrary polyhedral set. In this most general case, we know only the bound-
ary intervals matrix for each polyhedronHk that forms the polyhedral set, and no other
information is available. In this situation, constructing a collection of the orientation
points is a step-by-step process. Let the polyhedron Hk be determined by a system
of linear inequalities Akx ≥ bk. We perform the following sequence of instructions:

Stage 1. If the entire space R2 is present among the polyhedra forming the polyhedral
set, the origin of coordinates should be taken as the orientation point of the
polyhedral set. Otherwise, go to Stage 2.

Stage 2. For each polyhedron Hk of the polyhedral set, consider the collection of its
orientation points obtained according to the rules for cases 1–3 above. If the
orientation point v of Hk is not an interior point of another polyhedron Hl (i. e.,
for every l 6= k, the strict component-wise inequality Alv > bl does not hold),
we add v to the collection of orientation points of the polyhedral set.

After examining all the orientation points of all the polyhedra, go to Stage 3.

Stage 3. Take every pair of polyhedra Hk and Hl forming the polyhedral set. We
consider the intersection of each unbounded support of the boundary intervals
of Hk with each unbounded support of the boundary intervals of Hl.

The intersection point can be found as follows. Let i be the index of a bound-
ary interval for the polyhedron Hk, having an infinite coordinate in any of its
endpoints, and let j be an analogous index for the polyhedron Hl. We compute
the point x̃ at which the lines Ak

i:x = bki and Al
j:x = blj intersect. If both the

systems Akx̃ ≥ bk and Alx̃ ≥ bl are satisfied, the point x̃ is the intersection
of the corresponding supports. Otherwise, the supports do not intersect each
other.

If the point x̃ obtained in the intersection is not an interior point for another
polyhedron Hq, q 6∈ {k, l}, we add the point to the collection of orientation
points of the initial polyhedral set.

Interval hull of the orientation points. After the coordinates (vi1, v
i
2) of the

orientation points vi, i = 1, 2, . . . , are found, we seek the minimal axis-aligned box
that contains all the orientation points. It is known to be the interval hull of the
orientation points, i. e., the interval box[

min
i
vi1, max

i
vi1

]
×
[

min
i
vi2, max

i
vi2

]
,

where “×” is the direct (Cartesian) product of the sets.

Drawing box. The interval hull of the orientation points itself is not suitable to
be a drawing box. On one hand, it can be just a point or a line segment. It is really
impossible to discern anything in such non-solid drawing boxes. On the other hand,



Reliable Computing 19, 2015 459

the interval hull of the orientation points may not allow us to get an idea of how the
solution set behaves “at infinity”. For example, Fig. 8 shows two different unbounded
polyhedra having the same vertices, which cannot be distinguished from the picture
within the interval hull of their orientation points. Hence, the drawing box should be
constructed so that it is essentially larger than the interval hull of all the orientation
points and contains the hull in its interior.

3.2 Drawing polytopes

To visualize polytopes, it is convenient to use standard graphical procedures that draw
a polytope from its vertex matrix determining a closed path around the polytope.
In particular, such procedures exist in most modern software systems for computer
mathematics, e. g., the function fill in Matlab [7] and Octave [3] and the analogous
function xfpoly in the open-source system Scilab [14]. When using these functions, it
is possible to change the color and transparency of the interior domain of the polytope.

If necessary, the vertices of the polytope can be rendered by a separate procedure
that draws a set of points, such as the function scatter in Matlab and Octave.
Highlighting the vertices is useful in various aspects. This way, we will not lose poly-
topes that coincide with points. Additionally, we can clearly represent polytopes that
are line segments. In the next subsection, we will show that any unbounded polyhe-
dron can be depicted as a polytope. In doing so, highlighting the vertices helps to
distinguish meager polyhedra such as line segments, rays and entire straight lines.

3.3 Drawing unbounded polyhedra

In school, we draw straight lines and rays during geometry lessons with the same ease as
line segments, and drawing angles is almost as simple as drawing triangles. We depict
unbounded sets as bounded, with some slight, but significant, differences. For instance,

polyhedron

orientation point

interval hull
of orientation points

drawing box

Figure 8: Different polyhedra with the same interval hull of their orientation points.
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the origin of a ray and endpoints of a segment are marked by noticeable points. We
can do the same with unbounded polyhedra, cutting an unbounded polyhedron to a
polytope, but arranging our picture to give clear signals that an unbounded polyhedron
is visualized.

Cut box. To be visualized within a bounded area, an unbounded polyhedron is cut
by a cut box, chosen to contain the drawing box in its interior. For instance, we can
translate each side of the drawing box from its center (see Fig. 9).

What we really have

What we will see

orientation points of polyhedron

orientation points of polytope

drawing box

cut box

polytope

Figure 9: Cutting and drawing a strip as an example of an unbounded polyhedron.

Cutting. If an unbounded polyhedron in R2 is determined by a system of linear
inequalities Ax ≥ b, with A ∈ Rm×2, x = (x1, x2)>, and b ∈ Rm, the intersection
of the polyhedron with the cut box [x1, x1] × [x2, x2] is a polytope described by the
system of linear inequalities 

Ax ≥ b,
x1 ≤ x1 ≤ x1,
x2 ≤ x2 ≤ x2,

or in canonical matrix form,
A

1 0

0 1

−1 0

0 −1


(
x1

x2

)
≥


b

x1
x2
−x1
−x2

 . (9)
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We can draw a polytope instead of a polyhedron. A general technique
for depicting unbounded polyhedra is

Compute the boundary intervals matrix for the extended system
of linear inequalities (9),

Use the boundary interval matrix to construct a vertex matrix
that represents a closed path around the solution polytope
for system (9), and

Draw the polytope in the drawing box found for the initial
unbounded polyhedron.

Visual differences between bounded and unbounded sets. Since the
cut box of an unbounded polyhedron contains the drawing box, the image of any
unbounded polyhedron reaches the boundary of the drawing box.

A bounded polyhedron is included in the interval hull of its orientation points,
and this hull lies strictly in the interior of the drawing box. Therefore, any bounded
polyhedron cannot have points at the boundary of the drawing box.

If we have visualized a polyhedron and the picture has points at the boundary
of the drawing box, then the polyhedron is unbounded. Otherwise, if a rendered
polyhedron does not have points at the boundary of the drawing box, the polyhedron
is bounded. Similar statements hold for general polyhedral sets.

4 Additional Facts about Polyhedra
and Their Visualization in R3

In three-dimensional space, as two dimensions, the main questions that arise in com-
puter visualization of polyhedral sets are how to construct the drawing box, how to
draw a polytope, and how to draw unbounded polyhedra. Before discussing their
solutions, we need to recall further properties of polyhedra in R3.

4.1 Additional facts about polyhedra

A polyhedron in R3 is described by a system of linear inequalities

Ax ≥ b, A ∈ Rm×3, x ∈ R3, b ∈ Rm, m ∈ N. (10)

Deleting zero rows from the matrix A. In system (10), the matrix A may
have zero rows. When answering various questions about the solution polyhedron,
it is useful to detect zero rows in the system, which by itself offers insight into the
polyhedron structure. If a question under study is not resolved yet, we delete the zero
rows and address the question to the system (10) having only non-zero rows in A.

Step-by-step deletion of the zero rows is organized in the following way. Consider
the rows of the matrix A. If Ai: = ( 0 0 0 ), and bi > 0, the solution set to the inequality
Ai:x ≥ bi and hence to the whole system (10) is empty. The deletion process ends
when we encounter such an inequality, since then we know what the solution set is
and can answer any question about it. If Ai: = (0 0 0), and bi ≤ 0, the solution set
to the inequality Ai:x ≥ bi is the entire space R3. We can delete such inequality from
the system and the respective row from A with no effect on the solution set of (10).
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When the deletion process completes normally without a termination that proves
the emptiness of the solution set, we look at the resulting “cleared system”. If no rows
(inequalities) remain, the initial systems satisfies condition (8), and its solution set is
the entire space R3. If there are rows (inequalities) in the “cleared system”, we must
examine the resulting system of the form (10) without zero rows.

Contribution of a separate inequality to the boundary. Let H be a
solution set to system (10) without zero rows in the matrix A. Let H̃i denote a
contribution of the i-th inequality to the boundary of H (see Section 2.1). The

polyhedron H̃i is the intersection of the plane Ai:x = bi with the solution set H,
H̃i = {x ∈ R3 | Ai:x = bi, Ax ≥ b }.

The sets H̃i play a special role in our method for the space R3. Many questions
about the solution polyhedron H, such as testing its non-emptiness, choosing orienta-
tion points, and even drawing it, decompose into similar questions about the sets H̃i.
On the other hand, for each set H̃i, these questions can be solved using the boundary
intervals matrix (as shown in Section 2.3), since the set H̃i is described in the inter-
nal coordinates of the plane Ai:x = bi by the system of inequalities of the form (4)
with two unknowns. It only remains to select the internal coordinates in the plane
Ai:x = bi.

Constructing the internal coordinate system Õy1y2 in the plane Ai:x = bi amounts
to carrying out the following steps, as in the two-dimensional case:

� The origin Õ of the internal coordinate system is the projection of the origin
(0, 0, 0) of the initial (“external”) coordinate system onto the plane Ai:x = bi,

Õ = biA
>
i: /‖Ai:‖22, (11)

where ‖Ai:‖2 is the Euclidean norm of the row-vector Ai: (the derivation of the
formula (11) can be found in Section 2.2.2).

� As the unit vector e1 corresponding to the internal coordinate y1, we take the
largest orthogonal projection of the vector A>i: , rotated by 90◦ (in any direction).

The projection of the vector A>i: onto the coordinate plane xk = 0 has the
squared length

∑
l 6=k |Ail|2, so it is the longest one for k such that |Aik| =

min{|Ai1|, |Ai2|, |Ai3|}. For example, if min{|Ai1|, |Ai2|, |Ai3|} is attained at
|Ai1| for a given i, the largest projection of the vector A>i: is (0, Ai2, Ai3)>, and
either of the vectors (0, Ai3,−Ai2)> or (0,−Ai3, Ai2)> can serve as the unit
vector of the internal coordinate y1.

� As the unit vector e2 corresponding to the internal coordinate y2, we get the
cross (vector) product of the normal A>i: to the plane Ai:x = bi and the unit
vector e1. The cross product of two linearly independent vectors is a vector that
is perpendicular to both, with length equal to the area of a parallelogram with
the multiplied vectors as sides.

In the internal coordinates of the plane Ai:x = bi, the polyhedron H̃i is described
by a system of inequalities

A
(
Õ + e1y1 + e2y2

)
≥ b,

or (
Ae1 Ae2

)(y1
y2

)
≥ b−AÕ,
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where Õ is given by (11). If in the internal coordinate system of the plane Ai:x = bi,

a point has the coordinates (y1, y2), its coordinates are (Õ+e1y1+e2y2)> in the initial
system Ox1x2x3.

Is the solution polyhedron bounded? The solution set H to the system of
inequalities (10) without zero rows in A cannot coincide with the entire space R3

because the polyhedron H is bounded if and only if its boundary ∂H is bounded.
From the representation (2), the boundary ∂H consists of the contributions made by

separate inequalities, i. e., ∂H =
⋃

i H̃i. This suggests that the boundedness of the

boundary ∂H is equivalent to that all the sets H̃i are simultaneously bounded.
Testing the boundedness of any polyhedron H̃i can be organized as follows:

1) Pass to the internal coordinates of the plane Ai:x = bi;

2) Compute the boundary intervals matrix for H̃i and use the results

of Section 2.3.3 to test the boundedness of the set H̃i.

4.2 Construction of the drawing box

Since the boundary of a polyhedral set in R3 has a finite number of points where it does
not resemble a plane, a dihedral angle, or a straight line, the problem of constructing
the drawing box in R3 appears to be solvable. However, we know of no procedure for
collecting the orientation points for a general polyhedral set. For this reason, we offer
recommendations for choosing orientation points only for two specific (although very
important) cases: (i) an arbitrary polyhedron and (ii) a polyhedral set determined by
a system of linear inequalities in each orthant of R3.

Orientation points of an arbitrary polyhedron. We delete from the system
of inequalities (10) all the rows i for which Ai: = (0 0 0). During the deletion process, if
the solution polyhedron is empty, we say it has no orientation points. If the solution set
to the initial system is R3, the origin of the coordinates is taken as the only orientation
point. If we get a system (10) without zero rows, we search for its nontrivial orientation

points by finding orientation points of the solution polyhedron H̃i for each inequality
Ai:x ≥ bi and uniting all the sets we find. We choose orientation points of the set H̃i

following these steps:

1. Pass to the internal coordinates of the plane Ai:x = bi;

2. Identify orientation points similar to the case of two unknowns; and

3. Transform the orientation points from the internal coordinates
to the original ones.

Orientation points of a polyhedral set described in each orthant by
a system of linear inequalities. For each one of the eight orthants in R3, we
choose the orientation points of the solution polyhedron for the corresponding system
of linear inequalities in the way previously specified for arbitrary polyhedra. Then we
take the union of all these eight sets of the orientation points.

Drawing box. Similar to the case of two unknowns, we find orientation points and
take their interval hull. The drawing box is constructed so that it is larger than the
interval hull of the orientation points and contains the hull in its interior.
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4.3 Drawing polytopes

In this subsection, we discuss how to draw the solution polytope for system (10) in
which the matrix A has no zero rows.

In the two-dimensional case, visualization of a polytope amounts to drawing its
boundary, and the interior may be colored to increase our perception of the figure.
In the three-dimensional case, visualization of the interior is unnecessary in general,
since when looking at a polytope, we can see only its boundary in the actual space.

From (2), the boundary of the solution polytope consists of contributions H∩∂Hi,
i = 1, 2, . . . ,m, made by separate inequalities. If the matrix A of system (10) has no
zero rows, the contribution of the i-th inequality to the boundary of the solution poly-
tope H is the intersection of the plane Ai:x = bi with H. We denote this intersection
by H̃i. Hence, depicting a polytope H in R3 reduces to depicting all the polytopes H̃i.
To draw the polytope H̃i = {x ∈ R3 | Ai:x = bi, Ax ≥ b }, we perform the following:

1. Pass to the internal coordinates of the plane Ai:x = bi.

2. Determine a path around the polytope H̃i, as we did for two unknowns.
If the polytope H̃i is empty, do not draw it.

3. Transform the path vertices from the internal coordinates to the original ones.

4. Draw the polytope H̃i by any function that constructs a “flat” polytope in R3

from its path vertices (for instance, the function fill3 in Matlab).

4.4 Drawing unbounded polyhedra

As in the two-dimensional case, an unbounded polyhedron is rendered in a cut box. In
principle, we draw it as a polytope. However, when drawing an unbounded polyhedron,
we should add details to help convey that the polyhedron is unbounded.

A natural requirement is that the cut box include the interval hull of the orientation
points in its interior. However, unlike the two-dimensional case, the cut box must lie
within the drawing box so that we can see the faces of the polyhedron created by
the cut. To distinguish them from actual faces, i. e., those inherent in the polyhedron
itself, we mark the cut faces by another color. The difference in color between the real
faces and the cut faces is the first detail that will help us to distinguish an unbounded
polyhedron from a polytope. Unfortunately, this device works only for bodily (solid)
polyhedra.

Yet another visualization detail especially useful for thin polyhedra is a cut box
equal to the drawing box. The advantage is that only unbounded polyhedra reach the
boundary of the drawing box, while polytopes lie in the interior of the drawing box. By
rotating the three-dimensional picture, we can see whether the visualized polyhedron
reaches the boundary of the drawing box and infer whether the polyhedron is bounded
or not.

5 Conclusion

The visualization algorithms described here have been implemented by the author
in Matlab as open source software packages lineq2 [15], IntLinInc2D [19], and
IntLinInc3D [20], available at the author’s web-page http://www.nsc.ru/interval/

sharaya . Russian language versions of these packages are called lineq, IntLinIncR2,
and IntLinIncR3, respectively. The interested reader of the manuals for these packages

http://www.nsc.ru/interval/sharaya
http://www.nsc.ru/interval/sharaya
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will find additional insights into the boundary intervals method, including examples
and visualization results. These manuals and source codes continue the explanations
of this paper, which gives only the foundations of the boundary intervals method.

Another implementor of the method may encounter problems relating to the algo-
rithms and specific programming. Solving these problems depends on the experience
and preferences of those who are implementing the method, while the manuals and
source codes of our packages may provide helpful suggestions for particular solutions.
For example, an implementor of the ideal (exact) mathematical algorithm needs to
accommodate the effect of inaccuracy of the digital computation. In our boundary
intervals method, the concepts of supporting hyperplane, support, boundary inequal-
ities, and boundary intervals are based on satisfying equalities, which are unstable
under data perturbations. If substantial variation in the input data (for polyhedra,
the matrix and right-hand side vector of a system of linear inequalities) is allowed
and the computing time does not matter, we can use symbolic computation and exact
rational arithmetic. Alternatively, if we need a picture quickly, given a restriction
on the range of the input data, we must manage with approximate (e. g., floating-
point) computation, coarsening comparisons of not exactly computed values in the
“if” statements.

Our open source visualization packages [15, 19, 20] present possible variants of the
answers to many algorithmic and programming questions.
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