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Abstract

Motivated by interval matrix multiplication we consider (matrix) poly-
topes A ⊆ Rm,n, B ⊆ Rn,k, m,n, k ∈ N, and investigate the boundary
shape of their pointwise product AB := {AB | A ∈ A, B ∈ B}. We prove
that AB cannot have outward curved boundary sections while inward
curved sections may exist. This is achieved by a simple local extreme
point analysis. Results are proved in a more general abstract setting
for images of compact sets of (not necessarily finite dimensional) locally
convex vector spaces under continuous multilinear mappings. They can
be seen as extensions of the Zadeh-Desoer Mapping Theorem which is a
fundamental tool in control theory.
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1 Introduction

Throughout, m,n, k always denote positive natural numbers, i.e., elements of N. A
set A ⊆ Rm,n consisting of matrices of order (m,n) with real-valued entries is called
an interval matrix if there exist matrices A,A ∈ Rm,n such that

A = {A ∈ Rm,n | Ai,j ≤ Ai,j ≤ Ai,j for all i = 1, ...,m, j = 1, ..., n} .

The set of all such interval matrices is denoted by IRm,n. Interval matrices in IRm,1

are called interval vectors and the set of all such interval vectors is for simplicity
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denoted by IRm. Interval matrices and interval vectors are the basic objects of interval
arithmetic for verified computation in linear algebra. Now, if A ∈ IRm,n and B ∈ IRn,k

are interval matrices, their pointwise product

C := AB := {AB | A ∈ A, B ∈ B}

is in general not an interval matrix. Moreover, even when A and B are polytopes,
C can be not convex and not a union of finitely many polytopes. In computational
practice of interval arithmetic C is therefore replaced by an appropriate interval matrix
that includes C. This replacement causes excess width in subsequent computations
that might, using interval arithmetic in a naive way, accumulate quite rapidly and it
is one of the major tasks in interval arithmetic to find subtle algorithms that control
this overestimation. Thus, from the point of view of interval arithmetic it is near at
hand to investigate the qualitative boundary shape of C. Stimulated by a short dis-
cussion on the Reliable Computing mailing list initiated by Kelsey [8] who posed some
questions and conjectures on this subject which were soon answered by Goldsztejn [7]
and Kreinovich [10], we started to carry out numerical experiments.

Surprisingly, these experiments suggested that pointwise matrix polytope products
do not contain outward curved boundary parts while, for example, inward curved
boundary sections sometimes showed up. 1

Trying to prove this fact by elementary differential geometry turned out to be
tedious and not very promising. In order to avoid differentiability pitfalls this led
us to an elementary nondifferential extreme point analysis: Let ext(A) and ext(B)
denote the extreme points (vertices) of A and B respectively, and let locext(C) denote
the set of local extreme points of C which are those points of C that do not lie on
an open line segment that is completely contained in C. 2 Then, our main result for
interval matrices reads, see Corollary 3.3:

locext(C) ⊆ ext(A)ext(B).

In particular, locext(C) is finite. Since outward curved boundary sections contain
infinitely many local extreme points, such boundary shapes cannot occur for pointwise
interval matrix products or for matrix polytope products in general as was suggested by
numerical evidence. This result will be proved in a more general setting for multilinear
functions on (not necessarily finite dimensional) locally convex vector spaces. This
includes interval matrix multiplication. The main theorem is:

Theorem 1.1 Let U1, ..., Un be real Hausdorff locally convex vector spaces, let V be
a Hausdorff topological real vector space, and let f : U1 × U2 × · · · × Un → V be a
continuous multilinear function where U1 × · · · × Un is endowed with the associated
product topology. Then, for arbitrary compact sets Ki ⊆ Ui, i = 1, ..., n, we have

a) ext(f(K1 × ...×Kn)) ⊆ f(ext(K1)× ...× ext(Kn))

b) locext(f(K1 × ...×Kn)) ⊆ f(locext(K1)× ...× locext(Kn))

where f(X1 × · · · × Xn) := {f(x1, ..., xn) | xi ∈ Xi, i = 1, ..., n} for arbitrary sets
Xi ⊆ Ui, i = 1, ..., n.

1The terms “outward curved” and “inward curved” are used in a naive, non-rigorous,
descriptive way. For example, an outward curved boundary part of a three dimensional body
may look like a boundary part of an ellipsoid. More formally, this means that in each point
of that boundary part all main curvatures are positive.

2To our knowledge the notion of local extreme points is new while that of (global) extreme
points is well-known, see Section 3 for details.
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The proof of Theorem 1.1 is not very difficult and we emphasize that we consider
the finding of the appropriate method of local extreme point analysis as the main effort
of this note. Theorem 1.1 can be seen as an extension of the Zadeh-Desoer Mapping
Theorem [12] (ZDMT) which is a fundamental tool in control theory.3 The version of
the ZDMT given in [2] reads:

Theorem 1.2 (Zadeh-Desoer Mapping Theorem)
Suppose Q ⊂ Rl is a box with extreme points {qi | i = 1, ..., 2l} and f : Q → Rk is
multilinear. Let f(Q) = {f(q) | q ∈ Q} denote the range of f .Then it follows that

conv(f(Q)) = conv({f(qi) | i = 1, ..., 2l}). (1)

The ZDMT is a special finite dimensional case of Theorem 1.1 a) since for the box
Q =

∏l
i=1 Ii with finite closed intervals Ii ⊂ R we have

ext(Q) =

l∏
i=1

ext(Ii) = {qi | i = 1, ..., 2l}

wherefore Theorem 1.1 a) with n := l, Ki := Ii, and V := Rk supplies

ext(f(Q)) ⊆ f(ext(Q)) = {f(qi) | i = 1, ..., 2l}. (2)

Now, Minkowski’s theorem, see Theorem 3.1 below, yields

conv(f(Q)) = conv(ext(f(Q))).

Using (2) this implies (1). Conversely, (1) does not directly imply (2). Actually,
part b) of Theorem 1.1 is the more important one for our purpose. First, for convex
Ki it implies part a). Second and mainly, it shows that the multilinear image of the
Ki cannot have locally outward curved boundary parts. This cannot be deduced from
part a), see the example illustrated in Figure 10.

We mention that to the best of our knowledge the proofs for the ZDMT given in
the literature which are known to us do not carry over to the proof of Theorem 1.1.
For example, they use specific properties of boxes or induction on dimension. Our
approach pursues a different way.

The article is organized as follows: Section 2 states basic facts on pointwise matrix
polytope products. To our knowledge Lemma 2.1 and its corollaries, even though
elementary, seem to be not explicitly mentioned in the literature and we therefore
considered them as noteworthy. Furthermore, simple illustrative “counterexamples”
of pointwise matrix polytope products that are not convex and have curved boundary
parts are presented. (These results and examples already answer the questions and
conjectures posed in [8].) Section 3 establishes the connection between the local and
global extreme points of a pointwise product C = AB of compact sets A, B and
those of its factors. As mentioned before, this is proved in a more general context of
multilinear mappings on (not necessarily finite dimensional) locally convex topological
vector spaces. The main results are Theorems 1.1 and 3.3 where the latter extends
the former to vector spaces over the complex numbers. The finite dimensional case of
real or complex interval matrix multiplication will follow as a corollary. For readers
who are less involved with locally convex spaces the appendix contains some basic
explanations and references.

3Many thanks to one of the unknown referees for pointing to the Zadeh-Desoer Mapping
Theorem which was not known to the author.
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2 Basic Remarks and Some Examples

In the following text V denotes a real (not necessarily finite-dimensional) vector space.
In the finite-dimensional case topological properties like compactness are always con-
sidered with respect to the natural Euclidean topology. For an arbitrary subset A ⊆ V
the convex hull of A in V is denoted by

conv(A) :=

{
m∑
i=1

αiai | m ∈ N, a1, ..., am ∈ A,α1, ..., αm ∈ [0, 1],

m∑
i=1

αi = 1

}

and A is called convex if A = conv(A). A polytope C in V is simply the convex hull of
finitely many points of V , i.e., there are v1, ...., vn ∈ V such that

C = conv({v1, ..., vn}) =

{
n∑
i=1

αivi | α1, ..., αn ∈ [0, 1],

n∑
i=1

αi = 1

}
. (3)

If n is minimal subject to (3) then v1, ..., vn are the (uniquely determined) vertices
of C. For the special case n = 2, v1 6= v2, the closed line segment between v1 and v2
is abbreviated by

v1v2 := conv({v1v2}) = {αv1 + (1− α)v2 | α ∈ [0, 1]}.

Remark 2.1 Let A ⊆ Rm,n and B ⊆ Rn,k be two matrix polytopes with vertices
A1, . . . , Ar ∈ Rm,n and B1, . . . , Bs ∈ Rn,k, respectively. Then, the convex hull of
AB := {AB | A ∈ A, B ∈ B} ⊆ Rm,k equals the convex hull of the vertex products
AiBj, i = 1, ..., r, j = 1, ..., s, i.e.,

conv(AB) = conv({AiBj | i = 1, ..., r, j = 1, ..., s}) =: C .

In particular, conv(AB) is again a matrix polytope.

Proof: Let α1, . . . , αr, β1, . . . , βs ∈ [0, 1] such that
∑r
i=1 αi = 1 =

∑s
j=1 βj . Then,

r∑
i=1

s∑
j=1

αiβj =

r∑
i=1

αi

s∑
j=1

βj = 1

and therefore (
r∑
i=1

αiAi

)(
s∑
j=1

βjBj

)
=

r∑
i=1

s∑
j=1

(αiβj)AiBj ∈ C.

Corollary 2.1 Let A and B like in Remark 2.1. If AB is convex, then AB is again
a matrix polytope.

Remark 2.2 Let x, y ∈ R with xy ≥ 0, u, v ∈ V and λ ∈ [0, 1]. Then,

ν :=

{ λx
λx+(1−λ)y if λx+ (1− λ)y 6= 0,

0 else,

is contained in [0, 1] and fulfills

λxu+ (1− λ)yv = (λx+ (1− λ)y)(νu+ (1− ν)v) . (4)
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Proof: The real number z := λx + (1 − λ)y lies between x and y. The assumption
xy ≥ 0 implies that x and y do not have opposite signs whence also λx and z do not
have opposite signs and |z| = λ|x| + (1 − λ)|y| ≥ λ|x|. Thus ν = λx

z
∈ [0, 1] if z 6= 0.

If z = 0, then, since its two addends λx and (1 − λ)y do not have opposite signs,
λx = 0 = (1− λ)y holds and therefore both sides of (4) are zero. If z 6= 0, then

λxu+ (1− λ)yv = z
λx

z
u+ z(1− λx

z
)v = z(νu+ (1− ν)v).

Corollary 2.2 Let C ⊆ V be a convex set and a, b ∈ R with a ≤ b and ab ≥ 0. Then,
[a, b]C := {xu | x ∈ [a, b], u ∈ C} is convex. In other words, the pointwise product
of a convex set and an interval that does not contain zero as an inner point is again
convex.

Proof: Let x, y ∈ [a, b], u, v ∈ C and λ ∈ [0, 1]. By Remark 2.2 there is a ν ∈ [0, 1]
such that λxu+ (1− λ)yv = (λx+ (1− λ)y)(νu+ (1− ν)v) ∈ [a, b]C.

We remind of the following basic facts on sums and linear combinations of convex
sets and polytopes:

Remark 2.3

a) For convex A,B ⊆ V the Minkowski sum A + B := {a + b | a ∈ A, b ∈ B} is
again a convex set.

b) Let A,B ⊆ V be polytopes with vertices a1, ...ar and b1, ...bs, respectively. Then,
A + B is a polytope and equals the convex hull C of the vertex sums ai + bj,
i = 1, ..., r, j = 1, ..., s.

c) For convex sets (polytopes) A1, ..., An ⊆ V and α1, ..., αn ∈ R,
∑n
i=1 αiAi is a

convex set (a polytope).

Lemma 2.1 Let a(1), ...,a(n) ⊆ Rm and b ⊆ Rn be convex sets (polytopes) such that
b is completely contained in one orthant of Rn. For i = 1, ..., n let ei ∈ Rn denote the
i-th standard unit vector and define A :=

∑n
i=1 a

(i)eTi ⊆ Rm,n. Then, Ab ⊆ Rm is a
convex set (polytope). 4

Proof: For X,Y ∈ A, x, y ∈ b, λ ∈ [0, 1] we will show that λXx+ (1−λ)Y y ∈ Ab.
By definition, X =

∑n
i=1 u

(i)eTi and Y =
∑n
i=1 v

(i)eTi for suitable u(i), v(i) ∈ a(i).
By Remark 2.2 for each i ∈ {1, ..., n} there is a νi ∈ [0, 1] such that

λxiu
(i) + (1− λ)yiv

(i) = (λxi + (1− λ)yi)(νiu
(i) + (1− νi)v(i))

= (νiu
(i) + (1− νi)v(i))eTi (λx+ (1− λ)y) .

Since all a(i) and b are convex, we have w(i) := (νiu
(i) + (1 − νi)v

(i)) ∈ a(i) and
z := (λx+ (1− λ)y) ∈ b whence

λXx+ (1− λ)Y y =

(
n∑
i=1

w(i)eTi

)
z ∈ Ab

which proves convexity of Ab. In the case of polytopes, Remark 2.3 c) and Corol-
lary 2.1 show that Ab is a polytope.

4Recall that the orthants of Rn are the sets Ωs := {x ∈ Rn | xisi ≥ 0, i = 1, ..., n} where
s ∈ {−1, 1}n is a signature vector.
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Corollary 2.3 Let a(1), ...,a(n) ⊆ Rm and b ⊆ Rn be connected finite unions of
polytopes and define A :=

∑n
i=1 a

(i)eTi ⊆ Rm,n. Then, Ab ⊆ Rm is a connected finite
union of polytopes.

Proof: By assumption a(i) = ∪rij=1a
(i,j), b = ∪sj=1b

(j) for suitable ri, s ∈ N and poly-

topes a(i,j) ⊆ Rm, b(j) ⊆ Rn. We can further subdivide each b(j) into polytopes lying
in one of the 2n orthants of Rn so that without loss of generality we may already assume
that each b(j) is contained in one orthant of Rn. By Lemma 2.1, (

∑n
i=1 a

(i,ji)eTi )b(j)

is a polytope for all ji ∈ {1, ..., ri}, i, j ∈ {1, ..., n}. Hence,

Ab =

(
n∑
i=1

a(i)eTi

)
b = ∪r1j1=1 · · · ∪

rn
jn=1 ∪

s
j=1

(
n∑
i=1

a(i,ji)eTi

)
b(j)

is a finite union of polytopes which by continuity of matrix multiplication is con-
nected.

Corollary 2.4 Let A ∈ IRm,n be an interval matrix and let b ⊆ Rn be a convex set
(polytope) that is completely contained in one orthant of Rn. Then, Ab is a convex
set (polytope). In particular, if b ∈ IRn is an interval vector that is contained in one
orthant of Rn, then Ab is a polytope.

Proof: The columns a(i) := Aei ∈ IRm of A are interval vectors. In particular, they
are polytopes in Rm and fulfill

A =

n∑
i=1

a(i)eTi .

Thus Lemma 2.1 yields the assertion.

Corollary 2.5 If A ∈ IRm,n is an interval matrix and if b ⊆ Rn is a connected finite
union of polytopes (which, for example, is the case if b ∈ IRn is an interval vector),
then Ab is a connected finite union of polytopes.

Proof: Like in the proof of the previous Corollary 2.4, the assertion follows directly
from Lemma 2.1.

The following example shows that in general the pointwise product Ab of a matrix
polytope A ⊆ R2,2 and a vector polytope b ⊆ R2, both contained in the non-negative
orthant, is not necessarily a finite union of polytopes. Consider

A :=

[
1 0
0 0

]
, B :=

[
0 0
0 1

]
, a :=

[
1
0

]
, b :=

[
0
1

]
.

The straight line A := AB = {diag(λ, 1 − λ) | λ ∈ [0, 1]} ⊂ R2,2 joining A and
B and the straight line b := ab = {(µ, 1 − µ)T | µ ∈ [0, 1]} ⊂ R2 joining a and b,
are clearly polytopes (each contained in the non-negative orthant). Their pointwise
product Ab = {(λµ, (1− λ)(1− µ))T | λ, µ ∈ [0, 1]} is the area enclosed by the x- and
y-axis and the nonlinear curve f(x) = (1 −

√
x)2, see Figure 1. In particular, Ab is

not a finite union of polytopes.
This example might look a little bit simple and somehow degenerate since A and

b are just lines and one might therefore be interested in higher dimensional polytopes
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Figure 1: line product

A and thick interval vectors b serving as counterexamples. Such an example is given
now: Consider the matrix polytope

A :=

{[
α− 1 β
β − 1 α

]
| α, β ∈ [0, 1]

}

which has the four vertices

[
−1 0
−1 0

]
,

[
0 1
0 1

]
,

[
−1 1
0 0

]
,

[
0 0
−1 1

]
, and the interval

vector b =

[
[0, 1]
[0, 1]

]
. Then, the set

Ab =

{[
(α− 1)u+ βv
(β − 1)u+ αv

]
| α, β, u, v ∈ [0, 1]

}
has the shape shown in Figure 2 which is obviously non-convex. It is also not a finite
union of polytopes since the boundary parts fi, i = 1, ..., 4, are curved.

These curves are by symmetry all congruent and can be computed explicitly which
is done best by rotating Ab by π/4 to the right and stretching it by a factor of

√
2.

This is achieved by multiplying Ab with the matrix Q :=

[
1 1
−1 1

]
from the left. The

set

QAb =

{[
(α+ β)(v + u)− 2u

(α− β)(v − u)

]
| α, β, u, v ∈ [0, 1]

}
is symmetric to the x-axis which simplifies the computation of the curved boundary
sections gi := Qfi, i = 1, ..., 4, see Figure 3. Skipping basic calculations it turns out
that

g1(x) =
(
2−
√

2− x
)2

= −g2(x)
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where x ∈ [0, 1] and the dashed line continuing g1 is of course obtained by taking
x ∈ [−2, 0]. Correspondingly, we have g3(x) = g1(−x) = −g4(x) for x ∈ [−1, 0].

It might additionally be interesting to note that for

b1 :=

[
[0, 1]

1

]
, b2 :=

[
1

[0, 1]

]
⊂
[
[0, 1]
[0, 1]

]
= b

– at first glance surprisingly – holds Ab = Ab1 ∪Ab2. We omit the elementary proof
since it is not in the focus of this paper. The sets Ab1 and Ab2 are the two overlapping
“sting ray” shapes shown in Figures 4, 5.

The next example shows that the pointwise product of two interval matrices, in
general, is not a finite union of polytopes. Consider

A :=

[
[0, 1]

1

]
∈ IR2, Ã :=

[
[0, 1] 1

1 0

]
∈ IR2,2.

Then,

C := AAT =

{[
ab a
b 1

]
| a, b ∈ [0, 1]

}
, C̃ := ÃÃ =

{[
ab+ 1 a
b 1

]
| a, b ∈ [0, 1]

}
.

Neglecting a constant shift, both product sets AAT and ÃÃ can be visualized in
three dimensions as the surface {(x, y, xy) | x, y ∈ [0, 1]} which is curved (and also
non-convex) and therefore is not a finite union of polytopes, see Figure 6.

0

0.5

1

1.5
0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

yx

z

Figure 6: interval matrix product

3 Extreme Point Analysis

According to the previous examples the boundary shape of the pointwise matrix prod-
uct C = AB of arbitrary matrix polytopes A and B might be seen as rather random
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Figure 7: local and global extreme points
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Figure 8: infinitely many extreme points

and it seems that quite arbitrary curved geometrical figures might be constructed in
this way. But this is by no means true. For example, C can never have outward curved
boundary sections like illustrated in Figure 8 for the two-dimensional case. This will
be described precisely in the following text.

Definition 3.1 Let A be an arbitrary subset of V . A point x ∈ A is called an ex-
treme point (or a global extreme point) of A if there do not exist two distinct points
y, z ∈ A\{x} such that x lies on the line yz connecting y and z. A point x ∈ A is
called a local extreme point of A if there do not exist two distinct points y, z ∈ A\{x}
such that x ∈ yz ⊆ A. The set of all extreme points of A is denoted by ext(A) and the
set of all local extreme points by locext(A).

Note that each global extreme point is by definition also a local extreme point,
i.e., ext(A) ⊆ locext(A), but not vice versa. Figures 7, 8 visualize these definitions.

In Figure 7 the set A has the extreme points ext(A) = {a, b, c, g} and the local
extreme points locext(A) = ext(A)∪{e}. The local extreme point e is not a global one
since it lies on the line yz with distinct y, z ∈ A\{e}. Note also that the two internal
vertices d, f are not local extreme points since for example f lies on the line uv ⊆ A
with u, v 6= f . In Figure 8 we can intuitively see that outward curved boundary sec-
tions of A always contain infinitely many local extreme points.

For convex sets A global and local extreme points coincide and they are exactly those
points x ∈ A for which A\{x} is again convex. The later statement is actually a
common way to define extreme points in the context of convex set theory but it does
not make sense for non-convex sets. The following theorem is due to Minkowski [11].

Theorem 3.1 (Minkowski) For a compact and convex set K ⊂ Rn and a subset
A ⊆ K the following statements are equivalent:

a) K is the convex hull of A.

b) The extreme points of K are contained in A.

In formulae: K = conv(A) ⇔ ext(K) ⊆ A.
In particular, for A := ext(K) this means K = conv(ext(K)).
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Corollary 3.1 For compact K ⊂ Rn, conv(K) is also compact and therefore

conv(K) = conv(ext(K)).

Minkowski’s theorem was generalized by Krein and Milman [9] to their following cel-
ebrated result which is frequently used in functional analysis (see also [3], Chapter II,
§7, Section 1, Theorem 1 and its corollary):

Theorem 3.2 (Krein-Milman) In a Hausdorff locally convex vector space V every
compact convex set K ⊆ V is the topological closure of the convex hull of its extreme
points, i.e., K = conv(ext(K)) where X denotes the topological closure of a subset X
in V .5

In particular, the Krein-Milman Theorem ensures the existence of extreme points
in nonempty compact convex sets in Hausdorff locally convex vector spaces. This also
holds true for arbitrary nonempty compact but not necessarily convex sets, see [1],
Chapter 7, Section 7.12, Corollary 7.66:

Lemma 3.1 Every nonempty compact subset of a Hausdorff locally convex vector
space has an extreme point.

Only this fact will be used in the proof of the following lemma which will be used to
prove our main Theorem 1.1.

Lemma 3.2 Suppose that V is a Hausdorff locally convex vector space, that W is a
closed linear subspace of V , and that K ⊆ V is compact. Then,

a) ext(K/W ) ⊆ ext(K)/W

b) locext(K/W ) ⊆ locext(K)/W

where K/W , ext(K)/W , and locext(K)/W are the images of K, ext(K), and locext(K)
in the factor space V/W = {v +W | v ∈ V }.

Proof: Let x + W ∈ K/W with x ∈ K. Since K is compact and x + W is closed,
K ∩ (x + W ) is compact and nonempty as x ∈ K ∩ (x + W ). From Corollary 3.1
it follows that ext(K ∩ (x + W )) 6= ∅. (The use of Corollary 3.1 is the main point
where we need that the topology of V is locally convex.) Thus we can choose an
x∗ ∈ ext(K ∩ (x+W )) which in particular fulfills x∗ +W = x+W and x∗ ∈ K. This
shows that we may have chosen apriori x = x∗ so that x ∈ ext(K ∩ (x + W )) can be
assumed in the following.

a) Let us consider the case x+W ∈ ext(K/W ) and assume that x 6∈ ext(K). Then, by
definition, there exist distinct y, z ∈ K\{x} and λ ∈ ]0, 1[ such that x = λy+(1−λ)z.
Hence also x+W = λ(y+W )+(1−λ)(z+W ) and therefore x+W ∈ ext(K/W ) implies
x+W = y+W = z+W which means that y, z ∈ (K∩(x+W ))\{x}, a contradiction to
x ∈ ext(K∩(x+W )). Hence x ∈ ext(K) holds true and therefore x+W ∈ ext(K)/W .

b) Let us now consider the case x+W ∈ locext(K/W ) and assume that x 6∈ locext(K).
Then, by definition, there exist distinct y, z ∈ K\{x} such that x ∈ yz ⊆ K. By lin-
earity of the canonical mapping V → V/W, v 7→ v +W it follows that

x+W ∈ yz/W = (y +W )(z +W ) ⊆ K/W .

5Relevant definitions and properties of topological vector spaces are listed in the appendix.
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Thus x + W ∈ locext(K/W ) implies x + W = y + W = z + W and therefore
yz ⊆ (K ∩ (x+W )). In particular, this means y, z ∈ (K ∩ (x + W ))\{x}. But this
contradicts x ∈ ext(K ∩ (x + W )). Hence x ∈ locext(K) holds true which proves
x+W ∈ locext(K)/W .

Now, Theorem 1.1 will be proved:

a) Case 1: n = 1. Set U := U1 and K := K1. Then, f : U → V is linear.
Case 1.1: f is injective. Let v ∈ ext(f(K)) and choose a ∈ K such that v = f(a).
If a ∈ ext(K), then we are done, so that we may assume that a 6∈ ext(K). Thus
there are distinct x, y ∈ K\{a} such that a ∈ xy. But then linearity of f implies
v = f(a) ∈ f(xy) = f(x)f(y) and f(x), f(y) ∈ f(K). Therefore v ∈ ext(f(K)) yields
f(a) = v ∈ {f(x), f(y)}, a contradiction as f is injective and x 6= a 6= y.
Case 1.2: f is not injective. Then, the kernel W of f is nontrivial. Since f is
continuous and V is Hausdorff, W is closed in U . The quotient space Ũ := U/W =
{u + W | u ∈ U} endowed with the quotient topology is a again a Hausdorff locally
convex vector space and its subset K̃ := K/W = {a + W | a ∈ K} is also compact
again. Moreover, the mapping f̃ : Ũ → V, u + W 7→ f(u) is well-defined, linear,
injective and continuous. In particular, we have

f̃(K̃) = f(K) (5)

f̃(ext(K)/W ) = f(ext(K)) . (6)

By Case 1.1 applied to f̃ , Lemma 3.2 a) and Equations (5),(6) it follows that

ext(f(K)) = ext(f̃(K̃)) [Equation (5)]

⊆ f̃(ext(K̃)) [Case 1.1 applied to f̃ ]

⊆ f̃(ext(K)/W ) [Lemma 3.2 a)]

= f(ext(K)) [Equation (6)] .

Case 2: n ≥ 2. Let v ∈ ext(f(K1 × ...×Kn)) and choose ai ∈ Ki, i = 1, ..., n such
that v = f(a1, ..., an). The function

g : K1 → V, x 7→ f(x, a2, ..., an)

is linear and continuous. Since g(K1) ⊆ f(K1 × ...×Kn), clearly

v ∈ ext(f(K1 × ...×Kn)) ∩ g(K1) ⊆ ext(g(K1)) ,

and since we already proved the assertion for the linear case, we have

v ∈ ext(g(K1)) ⊆ g(ext(K1))

which means that there is an a∗1 ∈ ext(K1) such that

f(a∗1, a2, ..., an) = g(a∗1) = v .

Proceeding in the same way for a2, a3, ..., an, we can replace all ai by some a∗i ∈ ext(Ki),
i = 1, ..., n, such that f(a∗1, a

∗
2, ..., a

∗
n) = v. This finishes the proof of a).

The proof of b) is completely analogous to a). Simply replace all occurrences of
“ext” by “locext”. Only in Case 1.1 there is a slight variation: The points x, y ∈ K\{a}
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can be chosen such that a∗ ∈ xy ⊆ K. Then, linearity of f implies v = f(a) ∈ f(xy) =
f(x)f(y) ⊆ f(K) which as v ∈ locext(f(K)) again implies f(a) = v ∈ {f(x), f(y)},
a contradiction to f being injective. Furthermore, in Case 1.2, part b) of Lemma 3.2
must be used instead of a).

We want to mention clearly that Theorem 1.1 a) appears for convex compact sets
Ki in [6], § 8, p. 112, Lemma 8.11, with a totally different proof and in a totally differ-
ent context concerning convergence in weak topologies of topological tensor products.
It was used in [6] to generalize known results on this topic.

Theorem 1.1 easily extends to vector spaces over the complex numbers:

Theorem 3.3 Let U1, ..., Un be Hausdorff locally convex vector spaces over the com-
plex numbers and let V be a Hausdorff topological vector space over the complex num-
bers. Furthermore, let

f : U1 × U2 × · · · × Un → V

be a continuous, R-multilinear function so that

f(λ1u1, ...., λnun) =

n∏
i=1

λi f(u1, ...., un)

for all ui ∈ Ui, λi ∈ R, i = 1, ..., n. Then, for arbitrary compact sets Ki ⊆ Ui,
i = 1, ..., n, we have

a) ext(f(K1 × ...×Kn)) ⊆ f(ext(K1)× ...× ext(Kn))

b) locext(f(K1 × ...×Kn)) ⊆ f(locext(K1)× ...× locext(Kn)) .

Proof: All vector spaces U1, ..., Un, V considered as real vector spaces remain locally
convex. Moreover, the function f is R-multilinear, so that the assertion follows from
Theorem 1.1.

Theorems 1.1 and 3.3 can be easily extended to unions of convex compact sets:

Corollary 3.2 Take n = 2, U1, U2, V , and f like in Theorem 1.1 or Theorem 3.3,
and let (Ai)i∈I and (Bj)j∈J be two families of compact convex sets in U1 and U2

respectively where I and J are arbitrary (not necessarily finite or countable) index
sets. Then, locext(f(∪i∈IAi,∪j∈JBj)) ⊆ ∪i∈I ∪j∈J f(ext(Ai), ext(Bj)).

Proof: Let w ∈ locext(f(∪i∈IAi,∪j∈JBj)) ⊆ f(∪i∈IAi,∪j∈JBj). Then, there are
i ∈ I, j ∈ J , a ∈ Ai, b ∈ Bj such that w = f(a, b). By definition of local extreme
points and by Theorems 1.1 and 3.3 applied to the convex compact sets Ai and Bj it
follows that

w ∈ f(Ai, Bj) ∩ locext(f(∪i∈IAi,∪j∈JBj)) ⊆ locext(f(Ai, Bj))

⊆ f(ext(Ai), ext(Bj)) ⊆ ∪i∈I ∪j∈J f(ext(Ai), ext(Bj)) .

Considering real or complex matrix polytopes and taking matrix multiplication as
R-bilinear mapping f , Corollary 3.2 implies
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Corollary 3.3

a) For matrix polytopes A ⊆ Cm,n and B ⊆ Cn,k we have locext(AB) ⊆ ext(A)ext(B).
In particular, locext(AB) is finite.

b) For connected finite unions A = ∪ai=1Ai ⊆ Cm,n and B = ∪bi=1Bi ⊆ Cn,k of
matrix polytopes Ai ⊆ Cm,n and Bj ⊆ Cn,k we have

locext(AB) ⊆ ∪ai=1 ∪bj=1 ext(Ai)ext(Bj).

In particular, locext(AB) is finite.

Corollary 3.3 rigorously formalizes the illustrative but imprecise initially stated
phrase that outward curved boundary sections cannot occur in the pointwise matrix
product of two (real or complex) matrix polytopes because such boundary shapes
contain infinitely many local extreme points.

We end with an examples that illustrates this fact once more. Consider the fol-
lowing interval matrix and interval vector:

A =

[
[−1, 1] [−1, 1]
[1, 2] [0, 1]

]
, b =

[
[−1, 2]
[0, 1]

]
.

Their pointwise product Ab is by Corollary 2.5 a connected finite union of polytopes.
Since for a connected finite union of polytopes the local extreme points build a subset of
its finitely many vertices, we already know implicitly without using Corollary 3.3 that
Ab only has finitely many local extreme points. The vertices of Ab in counterclockwise
order are stated in the columns of the following table, see Figure 9:

x 2 2 1.5 3 3 −3 −3 −1.5 −2 −2

y −2 0 0.5 2 5 5 2 0.5 0 −2

Clearly, the two vertices

[
±2
0

]
are local but not global extreme points.
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Figure 9: Ab
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Figure 10: Ãb

Next we consider the subpolytope

Ã :=
⋃{[

2α− 1 [−1, 1]
[1, 2] 1− α

]
| α ∈ [0, 1]

}
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of A which has the vertices

[
a b
c d

]
, (a, d) ∈ {(−1, 1), (1, 0)}, b ∈ {−1, 1}, c ∈ {1, 2}.

Clearly Ãb ⊆ Ab but it turns out that Ãb is not a finite union of polytopes anymore.
Figure 10 shows that Ãb has a curved boundary part g. Omitting basic calculations
it can be shown that g has the analytic description

x = g(y) = −1

2

(
y − 1

2

)2

− 1 for y ∈ [−1

2
,

3

2
] .

All other boundary parts of Ãb are piecewise straight line segments. The set Ãb still

has two local extreme points which are not global ones, namely

[
−2
−1

]
,

[
2
0

]
, but in this

case we cannot deduce apriori, without Corollary 3.3, like we did for Ab, that Ãb only
has finitely many local extreme points. For example, without using Corollary 3.3 it
seems apriori not clear at all that Ãb cannot have an outward curved boundary part f
mirror symmetric to g instead of g like sketched by the dashed curve in Figure 10.
Note carefully that f does not cross the boundary of conv(Ãb) which is drawn as
a broken-dotted line in Figure 10. This means that we also could not use the basic
Remark 2.1 to exclude apriori an outward curved boundary shape like f .

We hope that this example supports the relevance of Theorem 1.1 and and its corol-
laries.

4 Appendix

In this appendix we briefly recall definitions and relevant facts of topological vector
spaces and especially locally convex vector spaces. Details can be found, for example,
in [3], [4], [5].

Let F ∈ {R,C} be endowed with the Euclidean topology. An F-vector space
V endowed with a topology τ is a topological vector space if the vector summation
V ×V → V, (u, v) 7→ u+ v and also the scalar multiplication F×V → V, (λ, v) 7→ λv
are both continuous. Here V × V and F × V are considered as topological spaces
endowed with the corresponding product topologies. Then, in particular, (V,+) is an
abelian topological group.

A topological vector space (V, τ) is called locally convex if there exists a fun-
damental system of neighborhoods of 0 consisting of convex sets or, equivalently,
if the topology τ is defined by a set {pi | i ∈ I} of seminorms on V where I is
some index set. The latter means that for each i ∈ I, pi : V → [0,+∞[ fulfills
pi(λv) = |λ|pi(v) and pi(u + v) ≤ pi(u) + pi(v) for all λ ∈ F and u, v ∈ V and the
sets BJ,ε := ∩j∈J{v ∈ V | pj(v) < ε} where J is a finite subset of I and ε > 0 form
a fundamental system of convex neighborhoods of 0. In other words: τ is the initial
topology of the seminorms pi, i ∈ I, which is the coarsest topology on V such that
all pi are continuous. Note that a topological vector space (V, τ) over the complex
numbers is locally convex if and only if (V, τ) considered as a vector space over the
real numbers is locally convex.

Recall also that a topological space (V, τ) is Hausdorff if for all distinct u, v ∈ V
there are neighborhoods A,B ∈ τ such that u ∈ A, v ∈ B and A ∩B = ∅.

Now if U is a (linear) subspace of a topological vector space (V, τ), then the quotient
topology on the quotient space V/U = {v+U | v ∈ V } is the finest topology such that
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the canonical linear mapping ϕU : V → V/U, v 7→ v + U is continuous which means
that the quotient topology is the so-called final topology of ϕU induced on V/U . If W
is any other topological space, then a function g : V/U →W is continuous if and only
if g ◦ ϕU : V → W is continuous. The quotient topology is Hausdorff if and only if U
is closed in V . Moreover, if V is locally convex, then also V/U is locally convex.

Next, like any abelian topological group, a topological vector space (V, τ) carries a
uniform structure which is compatible with its topology τ and it is therefore possible
to speak of completeness or incompleteness of V . This uniform structure is obtained
in the following way: Let R be the set of all neighborhoods of 0 and for R ∈ R define
NR := {(u, v) ∈ V × V | u − v ∈ R}. The sets NR build a fundamental system for
a uniformity N on V such that the topology τN induced by N on V equals τ . Now
the uniform space (V,N ) is called complete if each Cauchy filter in V with respect to
N converges in V . A Fréchet space is a complete metrisable locally convex space. In
particular, each Banach space is a Fréchet space and therefore of course also a locally
convex space.
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