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Abstract

We investigate the question under which circumstances the pointwise in-
terval matrix-vector product Ax := {Ax | A ∈ A, x ∈ x} of a real interval
matrix A ∈ IRm,n and a real interval vector x ∈ IRn is convex.
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1 Introduction

Let m,n, k be positive natural numbers. For (m×n)-matrices A,B ∈ Rm,n comparison
is defined componentwise, i.e., A ≤ B means Ai,j ≤ Bi,j for all i = 1, ..., n and
j = 1, ...,m. For A,A ∈ Rm,n with A ≤ A the set A = {A ∈ Rm,n | A ≤ A ≤ A} is
called an interval matrix. We denote the set of all such interval matrices by IRm,n.
Elements of IRm := IRm,1 are called interval vectors. For A ∈ IRm,n and B ∈ IRn,k

the pointwise product
AB := {AB | A ∈ A, B ∈ B}

is in general neither an interval matrix nor convex, cf. [2] Section 3.1, [1].
Kelsey[3] asked for conditions under which AB is convex. Here, the case k = 1

where B = x ∈ IRn becomes an interval vector and Ax a pointwise interval matrix-
vector product is of special interest; this is the subject of this note. In that case

Ax =

n∑
i=1

x(i)A(:, i) (1)
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is the Minkowski sum1 of the sets x(i)A(:, i) ⊆ Rm, i = 1, ..., n, where x(i) ∈ IR
denotes the i-th component of x and A(:, i) ∈ IRm the i-th column of A in MATLAB
notation. In (1) the inclusion from left to right is clear. For the opposite inclusion
take b :=

∑n
i=1 xiai ∈

∑n
i=1 x(i)A(:, i) where xi ∈ x(i) and ai ∈ A(i, :). Then,

x := (x1, . . . , xn)T ∈ x and A := [a1, ..., an] ∈ A so that b = Ax ∈ Ax.
If all x(i)A(:, i) in (1) are convex, then clearly Ax is convex as well since the

Minkowski sum of convex sets is convex. For example, the former holds true if all
component intervals x(i) do not contain zero in their interior, i.e., if the interval
vector x is contained in one orthant of Rn, cf. [1] Corollary 2.4. But this is only a
sufficient and not a necessary condition ensuring that all x(i)A(:, i) are convex. A
complete characterization of the special situation where all addends in (1) are convex
is given in the following lemma which will be proved in the next section:

Lemma 1.1 Let u = [u, u] ∈ IR be an interval and let v ∈ IRm, m ∈ N, be an interval
vector, then uv is convex if, and only if, at least one of the following conditions holds
true:

(a) v is a point-vector.2

(b) v is a line segment on an axis, i.e., v has at most one nonzero component.

(c) 0 6∈ ◦u, i.e., u does not contain zero in its interior.

(d) 0 ∈ ◦u, 0m ∈ v, and at least one of the following conditions holds true:

(i) αv ⊆ βv where α, β ∈ {u, u} satisfy α 6= β, |α| = min |u|, |β| = max |u|.
(ii) u = −u and ∃i ∈ {1, . . . ,m}∀j ∈ {1, . . . ,m}\{i} : vj = −vj.

Thus, if A ∈ IRm,n is an interval matrix and x ∈ IRm is an interval vector such that
for all i ∈ {1, ..., n}, u := x(i) and v := A(:, i) fulfill one of the conditions (a)-(d),
then the pointwise interval matrix-vector product Ax is convex.

The question arises if Ax can be convex if some or even all x(i)A(:, i) are not.
The answer is yes, and in the next section we will give simple illustrative examples for
that. According to these examples it seems not very promising to search for reasonable
necessary conditions for Ax being convex.

Before proceeding we want to say clearly that all results and examples are com-
pletely elementary and of school level mathematics. Still we consider them as inter-
esting and worth mentioning.

2 Examples and Proofs

Before we prove Lemma 1.1 we illustrate in Figures 1-6 in dimension m = 2 mainly
all different shapes that the product uv of an interval u ∈ IR and an interval vector
v ∈ IR2 may have. First note that if v is a point-vector, or if it is contained in an
axis, or if v is an axis parallel line segment and u is a point-interval, then uv is a line
segment which possibly might consist of a single point if v is a point-vector and u is
a point-interval. These situations might be considered as trivial. In all other cases uv
contains a nonzero area. Figures 1-6 characterize such non-trivial cases.

1For subsets X,Y of a vector space V the pointwise sum X + Y := {x + y | x ∈ X, y ∈ Y }
is called Minkowski sum of X and Y . Recall that for real vector spaces X + Y is convex if X
and Y are convex.

2An interval vector v = [v, v] ∈ IRm is called a point-vector if v = v =: v. In this case v is
identified with v ∈ Rm. Analogously point-matrices are defined.
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Figure 1: cone shape
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Figure 2: double cone shape
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Figure 3: nested boxes
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Figure 4: crossing boxes
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Figure 5: supplementing boxes
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Figure 6: shrink-crossing boxes
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A cone shape like in Figure 1 typically occurs if v does not contain the origin and
zero is not an inner point of u. If zero is an inner point of u, then a double cone shape
like in Figure 2 appears. If v contains the origin and if zero is not an inner point of
u = [u, u], then

uv =

{
uv if |u| > |u|,
uv else,

is again a box, namely the scaling of v by the interval bound of u which is of largest
absolute value. If v contains the origin and if zero is an interior point of u = [u, u],
then uv = uv ∪ uv is the union of the two boxes B1 := uv and B2 := uv. In
Figures 3-6 B1 is plotted with dashed and B2 with solid boundary. The shapes shown
in Figures 1,3, and 5 are convex, and those of Figures 2,4, and 6 are not. In principle
these are the shapes that can occur for the product of an interval u and an interval
vector v. According to (1) pointwise interval matrix-vector products are Minkowski
sums of these shapes. The following example E1 shows that non-convex shapes can
add up to a convex one, see the first row of Figure 7. Example E2 shows that also
a non-convex and a convex shape can add up to a convex one, see the second row of
Figure 7.

E1) A :=

[
[−1, 1] [1, 2]
[1, 2] [−1, 1]

]
, x :=

[
[−1, 1]
[−1, 1]

]
Ax =

[
[−3, 3]
[−3, 3]

]
E2) A :=

[
[−1, 1] [−1, 1]
[1, 2] [−2, 2]

]
, x :=

[
[−1, 1]
[−1, 1]

]
Ax =

[
[−2, 2]
[−4, 4]

]
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Figure 7: Examples E1 and E2
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Remark 2.1 Let u = [u, u] ∈ IR be an interval containing zero in its interior and let
v ∈ IRm be an interval vector which is not a point vector. Then, w := uv is convex
if, and only if, w is an interval vector. In this case v is either a line segment on an
axis or contains the origin.

Proof: Suppose that w is convex. We have w = Q1 ∪Q2 for convex Q1 := [u, 0]v and
Q2 := [0, u]v. Clearly, Q1 is an interval vector if, and only if Q2 = (u/u) · Q1 is an
interval vector. Thus, if Q1 and Q2 are interval vectors, i.e., axis parallel rectangular
solids, then w must also be an axis parallel rectangular solid in order to be convex. If
Q1 and Q2 are not interval vectors, then v does not contain the origin and is also not
a line segment on an axis. Therefore, Q1 and Q2 build a double cone C in a vicinity
of the origin. The double cone C is not degenerated to a line because v is neither a
point vector nor a line segment on an axis. Hence, C is not convex, a contradiction.
This argument also proves the statement in the final sentence of the assertion.

Remark 2.2 Let u = [u, u] ∈ IR be an interval containing zero in its interior and let
v ∈ IRm be an interval vector containing the origin. Suppose that v is not contained
in an axis, i.e., has at least two nonzero components. Then, w := uv is an interval
vector if, and only if, at least one of the following conditions holds true:

(i) αv ⊆ βv where α, β ∈ {u, u} satisfy α 6= β, |α| = min |u|, and |β| = max |u|.
(ii) u = −u and ∃i ∈ {1, . . . ,m}∀j ∈ {1, . . . ,m}\{i} : vj = −vj.

Proof: Since v contains the origin we have

w = [u, 0]v ∪ [0, u]v = uv ∪ uv = αv ∪ βv. (2)

“⇐”. If (i) holds true, then by (2) w = βv is an interval vector. If (ii) holds true,
then without loss of generality we may assume that i = 1. Set u := u = −u so that
(2), (ii), and 0 ∈ (v1 ∩ −v1) imply

w = −uv ∪ uv = u(−v ∪ v) = u((−v1 ∪ v1)× v2 × · · · × vm)

= u([−max |v1|,max |v1|]× v2 × · · · × vm) ∈ IRm.

“⇒”. Suppose that w is an interval vector. Then,

w = uv1 × · · · × uvm = (αv1 ∪ βv1)× · · · × (αvm ∪ βvm). (3)

Now, suppose that (i) does not hold true. Then, there is an i ∈ {1, . . . ,m} such that

αvi * βvi. (4)

Take j ∈ {1, ...,m}\{i} such that vj 6= [0, 0]. Note that by assumption at least one
such j exists and since 0 ∈ vj necessarily rad (vj) > 0 3. From (2), (3), and (4) it
follows that

∅ 6= (αvi\βvi)× βvj ⊆ α(vi × vj)

so that βvj ⊆ αvj . Since |β| ≥ |α| and rad (vj) > 0, this yields |α| = |β|, α = −β,
and hence also vj = −vj . Thus, (ii) holds true.

3For an interval v = [v, v], rad (v) := (v − v)/2 denotes the radius of v.
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Now, Lemma 1.1 follows easily from Remark 2.1 and Remark 2.2: First, suppose
that uv is convex and that conditions (a)-(c) of Lemma 1.1 do not hold true. Then,

0 ∈ ◦u and according to Remark 2.1 uv is an interval vector containing the origin.
Thus, by Remark 2.2 condition (d) is fulfilled.

Next suppose that one of the conditions (a)-(d) hold true. If (a) or (b) holds true,
then uv is a point or a line segment and therefore convex. If (c) holds true, then uv
has convex cone shape. If (d) holds true and if (a) and (b) do not hold true, then
Remark 2.2 says that uv is convex. This finishes the proof of Lemma 1.1.
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